1
|
Moore B, Mahoney K, Zeng MF, Djuricanin P, Momose T. Ultraviolet Photodissociation of Proteinogenic Amino Acids. J Am Chem Soc 2023; 145:11045-11055. [PMID: 37167534 DOI: 10.1021/jacs.3c00124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The ultraviolet photochemistry of the amino acids glycine, leucine, proline, and serine in their neutral forms was investigated using parahydrogen matrix-isolation spectroscopy. Irradiation by 213 nm light destroys the chirality of all three chiral amino acids as a result of the α-carbonyl C-C bond cleavage and hydrocarboxyl (HOCO) radical production. The temporal behavior of the Fourier-transform infrared spectra revealed that HOCO radicals rapidly reach a steady state, which occurs predominantly due to photodissociation of HOCO into CO + OH or CO2 + H. In glycine and leucine, the amine radicals generated by the α-carbonyl C-C bond cleavage rapidly undergo hydrogen elimination to yield methanimine and 3-methylbutane-1-imine, respectively. Breaking of the α-carbonyl C-C bond in proline appeared to yield 1-pyrroline, although due to its weak absorption it remains unconfirmed. In serine, additional products were formaldehyde and E/Z ethanimine. The present study shows that the direct production of HOCO previously observed in α-alanine generalizes to other amino acids of varying structure. It also revealed a tendency for amino acid photolysis to form imines rather than amine radicals. HOCO should be useful in the search for amino acids in interstellar space, particularly in combination with simple imine molecules.
Collapse
Affiliation(s)
- Brendan Moore
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kyle Mahoney
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mei Fei Zeng
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Pavle Djuricanin
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Takamasa Momose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Haupa KA, Joshi PR, Lee Y. Hydrogen‐atom tunneling reactions in solid
para
‐hydrogen and their applications to astrochemistry. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karolina Anna Haupa
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
- Institute of Physical Chemistry Karlsruhe Institute of Technology Karlsruhe Germany
| | - Prasad Ramesh Joshi
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Yuan‐Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
3
|
Tseng CY, Wu YJ, Lee YP. Infrared Spectra of 1-Quinolinium (C 9H 7NH +) Cation and Quinolinyl Radicals (C 9H 7NH and 3-, 4-, 7-, and 8-HC 9H 7N) Isolated in Solid para-Hydrogen. J Phys Chem A 2022; 126:2361-2372. [PMID: 35414179 DOI: 10.1021/acs.jpca.2c01330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Large protonated polycyclic aromatic hydrocarbons (H+PAH) and the corresponding nitrogen heterocycles (H+PANH) have been proposed as possible carriers of unidentified infrared (UIR) emission bands from galactic objects. The nitrogen atom in H+PANH is expected to induce a blue shift of the band associated with the CC-stretching mode of H+PAH near 6.3 μm so that their emission bands might agree better with the UIR band near 6.2 μm. We report the IR spectrum of protonated quinoline (1-quinolinium cation, C9H7NH+) and its neutral species (1-quinolinyl radical, C9H7NH) measured upon electron bombardment during the deposition of a mixture of quinoline (C9H7N) and para-hydrogen (p-H2) at 3.2 K, indicating that the protonation and hydrogenation occur mainly at the N atom site. Additional experiments on the irradiation of C9H7N/Cl2/p-H2 matrices at 365 nm to generate Cl atoms, followed by irradiation with IR light to generate H atoms via Cl + H2 (v = 1), were performed to induce the reaction H + C9H7N. This method proved to be efficient for hydrogenation reactions in solid p-H2; we identified, in addition to C9H7NH observed in electron-bombardment experiments, four radicals with hydrogenation at the C-atom site─3-, 4-, 7-, and 8-HC9H7N. Spectral assignments were achieved according to the behavior upon secondary photolysis and a comparison of experimental results with vibrational wavenumbers and IR intensities predicted with the B3LYP/6-311++G(d,p) method. The observed lines at 1641.4, 1598.4, and 1562.0 cm-1 associated with the CC-stretching mode of C9H7NH+ are blue-shifted from those at 1618.7, 1580.8, 1556.7, and 1510.0 cm-1 of the corresponding protonated naphthalene (C10H9+).
Collapse
Affiliation(s)
| | - Yu-Jong Wu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | | |
Collapse
|
4
|
Moore B, Toh SY, Wong YTA, Bashiri T, McKinnon A, Wai Y, Alethea Lee KW, Ovchinnikov P, Chiang CY, Djuricanin P, Momose T. Hydrocarboxyl Radical as a Product of α-Alanine Ultraviolet Photolysis. J Phys Chem Lett 2021; 12:11992-11997. [PMID: 34889613 DOI: 10.1021/acs.jpclett.1c03104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
UV photodissociation of α-alanine was studied by parahydrogen matrix isolation infrared spectroscopy. The temporal behavior of Fourier transform infrared spectra revealed that UV irradiation at 213 nm yielded the HOCO radical as a direct photoproduct from the S2 excited state. The concentration of HOCO quickly approached a steady state due to secondary photodissociation of HOCO to produce CO2 + H or CO + OH. On the other hand, no photoproducts were detected by S1 excitation at 266 nm. Irradiation of fully deuterated α-alanine at 213 nm yielded ∼2 times more cis-DOCO radicals than the lower energy isomer trans-DOCO, indicating that the conformation of the hydroxyl group is fairly well-preserved upon photodissociation of α-alanine. The present study suggests that HOCO may be a good tracer species in the search for amino acids in interstellar space.
Collapse
Affiliation(s)
- Brendan Moore
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Shin Yi Toh
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Y T Angel Wong
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Termeh Bashiri
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Alexandra McKinnon
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Yonnie Wai
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ka Wing Alethea Lee
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Polina Ovchinnikov
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Chih-Yu Chiang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Pavle Djuricanin
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Takamasa Momose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
5
|
Mutunga FM, Olenyik KM, Strom AI, Anderson DT. Hydrogen atom quantum diffusion in solid parahydrogen: The H + N 2O → cis-HNNO → trans-HNNO reaction. J Chem Phys 2021; 154:014302. [PMID: 33412886 DOI: 10.1063/5.0028853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The diffusion and reactivity of hydrogen atoms in solid parahydrogen at temperatures between 1.5 K and 4.3 K are investigated by high-resolution infrared spectroscopy. Hydrogen atoms are produced within solid parahydrogen as the by-products of the 193 nm in situ photolysis of N2O, which induces a two-step tunneling reaction, H + N2O → cis-HNNO → trans-HNNO. The second-order rate constant for the first step to form cis-HNNO is found to be inversely proportional to the N2O concentration after photolysis, indicating that the hydrogen atoms move through solid parahydrogen via quantum diffusion. This reaction only readily occurs at temperatures below 2.8 K, not due to an increased rate constant for the first reaction step at low temperatures but rather due to an increased selectivity to the reaction. The rate constant for the second step of the reaction mechanism involving unimolecular isomerization is shown to be independent of the N2O concentration as expected. The inverse concentration dependence of the rate constant for the reaction step that involves the hydrogen atom demonstrates clearly that quantum diffusion influences the reactivity of the hydrogen atoms in solid parahydrogen, which does not have an analogy in classical reaction kinetics.
Collapse
Affiliation(s)
| | - Kelly M Olenyik
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Aaron I Strom
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | - David T Anderson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| |
Collapse
|
6
|
Haupa KA, Strom AI, Anderson DT, Lee YP. Hydrogen-atom tunneling reactions with methyl formate in solid para-hydrogen: Infrared spectra of the methoxy carbonyl [•C(O)OCH3] and formyloxy methyl [HC(O)OCH2•] radicals. J Chem Phys 2019; 151:234302. [DOI: 10.1063/1.5133089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Karolina A. Haupa
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Aaron I. Strom
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071-3838, USA
| | - David T. Anderson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071-3838, USA
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Affiliation(s)
- Susy Lopes
- CQC, Department of Chemistry, University of Coimbra Coimbra, Portugal
| | - Rui Fausto
- CQC, Department of Chemistry, University of Coimbra Coimbra, Portugal
| | | |
Collapse
|
8
|
Abstract
With the use of solid parahydrogen in matrix isolation spectroscopy becoming more commonplace over the past few decades, it is increasingly important to understand the behavior of molecules isolated in this solid. The mobility of molecules in solid parahydrogen can play an important role in the dynamics of the system. Water molecules embedded in solid parahydrogen as deposited were found to be mobile at 4.0 K on the time scale of a few days. The diffusion at this temperature must be due to quantum tunneling in solid parahydrogen. The diffusion dynamics were analyzed based on the theory of nucleation. The concentration dependence on the diffusion rate indicates that there might be correlated motion of water molecules, a signature of quantum diffusion. We find that both water monomers and water dimers migrate in solid parahydrogen and provide insight into the behavior of molecules embedded in this quantum crystal.
Collapse
Affiliation(s)
- Brendan Moore
- Department of Chemistry , The University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Pavle Djuricanin
- Department of Chemistry , The University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Takamasa Momose
- Department of Chemistry , The University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
9
|
Balabanoff ME, Ruzi M, Anderson DT. Signatures of a quantum diffusion limited hydrogen atom tunneling reaction. Phys Chem Chem Phys 2018; 20:422-434. [DOI: 10.1039/c7cp05064j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We are studying the details of hydrogen atom (H atom) quantum diffusion in parahydrogen quantum solids in an effort to better understand H atom transport and reactivity under these conditions.
Collapse
Affiliation(s)
| | - Mahmut Ruzi
- Department of Chemistry
- University of Wyoming
- Laramie
- USA
| | | |
Collapse
|
10
|
Tsuge M, Tseng CY, Lee YP. Spectroscopy of prospective interstellar ions and radicals isolated in para-hydrogen matrices. Phys Chem Chem Phys 2018; 20:5344-5358. [DOI: 10.1039/c7cp05680j] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The p-H2 matrix-isolation technique coupled with photolysis in situ or electron bombardment produces protonated or hydrogenated species important in astrochemistry.
Collapse
Affiliation(s)
- Masashi Tsuge
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Chih-Yu Tseng
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- Institute of Atomic and Molecular Sciences
| |
Collapse
|
11
|
Schreiner PR. Tunneling Control of Chemical Reactions: The Third Reactivity Paradigm. J Am Chem Soc 2017; 139:15276-15283. [DOI: 10.1021/jacs.7b06035] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
12
|
Das P, Tsuge M, Lee YP. Infrared absorption of t-HOCO+, H+(CO2)2, and HCO2− produced in electron bombardment of CO2 in solid para-H2. J Chem Phys 2016; 145:014306. [DOI: 10.1063/1.4954898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Prasanta Das
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Masashi Tsuge
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Ruzi M, Anderson DT. Quantum Diffusion-Controlled Chemistry: Reactions of Atomic Hydrogen with Nitric Oxide in Solid Parahydrogen. J Phys Chem A 2015; 119:12270-83. [PMID: 26317154 DOI: 10.1021/acs.jpca.5b06356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our group has been working to develop parahydrogen (pH2) matrix isolation spectroscopy as a method to study low-temperature condensed-phase reactions of atomic hydrogen with various reaction partners. Guided by the well-defined studies of cold atom chemistry in rare-gas solids, the special properties of quantum hosts such as solid pH2 afford new opportunities to study the analogous chemical reactions under quantum diffusion conditions in hopes of discovering new types of chemical reaction mechanisms. In this study, we present Fourier transform infrared spectroscopic studies of the 193 nm photoinduced chemistry of nitric oxide (NO) isolated in solid pH2 over the 1.8 to 4.3 K temperature range. Upon short-term in situ irradiation the NO readily undergoes photolysis to yield HNO, NOH, NH, NH3, H2O, and H atoms. We map the postphotolysis reactions of mobile H atoms with NO and document first-order growth in HNO and NOH reaction products for up to 5 h after photolysis. We perform three experiments at 4.3 K and one at 1.8 K to permit the temperature dependence of the reaction kinetics to be quantified. We observe Arrhenius-type behavior with a pre-exponential factor of A = 0.036(2) min(-1) and Ea = 2.39(1) cm(-1). This is in sharp contrast to previous H atom reactions we have studied in solid pH2 that display definitively non-Arrhenius behavior. The contrasting temperature dependence measured for the H + NO reaction is likely related to the details of H atom quantum diffusion in solid pH2 and deserves further study.
Collapse
Affiliation(s)
- Mahmut Ruzi
- Department of Chemistry, University of Wyoming , Laramie, Wyoming 82071, United States
| | - David T Anderson
- Department of Chemistry, University of Wyoming , Laramie, Wyoming 82071, United States
| |
Collapse
|
14
|
Paulson LO, Mutunga FM, Follett SE, Anderson DT. Reactions of Atomic Hydrogen with Formic Acid and Carbon Monoxide in Solid Parahydrogen I: Anomalous Effect of Temperature. J Phys Chem A 2014; 118:7640-52. [DOI: 10.1021/jp502470j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leif O. Paulson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Fredrick M. Mutunga
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Shelby E. Follett
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - David T. Anderson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|