1
|
Pawlak M, Żuchowski PS, Jankowski P. Kinetic Isotope Effect in Low-Energy Collisions between Hydrogen Isotopologues and Metastable Helium Atoms: Theoretical Calculations Including the Vibrational Excitation of the Molecule. J Chem Theory Comput 2021; 17:1008-1016. [PMID: 33475358 PMCID: PMC7877727 DOI: 10.1021/acs.jctc.0c01122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present very accurate theoretical results of Penning ionization rate coefficients of the excited metastable helium atoms (4He(23S) and 3He(23S)) colliding with the hydrogen isotopologues (H2, HD, D2) in the ground and first excited rotational and vibrational states at subkelvin regime. The calculations are performed using the current best ab initio interaction energy surface, which takes into account the nonrigidity effects of the molecule. The results confirm a recently observed substantial quantum kinetic isotope effect (Nat. Chem. 2014, 6, 332-335) and reveal that the change of the rotational or vibrational state of the molecule can strongly enhance or suppress the reaction. Moreover, we demonstrate the mechanism of the appearance and disappearance of resonances in Penning ionization. The additional model computations, with the morphed interaction energy surface and mass, give better insight into the behavior of the resonances and thereby the reaction dynamics under study. Our theoretical findings are compared with all available measurements, and comprehensive data for prospective experiments are provided.
Collapse
Affiliation(s)
- Mariusz Pawlak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Piotr S Żuchowski
- Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Piotr Jankowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
2
|
Using the Method of Harmonic Distortion Analysis in Partial Discharge Assessment in Mineral Oil in a Non-Uniform Electric Field. ENERGIES 2020. [DOI: 10.3390/en13184830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In high-voltage equipment, it is vital to detect any failure in advance. To do this, a determination of the partial discharges occurring at different voltage types as well as at different electrode configurations is essential for observing the oil condition. In this study, an experimental setup consisting of a needle–semi-sphere electrode configuration immersed in mineral oil is prepared for laboratory experiment. In such a way, a non-uniform electric field is created and the leakage currents are monitored from the grounded electrode. A total of six different electrode configurations are analyzed during the tests by the use of hemispheres of different diameters as grounded electrodes and copper and steel pointed (medical) needle high-voltage electrodes. In the experiments, the partial discharges occurring at four different voltage levels between 5.4 and 10.8 kV are measured and recorded. The effect of the different electrode configurations and voltage levels on the harmonic distortion are noted and discussed. It is experimentally confirmed that it is possible to measure the leakage current caused by the partial discharges of the corona type in oil at the different metal points, creating high-voltage electrodes and different electric field distributions based on the proposed non-invasive measurement technique. The studies showed that there is a significant rise of even harmonic components in the leakage current during the increase in the partial discharge intensity with the 5th harmonic as dominant.
Collapse
|
3
|
Falcinelli S, Pirani F, Candori P, Brunetti BG, Farrar JM, Vecchiocattivi F. A New Insight on Stereo-Dynamics of Penning Ionization Reactions. Front Chem 2019; 7:445. [PMID: 31275926 PMCID: PMC6591474 DOI: 10.3389/fchem.2019.00445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/31/2019] [Indexed: 12/25/2022] Open
Abstract
Recent developments in the experimental study of Penning ionization reactions are presented here to cast light on basic aspects of the stereo-dynamics of the microscopic mechanisms involved. They concern the dependence of the reaction probability on the relative orientation of the atomic and molecular orbitals of reagents and products. The focus is on collisions between metastable Ne*(3P2, 0) atoms with other noble gas atoms or molecules, for which play a crucial role both the inner open-shell structure of Ne* and the HOMO orbitals of the partner. Their mutual orientation with respect to the intermolecular axis controls the characteristics of the intermolecular potential, which drives the collision dynamics and the reaction probability. The investigation of ionization processes of water, the prototype of hydrogenated molecules, suggested that the ground state of water ion is produced when Ne* approaches H2O perpendicularly to its plane. Conversely, collisions addressed toward the lone pair, aligned along the water C2v symmetry axis, generates electronically excited water ions. However, obtained results refer to a statistical/random orientation of the open shell ionic core of Ne*. Recently, the attention focused on the ionization of Kr or Xe by Ne*, for which we have been able to characterize the dependence on the collision energy of the branching ratio between probabilities of spin orbit resolved elementary processes. The combined analysis of measured PIES spectra suggested the occurrence of contributions from four different reaction channels, assigned to two distinct spin-orbit states of the Ne*(3P2, 0) reagent and two different spin-orbit states of the ionic M+(2P3/2, 1/2) products (M = Kr, Xe). The obtained results emphasized the reactivity change of 3P0 atoms with respect to 3P2, in producing ions in 2P3/2 and 2P1/2 sublevels, as a function of the collision energy. These findings have been assumed to arise from a critical balance of adiabatic and non-adiabatic effects that control formation and electronic rearrangement of the collision complex, respectively. From these results we are able to characterize for the first time, according to our knowledge, the state to state reaction probability for the ionization of Kr and Xe by Ne* in both 3P2 and 3P0 sublevels.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| | - Fernando Pirani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Pietro Candori
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| | - Brunetto G Brunetti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - James M Farrar
- Department of Chemistry, University of Rochester, Rochester, NY, United States
| | - Franco Vecchiocattivi
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Falcinelli S, Vecchiocattivi F, Pirani F. The electron couplings in the transition states: The stereodynamics of state to state autoionization processes. J Chem Phys 2019; 150:044305. [PMID: 30709283 DOI: 10.1063/1.5051174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Measurements of the kinetic energy distribution of electrons, emitted in collision between Ne*(3P2,0) and Kr(1S0) and Xe(1S0), have been performed in a crossed molecular beam apparatus which employs a mass spectrometer and a hemispherical electron analyzer as detectors. The analysis of the obtained experimental results provides new insights on electronic rearrangements and electronic angular momentum coupling effects that determine relevant properties of the transition state of autoionization processes, and that we have found useful to classify as adiabatic and non-adiabatic effects. In particular, while the adiabatic effects control sequence, energy, and symmetry of quantum states accessible to both reagents and products in the probed collision energy range, the non-adiabatic ones trigger the passage from entrance to exit channels. The obtained results are important not only to compact previous theoretical schemes of autoionization reactions in a unified representation but also to cast light on the role of electronic rearrangements within the transition state of many other types of chemical processes that are more difficult to characterize.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Dipartimento di Ingegneria Civile ed Ambientale, Università di Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Franco Vecchiocattivi
- Dipartimento di Ingegneria Civile ed Ambientale, Università di Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
5
|
Falcinelli S, Rosi M, Cavalli S, Pirani F, Vecchiocattivi F. Stereoselectivity in Autoionization Reactions of Hydrogenated Molecules by Metastable Noble Gas Atoms: The Role of Electronic Couplings. Chemistry 2016; 22:12518-26. [PMID: 27470487 DOI: 10.1002/chem.201601811] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 11/09/2022]
Abstract
Focus in the present paper is on the analysis of total and partial ionization cross sections, measured in absolute value as a function of the collision energy, representative of the probability of ionic product formation in selected electronic states in Ne*-H2 O, H2 S, and NH3 collisions. In order to characterize the imaginary part of the optical potential, related to electronic couplings, we generalize a methodology to obtain direct information on the opacity function of these reactions. Such a methodology has been recently exploited to test the real part of the optical potential (S. Falcinelli et al., Chem. Eur. J., 2016, 22, 764-771). Depending on the balance of noncovalent contributions, the real part controls the approach of neutral reactants, the removal of ionic products, and the structure of the transition state. Strength, range, and stereoselectivity of electronic couplings, triggering these and many other reactions, are directly obtained from the present investigation.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy.
| | - Marzio Rosi
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy
| | - Simonetta Cavalli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Fernando Pirani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Franco Vecchiocattivi
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy
| |
Collapse
|
6
|
Falcinelli S, Rosi M, Pirani F, Stranges D, Vecchiocattivi F. Measurements of Ionization Cross Sections by Molecular Beam Experiments: Information Content on the Imaginary Part of the Optical Potential. J Phys Chem A 2016; 120:5169-74. [PMID: 26938026 DOI: 10.1021/acs.jpca.6b00795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we present and analyze in detail new and recent ionization cross section and mass spectrum determinations, collected in the case of He*, Ne*-H2O, -H2S, and -NH3 ionizing collisions. These sets of data, obtained under the same experimental conditions, are relevant to identify differences in the autoionization stereodynamics of the three hydrogenated molecules and on the selective role of the imaginary part of the optical potential. We demonstrate that in these autoionization processes hydrogen and halogen bonds are competing because they are controlling both real and imaginary components of the optical potential that drives the complete reaction dynamics. In particular, we found that both components critically depend on the angular and radial approach between the reagent partners in determining the collision dynamics.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Department of Civil and Environmental Engineering, University of Perugia , Via G. Duranti 93, 06125 Perugia, Italy
| | - Marzio Rosi
- Department of Civil and Environmental Engineering, University of Perugia , Via G. Duranti 93, 06125 Perugia, Italy
| | - Fernando Pirani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia , Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Domenico Stranges
- Department of Chemistry, University of Rome "La Sapienza" , 00185 Rome, Italy
| | - Franco Vecchiocattivi
- Department of Civil and Environmental Engineering, University of Perugia , Via G. Duranti 93, 06125 Perugia, Italy
| |
Collapse
|
7
|
Falcinelli S, Bartocci A, Cavalli S, Pirani F, Vecchiocattivi F. Stereodynamics in the Collisional Autoionization of Water, Ammonia, and Hydrogen Sulfide with Metastable Rare Gas Atoms: Competition Between Intermolecular Halogen and Hydrogen Bonds. Chemistry 2015; 22:764-71. [DOI: 10.1002/chem.201503692] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/07/2022]
|
8
|
Falcinelli S, Bartocci A, Cavalli S, Pirani F, Vecchiocattivi F. The stereo-dynamics of collisional autoionization of ammonia by helium and neon metastable excited atoms through molecular beam experiments. J Chem Phys 2015; 143:164306. [DOI: 10.1063/1.4933429] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stefano Falcinelli
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Alessio Bartocci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Simonetta Cavalli
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Fernando Pirani
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Franco Vecchiocattivi
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| |
Collapse
|
9
|
Ouyang W, Dou W, Subotnik JE. Surface hopping with a manifold of electronic states. I. Incorporating surface-leaking to capture lifetimes. J Chem Phys 2015; 142:084109. [PMID: 25725714 DOI: 10.1063/1.4908032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the incorporation of the surface-leaking (SL) algorithm into Tully's fewest-switches surface hopping (FSSH) algorithm to simulate some electronic relaxation induced by an electronic bath in conjunction with some electronic transitions between discrete states. The resulting SL-FSSH algorithm is benchmarked against exact quantum scattering calculations for three one-dimensional model problems. The results show excellent agreement between SL-FSSH and exact quantum dynamics in the wide band limit, suggesting the potential for a SL-FSSH algorithm. Discrepancies and failures are investigated in detail to understand the factors that will limit the reliability of SL-FSSH, especially the wide band approximation. Considering the easiness of implementation and the low computational cost, we expect this method to be useful in studying processes involving both a continuum of electronic states (where electronic dynamics are probabilistic) and processes involving only a few electronic states (where non-adiabatic processes cannot ignore short-time coherence).
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
10
|
The Possible Role of Penning Ionization Processes in Planetary Atmospheres. ATMOSPHERE 2015. [DOI: 10.3390/atmos6030299] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|