1
|
Molecular Dynamics Simulation and Cryo-Electron Microscopy Investigation of AOT Surfactant Structure at the Hydrated Mica Surface. MINERALS 2022. [DOI: 10.3390/min12040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Structural properties of the anionic surfactant dioctyl sodium sulfosuccinate (AOT or Aerosol-OT) adsorbed on the mica surface were investigated by molecular dynamics simulation, including the effect of surface loading in the presence of monovalent and divalent cations. The simulations confirmed recent neutron reflectivity experiments that revealed the binding of anionic surfactant to the negatively charged surface via adsorbed cations. At low loading, cylindrical micelles formed on the surface, with sulfate head groups bound to the surface by water molecules or adsorbed cations. Cation bridging was observed in the presence of weakly hydrating monovalent cations, while sulfate groups interacted with strongly hydrating divalent cations through water bridges. The adsorbed micelle structure was confirmed experimentally with cryogenic electronic microscopy, which revealed micelles approximately 2 nm in diameter at the basal surface. At higher AOT loading, the simulations reveal adsorbed bilayers with similar surface binding mechanisms. Adsorbed micelles were slightly thicker (2.2–3.0 nm) than the corresponding bilayers (2.0–2.4 nm). Upon heating the low loading systems from 300 K to 350 K, the adsorbed micelles transformed to a more planar configuration resembling bilayers. The driving force for this transition is an increase in the number of sulfate head groups interacting directly with adsorbed cations.
Collapse
|
2
|
Liu Z, Zhao G, Brewer M, Lv Q, Sudhölter EJR. Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery. Adv Colloid Interface Sci 2021; 294:102467. [PMID: 34175528 DOI: 10.1016/j.cis.2021.102467] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 01/20/2023]
Abstract
With the increasing demand for efficient extraction of residual oil, enhanced oil recovery (EOR) offers prospects for producing more reservoirs' original oil in place. As one of the most promising methods, chemical EOR (cEOR) is the process of injecting chemicals (polymers, alkalis, and surfactants) into reservoirs. However, the main issue that influences the recovery efficiency in surfactant flooding of cEOR is surfactant losses through adsorption to the reservoir rocks. This review focuses on the key issue of surfactant adsorption in cEOR and addresses major concerns regarding surfactant adsorption processes. We first describe the adsorption behavior of surfactants with particular emphasis on adsorption mechanisms, isotherms, kinetics, thermodynamics, and adsorption structures. Factors that affect surfactant adsorption such as surfactant characteristics, solution chemistry, rock mineralogy, and temperature were discussed systematically. To minimize surfactant adsorption, the chemical additives of alkalis, polymers, nanoparticles, co-solvents, and ionic liquids are highlighted as well as implementing with salinity gradient and low salinity water flooding strategies. Finally, current trends and future challenges related to the harsh conditions in surfactant based EOR are outlined. It is expected to provide solid knowledge to understand surfactant adsorption involved in cEOR and contribute to improved flooding strategies with reduced surfactant loss.
Collapse
Affiliation(s)
- Zilong Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China; Organic Materials & Interfaces, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ge Zhao
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China
| | - Mark Brewer
- Shell Global Solutions International B.V., Shell Technology Centre Amsterdam (STCA), Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Qichao Lv
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China.
| | - Ernst J R Sudhölter
- Organic Materials & Interfaces, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
3
|
Klebes J, Finnigan S, Bray DJ, Anderson RL, Swope WC, Johnston MA, Conchuir BO. The Role of Chemical Heterogeneity in Surfactant Adsorption at Solid-Liquid Interfaces. J Chem Theory Comput 2020; 16:7135-7147. [PMID: 33081471 DOI: 10.1021/acs.jctc.0c00759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical heterogeneity of solid surfaces disrupts the adsorption of surfactants from the bulk liquid. While its presence can hinder the performance of some formulations, bespoke chemical patterning could potentially facilitate controlled adsorption for nanolithography applications. Although some computational studies have investigated the impact of regularly patterned surfaces on surfactant adsorption, in reality, many interesting surfaces are expected to be stochastically disordered and this is an area unexplored via simulations. In this paper, we describe a new algorithm for the generation of randomly disordered chemically heterogeneous surfaces and use it to explore the adsorption behavior of four model nonionic surfactants. Using novel analysis methods, we interrogate both the global surface coverage (adsorption isotherm) and behavior in localized regions. We observe that trends in adsorption characteristics as surfactant size, head/tail ratio, and surface topology are varied and connect these to underlying physical mechanisms. We believe that our methods and approach will prove useful to researchers seeking to tailor surface patterns to calibrate nonionic surfactant adsorption.
Collapse
Affiliation(s)
- Jason Klebes
- IBM Research Europe, The Hartree Centre, Daresbury, Warrington WA4 4AD, United Kingdom.,School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sophie Finnigan
- IBM Research Europe, The Hartree Centre, Daresbury, Warrington WA4 4AD, United Kingdom.,Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, Wood Lane, London W12 0BZ, United Kingdom
| | - David J Bray
- The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | - Richard L Anderson
- The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | - William C Swope
- IBM Almaden Research Center, San Jose, California 95120, United States
| | | | - Breanndan O Conchuir
- IBM Research Europe, The Hartree Centre, Daresbury, Warrington WA4 4AD, United Kingdom
| |
Collapse
|
4
|
De Angelis P, Cardellini A, Asinari P. Exploring the Free Energy Landscape To Predict the Surfactant Adsorption Isotherm at the Nanoparticle-Water Interface. ACS CENTRAL SCIENCE 2019; 5:1804-1812. [PMID: 31807682 PMCID: PMC6891862 DOI: 10.1021/acscentsci.9b00773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 05/08/2023]
Abstract
The long-lasting stability of nanoparticle (NP) suspensions in aqueous solution is one of the main challenges in colloidal science. The addition of surfactants is generally adopted to increase the free energy barrier between NPs and hence to ensure a more stable condition avoiding the NP sedimentation. However, a tailored prediction of surfactant concentration enabling a good dispersion of NPs is still an ambitious objective. Here, we demonstrate the efficiency of coupling steered molecular dynamics (SMD) with the Langmuir theory of adsorption in the low surfactant concentration regime, to predict the adsorption isotherm of sodium-dodecyl-sulfate (SDS) on bare α-alumina NPs suspended in aqueous solution. The resulting adsorption free energy landscapes (FELs) are also investigated by tuning the percentage of SDS molecules coating the target bare NP. Our findings shed light on the competing role of enthalpic and entropic interaction contributions. On one hand, the adsorption is highly promoted by the tail-NP and tail-tail nonbonded interaction adhesion; on the other hand, our results unveil the entropic nature of water and surfactant steric effects occurring at the NP surface and preventing the adsorption. Finally, a thorough analysis on the steering works emphasizes the role of the NP curvature in the FEL of adsorption. In particular, we show that, moving from a solid infinite flat surface to a nanoscale particle, a deviation from a Markovian dynamics of adsorption occurs in close proximity to a curved solid-liquid interface. Here, both the NP curvature effect and nanoscale morphology promote a modification of the thermodynamics state of adsorption with a consequent splitting of the free energy profiles and the identification of specific sites of adsorption. The modeling framework suggested in this Article provides physical insights in the surfactant adsorption onto spherical NPs and suggests some guidelines to rationally design stable NP suspensions in aqueous solutions.
Collapse
|
5
|
|
6
|
Cardellini A, Alberghini M, Govind Rajan A, Misra RP, Blankschtein D, Asinari P. Multi-scale approach for modeling stability, aggregation, and network formation of nanoparticles suspended in aqueous solutions. NANOSCALE 2019; 11:3979-3992. [PMID: 30768101 DOI: 10.1039/c8nr08782b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Suspensions of nanoparticles (NPs) in aqueous solutions hold promise in many research fields, including energy applications, water desalination, and nanomedicine. The ability to tune NP interactions, and thereby to modulate the NP self-assembly process, holds the key to rationally synthesize NP suspensions. However, traditional models obtained by coupling the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory of NP interactions, or suitable modifications of it, with the kinetic theory of colloidal aggregation are inadequate to precisely model NP self-assembly because they neglect hydration forces and discrete-size effects predominant at the nanoscale. By synergistically blending molecular dynamics and stochastic dynamics simulations with continuum theories, we develop a multi-scale (MS) model, which is able to accurately predict suspension stability, timescales for NP aggregation, and macroscopic properties (e.g., the thermal conductivity) of bare and surfactant-coated NP suspensions, in good agreement with the experimental data. Our results enable the formulation of design rules for engineering NP aqueous suspensions in a wide range of applications.
Collapse
|
7
|
Chia CL, Alloway RM, Jephson I, Clarke SM, Filip SV, Siperstein FR, Avendaño C. Competitive Adsorption of a Multifunctional Amine and Phenol Surfactant with Ethanol on Hematite from Nonaqueous Solution. J Phys Chem B 2019; 123:1375-1383. [PMID: 30667225 DOI: 10.1021/acs.jpcb.8b09704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surfactants, which contain phenol and amine groups, are commonly used in industries to protect metallic surfaces, and their efficiency depends strongly on factors such as pressure and temperature, solvent properties, and the presence of other surfactants in the system. In this work, we present a molecular simulation study of the competitive adsorption between a multifunctional phenol and amine surfactant model and ethanol at the oil/solid interface formed between iso-octane and a model hematite (α-Fe2O3) slab. We show that the surfactant strongly adsorbs at the iso-octane/hematite interface in the absence of ethanol at moderate temperatures. As the concentration of ethanol is increased, the ethanol molecules compete effectively for the adsorption sites on the iron oxide surface. This competition drives the surfactant molecules to remain in the bulk solution, while ethanol forms ordered and strongly coordinated layers at the oil/solid interface, despite the well-known complete miscibility of ethanol in iso-octane in bulk under standard conditions. Potential of mean force calculations show that the free energy of adsorption of the surfactant is approximately two times larger than that for a single ethanol molecule, but the simulations also reveal that a single surfactant chain needs to displace up to five ethanol molecules to adsorb onto the surface. The end result is more favorable ethanol adsorption which agrees with the experimental analysis of similar oil/iron oxide systems also reported in this work.
Collapse
Affiliation(s)
- Chung-Lim Chia
- School of Chemical Engineering and Analytical Science , The University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Richard M Alloway
- Department of Chemistry and BP Institute , Cambridge University , Cambridge CB2 1EW , U.K
| | - Izaak Jephson
- Department of Chemistry and BP Institute , Cambridge University , Cambridge CB2 1EW , U.K
| | - Stuart M Clarke
- Department of Chemistry and BP Institute , Cambridge University , Cambridge CB2 1EW , U.K
| | - Sorin V Filip
- BP Formulated Products Technology, Research and Innovation, Technology Centre , Whitchurch Hill, Pangbourne, Berkshire RG8 7QR , U.K
| | - Flor R Siperstein
- School of Chemical Engineering and Analytical Science , The University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Carlos Avendaño
- School of Chemical Engineering and Analytical Science , The University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| |
Collapse
|
8
|
Striolo A, Grady BP. Surfactant Assemblies on Selected Nanostructured Surfaces: Evidence, Driving Forces, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8099-8113. [PMID: 28516778 DOI: 10.1021/acs.langmuir.7b00756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surfactant adsorption at solid-liquid interfaces is critical for a number of applications of vast industrial interest and can also be used to seed surface-modification processes. Many of the surfaces of interest are nanostructured, as they might present surface roughness at the molecular scale, chemical heterogeneity, as well as a combination of both surface roughness and chemical heterogeneity. These effects provide lateral confinement on the surfactant aggregates. It is of interest to quantify how much surfactant adsorbs on such nanostructured surfaces and how the surfactant aggregates vary as the degree of lateral confinement changes. This review focuses on experimental evidence on selected substrates, including gold- and carbon-based substrates, suggesting that lateral confinement can have pronounced effects both on the amount adsorbed and on the morphology of the aggregates as well as on a systematic study, via diverse simulation approaches, on the effect of lateral confinement on the structure of the surfactant aggregates. Atomistic and coarse-grained simulations conducted for surfactants on graphene sheets and carbon nanotubes are reviewed, as well as coarse-grained simulations for surfactant adsorption on nanostructured surfaces. Finally, we suggest a few possible extensions of these studies that could positively impact a few practical applications. In particular, the simultaneous effect of lateral confinement and of the coadsorption of molecular compounds within the surface aggregates is expected to yield interesting fundamental results with long-lasting consequences in applications ranging from drug delivery to the design of advanced materials.
Collapse
Affiliation(s)
- Alberto Striolo
- Department of Chemical Engineering University College London , London, WC1E 7JE United Kingdom
| | - Brian Patrick Grady
- School of Chemical, Biological and Materials Engineering, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
9
|
|