1
|
Maity N, Polok K, Piatkowski P, Smortsova Y, Miannay FA, Gadomski W, Idrissi A. Effect of Mixture Composition on the Photophysics of Indoline Dyes in Imidazolium Ionic Liquid-Molecular Solvent Mixtures: A Femtosecond Transient Absorption Study. J Phys Chem B 2024. [PMID: 38687688 DOI: 10.1021/acs.jpcb.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
We conducted a study on the photophysics of three indoline dyes, D102, D149, and D205, in binary mixtures of ionic liquids (IL) and polar aprotic molecular solvents (MS). Specifically, we examined the behavior of these dyes in IL-MS mixtures containing four different imidazolium-based ILs and three different polar aprotic MSs. Our investigation involved several techniques, including stationary absorption and emission measurements, as well as femtosecond transient absorption (TA) spectroscopy. Through our analysis, we discovered a peculiar behavior of several photophysical properties at low IL mole fractions (0 < XIL < 0.2). Indeed, in this range of mixture composition, the absorption maximum wavelength decreases noticeably, while the emission maximum wavelength and the Stokes shift, expressed in wavenumbers, reach a maximum. while a minimum occurs in the relative quantum yield and the excited state lifetime. These results indicate that the solvation of dye undergoes a large change in this range of mixture composition. We found that, at high ionic liquid content, the excited relaxation times are correlated with the high viscosity, while at low content, it is the polarity of the solvent that influences the behavior of the excited relaxation times. At a mixture composition of around 0.10, the behavior of the photophysical properties of the studied IL-MS mixtures indicates a crossover between situations where the solvation is dominated by that of ions and that dominated by the solvent.
Collapse
Affiliation(s)
- Nishith Maity
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany
| | - Kamil Polok
- Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, University of Warsaw, ̇wirki i Wigury 101, Warsaw 02-089, Poland
| | - Piotr Piatkowski
- Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, University of Warsaw, ̇wirki i Wigury 101, Warsaw 02-089, Poland
| | | | - François-Alexandre Miannay
- CNRS, UMR 8516-LASIRe, Laboratoire Avancé de Spectroscopie pour les Interactions, la réactivité et l'Environement, Universiy of Lille, Lille F-59000, France
| | - Wojciech Gadomski
- Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, University of Warsaw, ̇wirki i Wigury 101, Warsaw 02-089, Poland
| | - Abdenacer Idrissi
- CNRS, UMR 8516-LASIRe, Laboratoire Avancé de Spectroscopie pour les Interactions, la réactivité et l'Environement, Universiy of Lille, Lille F-59000, France
| |
Collapse
|
2
|
Drake AD, He Y, Ladipo F, Knutson BL, Rankin SE. Effect of Pore Confinement of Ionic Liquids on Solute Diffusion within Mesoporous Silica Microparticles. J Phys Chem B 2024. [PMID: 38478906 DOI: 10.1021/acs.jpcb.4c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The transport properties of the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) confined within silica microparticles with well-ordered, accessible mesopores (5.4 or 9 nm diameter) were investigated. [BMIM][PF6] confinement was confirmed by using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The transport properties of the confined IL were studied using the neutral and cationic fluorescent probes 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) and rhodamine 6G, respectively, through fluorescence recovery after photobleaching (FRAP) in confocal microscopy. The diffusivity of DCM in 9 nm pores is 0.026 ± 0.0091 μm2/s, which is 2 orders of magnitude less than in the bulk ionic liquid. The pore size did not affect the diffusivity of DCM in unmodified silica nanopores. The diffusivity of the cationic probe is reduced by 63% relative to that of the neutral probe. Diffusivity is increased with water content, where equilibrium hydration of the system leads to a 37% increase in DCM diffusivity. The most dramatic impact on diffusivity was caused by tethering an IL-like methylimidazolium chloride group to the pores, which increased the pore hydrophobicity and resulted in 3-fold higher diffusivity of DCM compared to bare silica pores. Subsequent exchange of the chloride anion from the tethering group with PF6- decreased the diffusivity to half that of bare silica. The diffusion of probe molecules is affected most strongly by the pore wall effects on probe interactions rather than by the pore size itself, which suggests that understanding pore wall diffusion is critical to the design of nanoconfined ILs for separations, catalysis, and energy storage.
Collapse
Affiliation(s)
- Andrew D Drake
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, Kentucky 40506-0046, United States
| | - Yuxin He
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, Kentucky 40506-0046, United States
| | - Folami Ladipo
- Department of Chemistry, University of Kentucky, 125 Chemistry/Physics Building, Lexington, Kentucky 40506-0055, United States
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, Kentucky 40506-0046, United States
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Tower, Lexington, Kentucky 40506-0046, United States
| |
Collapse
|
3
|
Iqbal Hossain M, Blanchard G. Dilution-induced changes in room temperature ionic liquids. Persistent compositional heterogeneity and the importance of dipolar interactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Dutta R, Jana G, Mondal D, Pyne A, Sil S, Chattaraj PK, Sarkar N. The role of viscosity in various dynamical processes of different fluorophores in ionic liquid–cosolvent mixtures: a femtosecond fluorescence upconversion study. Photochem Photobiol Sci 2019; 18:1359-1372. [DOI: 10.1039/c9pp00045c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Literature reports provide ample evidence of the dynamical studies of various fluorophores in different room-temperature ionic liquid (RTIL)–cosolvent mixtures.
Collapse
Affiliation(s)
- Rupam Dutta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Gourhari Jana
- Department of Chemistry and Center for Theoretical Studies
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Dipankar Mondal
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Arghajit Pyne
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Sourav Sil
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Pratim K. Chattaraj
- Department of Chemistry and Center for Theoretical Studies
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Nilmoni Sarkar
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
5
|
Maurya R, Naithani S, Bandyopadhyay D, Choudhury N, Dutt GB. Is Solute Rotation in an Ionic Liquid Influenced by the Addition of Glucose? J Phys Chem B 2017; 121:10965-10973. [PMID: 29125769 DOI: 10.1021/acs.jpcb.7b09888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence anisotropy measurements and molecular dynamics (MD) simulations have been performed to understand the specific interactions of two structurally similar nondipolar solutes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and 1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP), with neat 1-butyl-3-methylimidazolium dicyanamide ([BMIM][N(CN)2]) and also in the presence of glucose. It has been observed that the measured reorientation times of DMDPP in neat [BMIM][N(CN)2] follow the predictions of the Stokes-Einstein-Debye hydrodynamic theory with slip boundary condition. Addition of glucose (0.075 and 0.15 mole fraction) has no bearing on the rotational diffusion of the solute apart from the viscosity related effects. In contrast, the reorientation times of DPP in neat [BMIM][N(CN)2] obey stick boundary condition as the hydrogen bond donating solute experiences specific interactions with the dicyanamide anion. No influence of the additive can be noticed on the rotational diffusion of DPP at 0.075 mole fraction of glucose. However, at 0.15 mole fraction of glucose, the reorientation times of the solute at a given viscosity and temperature decrease by 15-40% compared to those obtained in the neat ionic liquid. MD simulations indicate that each DPP molecule hydrogen bonds with two dicyanamide anions in neat ionic liquid. The simulations also reveal that, at 0.15 mole fraction of glucose, the concentration of anions hydrogen bonded to glucose increases significantly; therefore, the percentage of solute molecules that can form hydrogen bonds with two dicyanamide anions decreases to 84, which leads to faster rotation of DPP.
Collapse
Affiliation(s)
- Rajan Maurya
- Atma Ram Sanatan Dharma College , Dhaula Kuan, New Delhi 110 021, India
| | | | | | | | | |
Collapse
|
6
|
Dhale RS, Sahu PK, Sarkar M. Understanding the Microscopic Behavior of the Mixture of Ionic Liquid/Ethylene Glycol/Lithium Salt through Time-Resolved Fluorescence, Nuclear Magnetic Resonance (NMR), and Electron Paramagnetic Resonance (EPR) Studies. J Phys Chem B 2017; 121:7934-7945. [DOI: 10.1021/acs.jpcb.7b04585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ranu Satish Dhale
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Khurda-752050, India
| | - Prabhat Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Khurda-752050, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Khurda-752050, India
| |
Collapse
|
7
|
Murphy T, Callear SK, Warr GG, Atkin R. Dissolved chloride markedly changes the nanostructure of the protic ionic liquids propylammonium and ethanolammonium nitrate. Phys Chem Chem Phys 2016; 18:17169-82. [DOI: 10.1039/c5cp06947e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bulk nanostructure of 15 mol% propylammonium chloride (PACl) dissolved in propylammonium nitrate (PAN) and 15 mol% ethanolammonium chloride (EtACl) in ethanolammonium nitrate (EtAN) has been determined using neutron diffraction with empirical potential structure refinement fits.
Collapse
Affiliation(s)
- Thomas Murphy
- Priority Research Centre for Advanced Fluids and Interfaces
- The University of Newcastle
- Callaghan
- Australia
| | | | | | - Rob Atkin
- Priority Research Centre for Advanced Fluids and Interfaces
- The University of Newcastle
- Callaghan
- Australia
| |
Collapse
|
8
|
Prabhu SR, Dutt GB. Rotational Diffusion of Nonpolar and Ionic Solutes in 1-Alkyl-3-methylimidazolium Tetrafluoroborate–LiBF4 Mixtures: Does the Electrolyte Induce the Structure-Making or Structure-Breaking Effect? J Phys Chem B 2015; 119:15040-5. [DOI: 10.1021/acs.jpcb.5b10047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sugosh R. Prabhu
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - G. B. Dutt
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
9
|
Prabhu SR, Dutt GB. Rotational Diffusion of Charged and Nondipolar Solutes in Ionic Liquid–Organic Solvent Mixtures: Evidence for Stronger Specific Solute–Solvent Interactions in Presence of Organic Solvent. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b06297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sugosh R. Prabhu
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - G. B. Dutt
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
10
|
Affiliation(s)
- Robert Hayes
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| | - Gregory G. Warr
- School
of Chemistry, The University of Sydney, NSW 2006, Sydney, Australia
| | - Rob Atkin
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| |
Collapse
|
11
|
Prabhu SR, Dutt GB. Does addition of an electrolyte influence the rotational diffusion of nondipolar solutes in a protic ionic liquid? J Phys Chem B 2015; 119:6311-6. [PMID: 25914928 DOI: 10.1021/acs.jpcb.5b02853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rotational diffusion of two structurally similar nondipolar solutes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and 1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP), has been examined in ethylammonium nitrate-lithium nitrate (EAN-LiNO3) mixtures to understand the influence of added electrolyte on the local environment experienced by the solute molecules. The measured reorientation times of both DMDPP and DPP in EAN-LiNO3 mixtures fall within the broad limits set by the hydrodynamic slip and stick boundary conditions. The hydrogen bond accepting DMDPP and the hydrogen bond donating DPP experience specific interactions with the cation and anion of the ionic liquid, respectively. Addition of LiNO3 (0.1 and 0.2 mole fraction) to EAN induces only viscosity related effects on the rotational diffusion of the two nondipolar solutes. These observations suggest that the local environment experienced by DMDPP and DPP in EAN is not altered upon the addition of LiNO3. Our results are consistent with the structural details available in the literature for EAN-LiNO3 mixtures.
Collapse
|
12
|
Prabhu SR, Dutt GB. Effect of Low Viscous Nondipolar Solvent on the Rotational Diffusion of Structurally Similar Nondipolar Solutes in an Ionic Liquid. J Phys Chem B 2015; 119:2019-25. [DOI: 10.1021/jp512456c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sugosh R. Prabhu
- Radiation
and Photochemistry
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - G. B. Dutt
- Radiation
and Photochemistry
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
13
|
Gangamallaiah V, Dutt GB. Influence of the Organized Structure of 1-Alkyl-3-methylimidazolium Tetrafluoroborates on the Rotational Diffusion of Structurally Similar Nondipolar Solutes. J Phys Chem B 2014; 118:13711-7. [DOI: 10.1021/jp5104142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. Gangamallaiah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - G. B. Dutt
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
14
|
Prabhu SR, Dutt GB. Rotational Dynamics of Imidazolium-Based Ionic Liquids: Do the Nature of the Anion and the Length of the Alkyl Chain Influence the Dynamics? J Phys Chem B 2014; 118:13244-51. [DOI: 10.1021/jp5079778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sugosh R. Prabhu
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - G. B. Dutt
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
15
|
Prabhu SR, Dutt GB. Rotational Diffusion of Nondipolar and Charged Solutes in Alkyl-Substituted Imidazolium Triflimides: Effect of C2 Methylation on Solute Rotation. J Phys Chem B 2014; 118:9420-6. [DOI: 10.1021/jp5055155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sugosh R. Prabhu
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - G. B. Dutt
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|