1
|
Vautrin L, Lambert A, Mahdhaoui F, El Abed R, Boubaker T, Ingrosso F. Structural and Electronic Properties of Novel Azothiophene Dyes: A Multilevel Study Incorporating Explicit Solvation Effects. Molecules 2024; 29:4053. [PMID: 39274901 PMCID: PMC11397383 DOI: 10.3390/molecules29174053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Among azobenzene derivatives, azothiophenes represent a relatively recent family of compounds that exhibit similar characteristics as dyes and photoreactive systems. Their technological applications are extensive thanks to the additional design flexibility conferred by the heteroaromatic ring. In this study, we present a comprehensive investigation of the structural and electronic properties of novel dyes derived from 3-thiophenamine, utilizing a multilevel approach. We thoroughly examined the potential energy surfaces of the E and Z isomers for three molecules, each bearing different substituents on the phenyl ring at the para position relative to the diazo group. This exploration was conducted through quantum chemistry calculations at various levels of theory, employing a continuum solvent model. Subsequently, we incorporated an explicit solvent (a dimethyl sulfoxide-water mixture) to simulate the most stable isomers using classical molecular dynamics, delivering a clear picture of the local solvation structure and intermolecular interactions. Finally, a hybrid quantum mechanics/molecular mechanics (QM/MM) approach was employed to accurately describe the evolution of the solutes' properties within their environment, accounting for finite temperature effects.
Collapse
Affiliation(s)
- Laura Vautrin
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques UMR 7019, F-54000 Nancy, France
| | - Alexandrine Lambert
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques UMR 7019, F-54000 Nancy, France
| | - Faouzi Mahdhaoui
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques UMR 7019, F-54000 Nancy, France
| | - Riad El Abed
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11SE39), Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'Environnement, Monastir 5019, Tunisia
| | - Taoufik Boubaker
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11SE39), Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'Environnement, Monastir 5019, Tunisia
| | - Francesca Ingrosso
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques UMR 7019, F-54000 Nancy, France
| |
Collapse
|
2
|
Dorchies F, Serva A, Sidos A, Michot L, Deschamps M, Salanne M, Grimaud A. Correlating Substrate Reactivity at Electrified Interfaces with the Electrolyte Structure in Synthetically Relevant Organic Solvent/Water Mixtures. J Am Chem Soc 2024; 146:17495-17507. [PMID: 38863085 DOI: 10.1021/jacs.4c05538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Optimizing electrosynthetic reactions requires fine tuning of a vast chemical space, including charge transfer at electrocatalyst/electrode surfaces, engineering of mass transport limitations, and complex interactions of reactants and products with their environment. Hybrid electrolytes, in which supporting salt ions and substrates are dissolved in a binary mixture of organic solvent and water, represent a new piece of this complex puzzle as they offer a unique opportunity to harness water as the oxygen or proton source in electrosynthesis. In this work, we demonstrate that modulating water-organic solvent interactions drastically impacts the solvation properties of hybrid electrolytes. Combining various spectroscopies with synchrotron small-angle X-ray scattering (SAXS) and force field-based molecular dynamics (MD) simulations, we show that the size and composition of aqueous domains forming in hybrid electrolytes can be controlled. We demonstrate that water is more reactive for the hydrogen evolution reaction (HER) in aqueous domains than when strongly interacting with solvent molecules, which originates from a change in reaction kinetics rather than a thermodynamic effect. We exemplify novel opportunities arising from this new knowledge for optimizing electrosynthetic reactions in hybrid electrolytes. For reactions proceeding first via the activation of water, fine tuning of aqueous domains impacts the kinetics and potentially the selectivity of the reaction. Instead, for organic substrates reacting prior to water, aqueous domains have no impact on the reaction kinetics, while selectivity may be affected. We believe that such a fine comprehension of solvation properties of hybrid electrolytes can be transposed to numerous electrosynthetic reactions.
Collapse
Affiliation(s)
- Florian Dorchies
- Chimie du Solide et de l'Energie, UMR 8260, Collège de France, 75231 Paris Cedex 05, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 80039 Amiens Cedex, France
| | - Alessandra Serva
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 80039 Amiens Cedex, France
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Astrid Sidos
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
- Chemistry Department, École Normale Supérieure, PSL University, 75005 Paris, France
| | - Laurent Michot
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Michaël Deschamps
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 80039 Amiens Cedex, France
- CNRS, CEMHTI, UPR 3079, Université d'Orléans, F-45071 Orléans, France
| | - Mathieu Salanne
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 80039 Amiens Cedex, France
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Alexis Grimaud
- Chimie du Solide et de l'Energie, UMR 8260, Collège de France, 75231 Paris Cedex 05, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 80039 Amiens Cedex, France
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
3
|
Zhang L, Yan W, Kohtani S, Fukuyoshi S, Hu M, Nagao S, Tang N. Promotive effects of marine-derived dimethyl sulfoxide on the photodegradation of phenanthrene in the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171938. [PMID: 38527541 DOI: 10.1016/j.scitotenv.2024.171938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Dimethyl sulfoxide (DMSO), a versatile medium, is a particular component in the marine atmosphere that possibly causes polycyclic aromatic hydrocarbons (PAHs) to degrade differently than they do in the continental atmosphere. In this study, phenanthrene (Phe) was used as a model PAH in batch photochemical experiments to investigate the chemical actions of DMSO and the underlying mechanisms. The photodegradation of Phe in aqueous solutions with DMSO volume fractions from 0 % to 100 % was initiated by ultraviolet (UV) radiation and promoted by singlet oxygen, which was consistent with pseudo-first-order kinetics. Phe photodegraded faster in a mixture of DMSO and water than in water or DMSO alone, and the rate constant showed a unimodal distribution over the DMSO fraction range, peaking at 33 % DMSO (0.0333 ± 0.0009 min-1) and 40 % DMSO (0.0199 ± 0.0005 min-1) under 254 nm and 302 nm UV radiation, respectively. This interesting phenomenon was attributed to the competition of DMSO for UV radiation and singlet oxygen and changes in dissolved oxygen and free water contents caused by the interaction between DMSO and water molecules. In addition, 9,10-phenanthrenequinone (9,10-PhQ) with high cytotoxicity was the main photodegradation product of Phe under various conditions. The photodegradation rate of Phe in the mixtures of DMSO and water was comparable to its reaction rate with OH radicals, suggesting that 9,10-PhQ can be rapidly generated in the marine atmosphere, driven by a mechanism different from that in the continental or urban atmosphere. Under the presented experimental conditions, UV intensity and DMSO fraction were the primary factors that affected the photodegradation rate of Phe and 9,10-PhQ and altered their integrated toxicity. The findings of this study support the conclusion that the marine atmosphere is an essential field in the atmospheric transport of PAHs, in which DMSO is an important component that affects their photodegradation.
Collapse
Affiliation(s)
- Lulu Zhang
- Key Laboratory of Ecological Remediation of Lakes and Rivers and Algal Utilization of Hubei Province, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Wenwen Yan
- Key Laboratory of Ecological Remediation of Lakes and Rivers and Algal Utilization of Hubei Province, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China.
| | - Shigeru Kohtani
- Faculty of Pharmacy, Hyogo Medical University, 1-3-6 Minatojima, Kobe 650-8530, Japan.
| | - Shuichi Fukuyoshi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Seiya Nagao
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; College of Energy and Power, Shenyang Institute of Engineering, Shenyang 110136, China.
| |
Collapse
|
4
|
Harnsoongnoen S, Buranrat B. Microwave Sensor for the Determination of DMSO Concentration in Water-DMSO Binary Mixture. MICROMACHINES 2023; 14:1378. [PMID: 37512689 PMCID: PMC10383328 DOI: 10.3390/mi14071378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
This research aims to develop a microwave sensor to accurately measure the concentration of dimethyl sulfoxide (DMSO) in water-DMSO binary mixtures. The proposed sensor will utilize microwave frequency measurements to determine the DMSO concentration, providing a non-invasive and efficient method for analyzing DMSO solutions. The research will involve the design, fabrication, and testing of the sensor, as well as the development of an appropriate calibration model. The outcomes of this study will contribute to improved monitoring and quality control in various fields, including pharmaceuticals, chemical synthesis, and biomedical research. The binary mixtures of dimethyl sulfoxide (DMSO) and water with varying concentrations were investigated in the frequency range of 1 GHz to 5 GHz at room temperature using a microwave sensor. The proposed microwave sensor design was based on an interdigital capacitor (IDC) microstrip antenna loaded with a hexagonal complementary ring resonator (HCRR). The performance of the sensor, fabricated using the print circuit board (PCB) technique, was validated through simulations and experiments. The reflection coefficient (S11) and resonance frequency (Fr) of binary mixtures of DMSO and water solutions were recorded and analyzed for DMSO concentrations ranging from 0% v/v to 75% v/v. Mathematical models were developed to analyze the data, and laboratory tests showed that the sensor can detect levels of DMSO/water binary mixtures. The sensor is capable of detecting DMSO concentrations ranging from 0% v/v to 75% v/v, with a maximum sensitivity of 0.138 dB/% for S11 and ΔS11 and 0.2 MHz/% for Fr and ΔFr at a concentration of 50% v/v. The developed microwave sensor can serve as an alternative for detecting DMSO concentrations in water using a simple and cost-effective technique. This method can effectively analyze a wide range of concentrations, including highly concentrated solutions, quickly and easily.
Collapse
Affiliation(s)
- Supakorn Harnsoongnoen
- The Biomimicry for Sustainable Agriculture, Health, Environment and Energy Research Unit, Department of Physics, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
| | - Benjaporn Buranrat
- Faculty of Medicine, Mahasarakham University, Muang District, Maha Sarakham 44000, Thailand
| |
Collapse
|
5
|
Malajczuk CJ, Stachura SS, Hendry JO, Mancera RL. Redefining the Molecular Interplay between Dimethyl Sulfoxide, Lipid Bilayers, and Dehydration. J Phys Chem B 2022; 126:2513-2529. [PMID: 35344357 DOI: 10.1021/acs.jpcb.2c00353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The potentially damaging action of dimethyl sulfoxide (DMSO) on phospholipid bilayers remains a matter of controversy. We have conducted a series of long-scale molecular dynamics simulations of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers at various levels of hydration in the presence of variable quantities of DMSO. These simulations provide evidence for a non-destructive dehydrating mechanism of action for DMSO on DOPC bilayers across a wide concentration range and levels of hydration. Specifically, under full- and low-hydration conditions, the bilayer underwent a minor lateral contraction, coinciding with surface dehydration in the presence of dilute DMSO solutions (XDMSO < 0.3). At higher DMSO concentrations, this bilayer structure was retained despite a progressive deterioration of the hydration structure at the interface. A similar convergence of bilayer structural properties was observed under dehydration conditions for 0.3 < XDMSO < 0.7. Destabilization occurred for dehydrated bilayers in the presence of XDMSO ≥ 0.7, suggesting the existence of a DMSO concentration and/or dehydration threshold. However, such DMSO concentrations far exceed those established as toxic to other cellular components. Our findings represent a computational model for DMSO-DOPC interactions that is consistent with a range of experimental characterizations, offering new molecular insights into the cryoprotective mechanisms of action of DMSO.
Collapse
Affiliation(s)
- Chris J Malajczuk
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Sławomir S Stachura
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - James O Hendry
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
6
|
Kainourgiakis E, Samios J. A study of the micellar aggregation of aqueous N,N,N-decyltrimethyl ammonium chloride via extended microsecond-time atomistic molecular dynamics simulation and realistic potential models. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Honti B, Idrissi A, Jedlovszky P. Calculation of the Free Energy of Mixing as a Tool for Assessing and Improving Potential Models: The Case of the N, N-Dimethylformamide-Water System. J Phys Chem B 2021; 125:4819-4830. [PMID: 33947181 DOI: 10.1021/acs.jpcb.1c01749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Helmholtz free energy, energy, and entropy of mixing of N,N-dimethylformamide (DMF) and water are calculated in the entire composition range by means of Monte Carlo computer simulations and thermodynamic integration using all possible combinations of five DMF and three widely used water models. Our results reveal that the mixing of DMF and water is highly non-ideal. Thus, in their dilute solutions, both molecules induce structural ordering of the major component, as evidenced by the concomitant decrease in the entropy. Among the 15 model combinations considered, only 4 reproduce the well-known full miscibility of DMF and water, 3 of which strongly exaggerate the thermodynamic driving force of the miscibility. Thus, the combination of the CS2 model of DMF and the TIP4P/2005 water model reproduces the properties of the DMF-water mixtures far better than the other combinations tested. Our results also reveal that moving a fractional negative charge from the N atom to the O atom of the DMF molecule, leading to the increase in its dipole moment, improves the miscibility of the model with water. Starting from the CS2 model and optimizing the charge to be moved, we propose a new model of DMF that reproduces very accurately both the Helmholtz free energy of mixing of aqueous DMF solutions in the entire composition range (when used in combination with the TIP4P/2005 water model) and also the internal energy of neat DMF.
Collapse
Affiliation(s)
- Barbara Honti
- Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Abdenacer Idrissi
- CNRS, UMR 8516-LASIRe-Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, University of Lille, F-5900 Lille, France
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary
| |
Collapse
|
8
|
Horváth RA, Horvai G, Idrissi A, Jedlovszky P. Thermodynamics of mixing methanol with supercritical CO 2 as seen from computer simulations and thermodynamic integration. Phys Chem Chem Phys 2020; 22:11652-11662. [PMID: 32406446 DOI: 10.1039/d0cp01241f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The changes in extensive thermodynamic quantities, such as volume, energy, Helmholtz free energy and entropy, occurring upon mixing liquid methanol with supercritical CO2, are calculated using Monte Carlo simulations and thermodynamic integration for all eight combinations of four methanol and two CO2 potential models in the entire composition range at 313 K. The obtained results are also compared with experimental data whenever possible. The transition of the system from liquid to a supercritical state is found to occur at this temperature around a CO2 mole fraction value of 0.95 with all model combinations considered. This liquid to supercritical transition is always accompanied by positive Helmholtz free energy of mixing values and, consequently, by the non-miscibility of the two components. Furthermore, both this non-miscibility around the liquid to supercritical transition and also the miscibility of the two components below this transition, in the liquid regime, are found to be primarily of the energetic rather than entropic origin; the entropy of mixing turns out to be very close to zero, and around the liquid to supercritical transition even its qualitative behaviour is strongly model dependent. Finally, it is found that the methanol expansion coefficient is not sensitive to the details of the potential models, and it is always in excellent agreement with the experimental data. On the other hand, both the volume and the energy of mixing depend strongly on the molar volume of neat CO2 in the model being used, and in this respect the TraPPE model of CO2 [J. J. Potoff and J. I. Siepmann, AIChE J., 2001, 47, 1676] performs considerably better than that of Zhang and Duan [Z. Zhang and Z. Duan, J. Chem. Phys., 2005, 122, 214507].
Collapse
Affiliation(s)
- Réka A Horváth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | | | | | | |
Collapse
|
9
|
Zhang X, Wang Z, Chen Z, Li H, Zhang L, Ye J, Zhang Q, Zhuang W. Molecular Mechanism of Water Reorientation Dynamics in Dimethyl Sulfoxide Aqueous Mixtures. J Phys Chem B 2020; 124:1806-1816. [PMID: 32022564 DOI: 10.1021/acs.jpcb.0c00717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonmonotonic composition dependence is often observed for numerous properties in the aqueous mixtures of small amphiphilic molecules. The molecular picture underlying this structure-activity relationship, however, remains largely elusive. We herein studied water reorientation dynamics in the aqueous mixture of dimethyl sulfoxide (DMSO), which has a significant nonmonotonic composition dependence, using molecular dynamic simulation and an extended molecular jump model. The analysis indicates that this nonideal behavior is driven by the collective frame diffusion component of water reorientation, which decelerates in the water-rich regime because of the strengthened hydrogen bonds and accelerates in the water-poor regime as the hydrogen bonding network is broken into smaller aggregates. The current work therefore connects the microheterogeneity in the solvation structure of DMSO-water with its nonmonotonic hydration dynamics and sheds new light on how microsegregation leads to the multiscale hydration nonideality in general.
Collapse
Affiliation(s)
- Xia Zhang
- College of Chemistry and Materials Science, Inner Mongolia University for Nationlities, Tongliao Inner Mongolia 028043, China
| | - Zhangtao Wang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Zhening Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
| | - Jinting Ye
- College of Chemistry and Materials Science, Inner Mongolia University for Nationlities, Tongliao Inner Mongolia 028043, China
| | - Qiang Zhang
- College of Chemistry and Materials Science, Inner Mongolia University for Nationlities, Tongliao Inner Mongolia 028043, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
| |
Collapse
|
10
|
Affiliation(s)
- Swaminath Bharadwaj
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
11
|
Taddese T, Kitabata M, Okazaki S. All-atom molecular dynamics study on the non-solvent induced phase separation: Thermodynamics of adding water to poly(vinylidene fluoride)/N-methyl-2-pyrrolidone solution. J Chem Phys 2019; 150:184505. [PMID: 31091903 DOI: 10.1063/1.5094088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The change in the thermodynamics when adding water in poly(vinylidene fluoride) (PVDF)/N-methyl-2-pyrrolidone (NMP) solution is studied from all atom molecular dynamics (MD) simulations. This is done by estimating the free energy of mixing of PVDF/NMP solution with increasing volume fraction of water (ϕw) using an appropriately chosen thermodynamic cycle and the Bennett acceptance ratio method. The MD calculations predict the thermodynamic phase separation point of water/NMP/PVDF to be at ϕw = 0.08, in close agreement with the experimental cloud point measurement (ϕw = 0.05). Examining the enthalpic and entropic components of the free energy of mixing reveals that at low concentrations of water, the enthalpy term has the most significant contribution to the miscibility of the ternary system, whereas at higher concentrations of water, the entropy term dominates. Finally, the free energy of mixing was compared with the Flory-Huggins (FH) free energy of mixing by computing the concentration-dependent interaction parameters from MD simulations. The FH model inadequately predicted the miscibility of the PVDF solution, mainly due to its negligence of the excess entropy of mixing.
Collapse
Affiliation(s)
- Tseden Taddese
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi 464-8603, Japan
| | - Masahiro Kitabata
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi 464-8603, Japan
| | - Susumu Okazaki
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
12
|
Idrissi A, Jedlovszky P. Thermodynamics of Mixing Primary Alkanolamines with Water. J Phys Chem B 2018; 122:6251-6259. [PMID: 29771130 DOI: 10.1021/acs.jpcb.8b01052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The volume, energy, entropy, and Helmholtz free energy of mixing of the seven simplest primary alkanolamine molecules, i.e., monoethanolamine, monoisopropanolamine, 2-amino-propan-1-ol, 2-amino-butan-1-ol, 2-amino-2-methyl-propan-1-ol, 1-amino-2-methyl-propan-2-ol, and 1-amino-butan-2-ol, with water is investigated by extensive computer simulations and thermodynamic integration. To check the force field dependence of the results, all calculations are repeated with two commonly used water models, namely, SPC/E and TIP4P. The obtained results show that the thermodynamics of mixing of alkanolamines and water is largely independent from the type of the alkanolamine molecule. The Helmholtz free energy of mixing is found to be negative for all alkanolamines at every composition, in accordance with the experimentally known full miscibility of these molecules and water. This free energy decrease occurring upon mixing is found to be clearly of energetic origin, as the energy of mixing always turns out to be negative in the entire composition range, while the entropy of mixing is also negative up to high alkanolamine mole fractions. The obtained results suggest that alkanolamines form, on average, stronger hydrogen bonds with water than what is formed by two water molecules, and they induce some ordering of the hydrating water molecules both through the hydrophobic hydration of their side chains and through the strong hydrogen bonding.
Collapse
Affiliation(s)
- Abdenacer Idrissi
- Laboratoire de Spectrochimie Infrarouge et Raman (UMR CNRS 8516) , University of Lille Nord de France , 59655 Villeneuve d'Ascq Cedex , France
| | - Pál Jedlovszky
- Department of Chemistry , Eszterházy Károly University , Leányka utca 6 , H-3300 Eger , Hungary
| |
Collapse
|
13
|
Zhang X, Zhang L, Jin T, Zhang Q, Zhuang W. Cosolvent effect on the dynamics of water in aqueous binary mixtures. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1424958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xia Zhang
- Department of Chemistry, Bohai University, Jinzhou, China
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Tan Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Qiang Zhang
- Department of Chemistry, Bohai University, Jinzhou, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
14
|
Kiss B, Fábián B, Idrissi A, Szőri M, Jedlovszky P. Miscibility and Thermodynamics of Mixing of Different Models of Formamide and Water in Computer Simulation. J Phys Chem B 2017; 121:7147-7155. [PMID: 28657740 DOI: 10.1021/acs.jpcb.7b04965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The thermodynamic changes that occur upon mixing five models of formamide and three models of water, including the miscibility of these model combinations itself, is studied by performing Monte Carlo computer simulations using an appropriately chosen thermodynamic cycle and the method of thermodynamic integration. The results show that the mixing of these two components is close to the ideal mixing, as both the energy and entropy of mixing turn out to be rather close to the ideal term in the entire composition range. Concerning the energy of mixing, the OPLS/AA_mod model of formamide behaves in a qualitatively different way than the other models considered. Thus, this model results in negative, while the other ones in positive energy of mixing values in combination with all three water models considered. Experimental data supports this latter behavior. Although the Helmholtz free energy of mixing always turns out to be negative in the entire composition range, the majority of the model combinations tested either show limited miscibility, or, at least, approach the miscibility limit very closely in certain compositions. Concerning both the miscibility and the energy of mixing of these model combinations, we recommend the use of the combination of the CHARMM formamide and TIP4P water models in simulations of water-formamide mixtures.
Collapse
Affiliation(s)
- Bálint Kiss
- Institute of Chemistry, University of Miskolc , Egyetemváros A/2, H-3515 Miskolc, Hungary.,Laboratoire de Spectrochimie Infrarouge et Raman (UMR CNRS 8516), University of Lille Nord de France , 59655 Villeneuve d'Ascq Cedex, France
| | - Balázs Fábián
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , Szt. Gellért tér 4, H-1111 Budapest, Hungary.,Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté , 16 route de Gray, F-25030 Besançon, France
| | - Abdenacer Idrissi
- Laboratoire de Spectrochimie Infrarouge et Raman (UMR CNRS 8516), University of Lille Nord de France , 59655 Villeneuve d'Ascq Cedex, France
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc , Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University , Leányka utca 6, H-3300 Eger, Hungary
| |
Collapse
|
15
|
Idrissi A, Marekha BA, Barj M, Miannay FA, Takamuku T, Raptis V, Samios J, Jedlovszky P. Local structure of dilute aqueous DMSO solutions, as seen from molecular dynamics simulations. J Chem Phys 2017. [DOI: 10.1063/1.4985630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Duereh A, Sato Y, Smith RL, Inomata H, Pichierri F. Does Synergism in Microscopic Polarity Correlate with Extrema in Macroscopic Properties for Aqueous Mixtures of Dipolar Aprotic Solvents? J Phys Chem B 2017; 121:6033-6041. [DOI: 10.1021/acs.jpcb.7b03446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Alif Duereh
- Research
Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshiyuki Sato
- Research
Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai 980-8579, Japan
| | - Richard Lee Smith
- Research
Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai 980-8579, Japan
- Graduate
School of Environmental Studies, Tohoku University, Aramaki Aza
Aoba 6-6-11, Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Inomata
- Research
Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai 980-8579, Japan
| | - Fabio Pichierri
- Department
of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba-yama
6-6-07, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
17
|
Sweere AJM, Fraaije JGEM. Accuracy Test of the OPLS-AA Force Field for Calculating Free Energies of Mixing and Comparison with PAC-MAC. J Chem Theory Comput 2017; 13:1911-1923. [PMID: 28418655 PMCID: PMC5425945 DOI: 10.1021/acs.jctc.6b01106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We have calculated
the excess free energy of mixing of 1053 binary
mixtures with the OPLS-AA force field using two different methods:
thermodynamic integration (TI) of molecular dynamics simulations and
the Pair Configuration to Molecular Activity Coefficient (PAC-MAC)
method. PAC-MAC is a force field based quasi-chemical method for predicting
miscibility properties of various binary mixtures. The TI calculations
yield a root mean squared error (RMSE) compared to experimental data
of 0.132 kBT (0.37 kJ/mol).
PAC-MAC shows a RMSE of 0.151 kBT with a calculation speed being potentially 1.0 ×
104 times greater than TI. OPLS-AA force field parameters
are optimized using PAC-MAC based on vapor–liquid equilibrium
data, instead of enthalpies of vaporization or densities. The RMSE
of PAC-MAC is reduced to 0.099 kBT by optimizing 50 force field parameters. The resulting
OPLS-PM force field has a comparable accuracy as the OPLS-AA force
field in the calculation of mixing free energies using TI.
Collapse
Affiliation(s)
- Augustinus J M Sweere
- Soft Matter Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Johannes G E M Fraaije
- Soft Matter Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
18
|
Akkermans RLC. Solvation Free Energy of Regular and Azeotropic Molecular Mixtures. J Phys Chem B 2017; 121:1675-1683. [DOI: 10.1021/acs.jpcb.7b00125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Reinier L. C. Akkermans
- Dassault Systèmes, BIOVIA Ltd., 334 Cambridge Science Park, Cambridge, CB4 0WN, United Kingdom
| |
Collapse
|
19
|
Wen YC, Kuo HC, Guo JL, Jia HW. Nuclear Magnetic Resonance Spectroscopy Investigation on Ultralow Melting Temperature Behavior of Dimethyl Sulfoxide–Water Solutions. J Phys Chem B 2016; 120:13125-13135. [DOI: 10.1021/acs.jpcb.6b09040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan-Chun Wen
- Department of Chemistry, Chung Yuan Christian University, Chung-Li District, Tauyuan
City, Taiwan 32023, R.O.C
| | - Hsiao-Ching Kuo
- Department of Chemistry, Chung Yuan Christian University, Chung-Li District, Tauyuan
City, Taiwan 32023, R.O.C
| | - Jhong-Lin Guo
- Department of Chemistry, Chung Yuan Christian University, Chung-Li District, Tauyuan
City, Taiwan 32023, R.O.C
| | - Hsi-Wei Jia
- Department of Chemistry, Chung Yuan Christian University, Chung-Li District, Tauyuan
City, Taiwan 32023, R.O.C
- Research Center for Analysis and Identification, Chung Yuan Christian University, Chung-Li District, Tauyuan
City, Taiwan 32023, R.O.C
| |
Collapse
|
20
|
Sweere AJ, Fraaije JG. Prediction of polymer-solvent miscibility properties using the force field based quasi-chemical method PAC-MAC. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Fábián B, Idrissi A, Marekha B, Jedlovszky P. Local lateral environment of the molecules at the surface of DMSO-water mixtures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:404002. [PMID: 27506283 DOI: 10.1088/0953-8984/28/40/404002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular dynamics simulations of the liquid-vapour interface of dimethyl sulphoxide (DMSO)-water mixtures of 11 different compositions, including two neat systems are performed on the canonical (N, V, T) ensemble at 298 K. The molecules constituting the surface layer of these systems are selected by means of the identification of the truly interfacial molecules (ITIM) method, and their local lateral environment at the liquid surface is investigated by performing Voronoi analysis. The obtained results reveal that both molecules prefer to be in a mixed local environment, consisting of both kinds of molecules, at the liquid surface, and this preference is even stronger here than in the bulk liquid phase. Neat-like patches, in which a molecule is surrounded by like neighbours, are not found. However, vacancies that are surrounded solely by water molecules are observed at the liquid surface. Our results show that strongly hydrogen bonded DMSO·H2O complexes, known to exist in the bulk phase of these mixtures, are absent from the liquid surface.
Collapse
Affiliation(s)
- Balázs Fábián
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary. Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon, France
| | | | | | | |
Collapse
|
22
|
Sweere AJM, Fraaije JGEM. Force-Field Based Quasi-Chemical Method for Rapid Evaluation of Binary Phase Diagrams. J Phys Chem B 2015; 119:14200-9. [PMID: 26418484 DOI: 10.1021/acs.jpcb.5b06100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the Pair Configurations to Molecular Activity Coefficients (PAC-MAC) method. The method is based on the pair sampling technique of Blanco (Fan, C. F.; Olafson, B. D.; Blanco, M.; Hsu, S. L. Application of Molecular Simulation to Derive Phase Diagrams of Binary Mixtures. Macromolecules 1992, 25, 3667-3676) with an extension that takes the packing of the molecules into account by a free energy model. The intermolecular energy is calculated using classical force fields. PAC-MAC is able to predict activity coefficients and corresponding vapor-liquid equilibrium diagrams at least 4 orders of magnitude faster than molecular simulations. The accuracy of the PAC-MAC method is tested by comparing the results with experimental data and with the results of the COSMO-SAC model (Lin, S.-T.; Sandler, S. I. A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model. Ind. Eng. Chem. Res. 2002, 41, 899-913). PAC-MAC (using the OPLS-aa force field) is shown to be comparable in accuracy to COSMO-SAC, at the considerable advantage that PAC-MAC in principle does not require quantum calculation, provided proper force fields to be available.
Collapse
Affiliation(s)
- Augustinus J M Sweere
- Soft Matter Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Johannes G E M Fraaije
- Soft Matter Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
23
|
Idrissi A, Marekha B, Kiselev M, Jedlovszky P. The local environment of the molecules in water–DMSO mixtures, as seen from computer simulations and Voronoi polyhedra analysis. Phys Chem Chem Phys 2015; 17:3470-81. [DOI: 10.1039/c4cp04839c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The local structure of DMSO–water mixtures is studied by computer simulation and Voronoi analysis.
Collapse
Affiliation(s)
- Abdenacer Idrissi
- Laboratoire de Spectrochimie Infrarouge et Raman (UMR CNRS A8516)
- Université Lille 1
- Science et Technologies
- 59655 Villeneuve d'Ascq Cedex
- France
| | - B. Marekha
- Laboratoire de Spectrochimie Infrarouge et Raman (UMR CNRS A8516)
- Université Lille 1
- Science et Technologies
- 59655 Villeneuve d'Ascq Cedex
- France
| | - M. Kiselev
- Institute of Solution Chemistry of the Russian Academy of Sciences
- 153045 Ivanovo
- Russia
| | - Pál Jedlovszky
- Laboratory of Interfaces and Nanosize Systems
- Institute of Chemistry
- Eötvös Loránd University
- H-1117 Budapest
- Hungary
| |
Collapse
|