1
|
Christensen CS, Wang S, Li W, Yu D, Li HJ. Structural Variations of Prions and Prion-like Proteins Associated with Neurodegeneration. Curr Issues Mol Biol 2024; 46:6423-6439. [PMID: 39057026 PMCID: PMC11275340 DOI: 10.3390/cimb46070384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegeneration is becoming one of the leading causes of death worldwide as the population expands and grows older. There is a growing desire to understand the mechanisms behind prion proteins as well as the prion-like proteins that make up neurodegenerative diseases (NDs), including Alzheimer's disease (AD) and Parkinson's disease (PD). Both amyloid-β (Aβ) and hyperphosphorylated tau (p-tau) proteins behave in ways similar to those of the infectious form of the prion protein, PrPSc, such as aggregating, seeding, and replicating under not yet fully understood mechanisms, thus the designation of prion-like. This review aims to highlight the shared mechanisms between prion-like proteins and prion proteins in the structural variations associated with aggregation and disease development. These mechanisms largely focus on the dysregulation of protein homeostasis, self-replication, and protein aggregation, and this knowledge could contribute to diagnoses and treatments for the given NDs.
Collapse
Affiliation(s)
| | | | | | | | - Henry James Li
- School of Arts and Sciences, New York University Shanghai, 567 West Yang Si Road, Shanghai 200122, China; (C.S.C.); (S.W.); (W.L.); (D.Y.)
| |
Collapse
|
2
|
Cortez LM, Morrison AJ, Garen CR, Patterson S, Uyesugi T, Petrosyan R, Sekar RV, Harms MJ, Woodside MT, Sim VL. Probing the origin of prion protein misfolding via reconstruction of ancestral proteins. Protein Sci 2022; 31:e4477. [PMID: 36254680 PMCID: PMC9667828 DOI: 10.1002/pro.4477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/13/2022]
Abstract
Prion diseases are fatal neurodegenerative diseases caused by pathogenic misfolding of the prion protein, PrP. They are transmissible between hosts, and sometimes between different species, as with transmission of bovine spongiform encephalopathy to humans. Although PrP is found in a wide range of vertebrates, prion diseases are seen only in certain mammals, suggesting that infectious misfolding was a recent evolutionary development. To explore when PrP acquired the ability to misfold infectiously, we reconstructed the sequences of ancestral versions of PrP from the last common primate, primate-rodent, artiodactyl, placental, bird, and amniote. Recombinant ancestral PrPs were then tested for their ability to form β-sheet aggregates, either spontaneously or when seeded with infectious prion strains from human, cervid, or rodent species. The ability to aggregate developed after the oldest ancestor (last common amniote), and aggregation capabilities diverged along evolutionary pathways consistent with modern-day susceptibilities. Ancestral bird PrP could not be seeded with modern-day prions, just as modern-day birds are resistant to prion disease. Computational modeling of structures suggested that differences in helix 2 could account for the resistance of ancestral bird PrP to seeding. Interestingly, ancestral primate PrP could be converted by all prion seeds, including both human and cervid prions, raising the possibility that species descended from an ancestral primate have retained the susceptibility to conversion by cervid prions. More generally, the results suggest that susceptibility to prion disease emerged prior to ~100 million years ago, with placental mammals possibly being generally susceptible to disease.
Collapse
Affiliation(s)
- Leonardo M. Cortez
- Centre for Prions and Protein Folding DiseasesUniversity of AlbertaEdmontonAlbertaCanada
- Division of Neurology, Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Anneliese J. Morrison
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| | - Craig R. Garen
- Department of PhysicsUniversity of AlbertaEdmontonAlbertaCanada
| | - Sawyer Patterson
- Centre for Prions and Protein Folding DiseasesUniversity of AlbertaEdmontonAlbertaCanada
| | - Toshi Uyesugi
- Department of PhysicsUniversity of AlbertaEdmontonAlbertaCanada
| | - Rafayel Petrosyan
- Department of PhysicsUniversity of AlbertaEdmontonAlbertaCanada
- Present address:
Zaven & Sonia Akian College of Science and EngineeringAmerican University of ArmeniaYerevanArmenia
| | | | - Michael J. Harms
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregonUSA
| | - Michael T. Woodside
- Centre for Prions and Protein Folding DiseasesUniversity of AlbertaEdmontonAlbertaCanada
- Department of PhysicsUniversity of AlbertaEdmontonAlbertaCanada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Valerie L. Sim
- Centre for Prions and Protein Folding DiseasesUniversity of AlbertaEdmontonAlbertaCanada
- Division of Neurology, Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
3
|
Yadav M, Abdalla M, Madhavi M, Chopra I, Bhrdwaj A, Soni L, Shaheen U, Prajapati L, Sharma M, Sikarwar MS, Albogami S, Hussain T, Nayarisseri A, Singh SK. Structure-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation and Pharmacokinetic modelling of Cyclooxygenase-2 (COX-2) inhibitor for the clinical treatment of Colorectal Cancer. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2068799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Manasi Yadav
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, PR People’s Republic of China
| | - Maddala Madhavi
- Department of Zoology, Osmania University, Hyderabad, Telangana State, India
| | - Ishita Chopra
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, Madhya Pradesh, India
| | - Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Lovely Soni
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Uzma Shaheen
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Leena Prajapati
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Megha Sharma
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | | | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Tajamul Hussain
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, Madhya Pradesh, India
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
4
|
Bergasa-Caceres F, Rabitz HA. Identification of Two Early Folding Stage Prion Non-Local Contacts Suggested to Serve as Key Steps in Directing the Final Fold to Be Either Native or Pathogenic. Int J Mol Sci 2021; 22:ijms22168619. [PMID: 34445324 PMCID: PMC8395309 DOI: 10.3390/ijms22168619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
The initial steps of the folding pathway of the C-terminal domain of the murine prion protein mPrP(90–231) are predicted based on the sequential collapse model (SCM). A non-local dominant contact is found to form between the connecting region between helix 1 and β-sheet 1 and the C-terminal region of helix 3. This non-local contact nucleates the most populated molten globule-like intermediate along the folding pathway. A less stable early non-local contact between segments 120–124 and 179–183, located in the middle of helix 2, promotes the formation of a less populated molten globule-like intermediate. The formation of the dominant non-local contact constitutes an example of the postulated Nature’s Shortcut to the prion protein collapse into the native structure. The possible role of the less populated molten globule-like intermediate is explored as the potential initiation point for the folding for three pathogenic mutants (T182A, I214V, and Q211P in mouse prion numbering) of the prion protein.
Collapse
|
5
|
Lin X, Zhang X, Xu X. Efficient Classification of Hot Spots and Hub Protein Interfaces by Recursive Feature Elimination and Gradient Boosting. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1525-1534. [PMID: 31380766 DOI: 10.1109/tcbb.2019.2931717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteins are not isolated biological molecules, which have the specific three-dimensional structures and interact with other proteins to perform functions. A small number of residues (hot spots) in protein-protein interactions (PPIs) play the vital role in bioinformatics to influence and control of biological processes. This paper uses the boosting algorithm and gradient boosting algorithm based on two feature selection strategies to classify hot spots with three common datasets and two hub protein datasets. First, the correlation-based feature selection is used to remove the highly related features for improving accuracy of prediction. Then, the recursive feature elimination based on support vector machine (SVM-RFE) is adopted to select the optimal feature subset to improve the training performance. Finally, boosting and gradient boosting (G-boosting) methods are invoked to generate classification results. Gradient boosting is capable of obtaining an excellent model by reducing the loss function in the gradient direction to avoid overfitting. Five datasets from different protein databases are used to verify our models in the experiments. Experimental results show that our proposed classification models have the competitive performance compared with existing classification methods.
Collapse
|
6
|
Zhang X, Lin X, Zhao J, Huang Q, Xu X. Efficiently Predicting Hot Spots in PPIs by Combining Random Forest and Synthetic Minority Over-Sampling Technique. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:774-781. [PMID: 33156780 DOI: 10.1109/tcbb.2018.2871674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hot spot residues bring into play the vital function in bioinformatics to find new medications such as drug design. However, current datasets are predominately composed of non-hot spots with merely a tiny percentage of hot spots. Conventional hot spots prediction methods may face great challenges towards the problem of imbalance training samples. This paper presents a classification method combining with random forest classification and oversampling strategy to improve the training performance. A strategy with an oversampling ability is used to generate hot spots data to balance the given training set. Random forest classification is then invoked to generate a set of forest trees for this oversampled training set. The final prediction performance can be computed recursively after the oversampling and training process. This proposed method is capable of randomly selecting features and constructing a robust random forest to avoid overfitting the training set. Experimental results from three data sets indicate that the performance of hot spots prediction has been significantly improved compared with existing classification methods.
Collapse
|
7
|
Paciotti R, Storchi L, Marrone A. An insight of early PrP-E200K aggregation by combined molecular dynamics/fragment molecular orbital approaches. Proteins 2018; 87:51-61. [PMID: 30367504 DOI: 10.1002/prot.25621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 01/30/2023]
Abstract
Unveiling the events leading to the formation of prion particles is a nowadays challenge in the field of neurochemistry. Pathogenic mutants of prion protein (PrP) are characterized by both an intrinsic tendency to aggregation and scrapie conversion propensity. However, the question about a possible correlation between these two events lasts still unanswered. Here, a multilayered computational workflow was employed to investigate structure, stability, and molecular interaction properties of a dimer of PrPC -E200K, a well-known mutant of the PrP that represents a reduced model of early aggregates of this protein. Based on the combination of molecular dynamics and quantum mechanical approaches, this study provided for an in depth insight of PrPC -E200K dimer in terms of residue-residue interactions. Assembly hypotheses for the early aggregation of PrPC -E200K are paved and compared with PrPSc models reported in the literature to find a structural link between early and late (scrapie) aggregates of this protein.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, Università "G d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Loriano Storchi
- Department of Pharmacy, Università "G d'Annunzio" di Chieti-Pescara, Chieti, Italy.,Molecular Discovery Limited, Middlesex, London, United Kingdom.,ISTM - CNR, Perugia, Italy
| | - Alessandro Marrone
- Department of Pharmacy, Università "G d'Annunzio" di Chieti-Pescara, Chieti, Italy
| |
Collapse
|
8
|
Glaves JP, Ladner-Keay CL, Bjorndahl TC, Wishart DS, Sykes BD. Erratum to Residue-specific mobility changes in soluble oligomers of the prion protein define regions involved in aggregation, BBAPAP (2018) 982-988. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:1199-1200. [PMID: 30077003 DOI: 10.1016/j.bbapap.2018.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Carol L Ladner-Keay
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada
| | - Trent C Bjorndahl
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2M9, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada.
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
9
|
Glaves JP, Ladner-Keay CL, Bjorndahl TC, Wishart DS, Sykes BD. Residue-specific mobility changes in soluble oligomers of the prion protein define regions involved in aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:982-988. [PMID: 29935976 DOI: 10.1016/j.bbapap.2018.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
Prion (PrP) diseases are neurodegenerative diseases characterized by the formation of β-sheet rich, insoluble and protease resistant protein deposits (called PrPSc) that occur throughout the brain. Formation of synthetic or in vitro PrPSc can occur through on-pathway toxic oligomers. Similarly, toxic and infectious oligomers identified in cell and animal models of prion disease indicate that soluble oligomers are likely intermediates in the formation of insoluble PrPSc. Despite the critical role of prion oligomers in disease progression, little is known about their structure. In order, to obtain structural insight into prion oligomers, we generated oligomers by shaking-induced conversion of recombinant, monomeric prion protein PrPc (spanning residues 90-231). We then obtained two-dimensional solution NMR spectra of the PrPc monomer, a 40% converted oligomer, and a 94% converted oligomer. Heteronuclear single-quantum correlation (1H-15N) studies revealed that, in comparison to monomeric PrPc, the oligomer has intense amide peak signals in the N-terminal (residues 90-114) and C-terminal regions (residues 226-231). Furthermore, a core region with decreased mobility is revealed from residues ~127 to 225. Within this core oligomer region with decreased mobility, there is a pocket of increased amide peak signal corresponding to the middle of α-helix 2 and the loop between α-helices 2 and 3 in the PrPc monomer structure. Using high-resolution solution-state NMR, this work reveals detailed and divergent residue-specific changes in soluble oligomeric models of PrP.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Carol L Ladner-Keay
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada
| | - Trent C Bjorndahl
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2M9, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada.
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
10
|
Carballo‐Pacheco M, Strodel B. Comparison of force fields for Alzheimer's A β42: A case study for intrinsically disordered proteins. Protein Sci 2017; 26:174-185. [PMID: 27727496 PMCID: PMC5275744 DOI: 10.1002/pro.3064] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 01/06/2023]
Abstract
Intrinsically disordered proteins are essential for biological processes such as cell signalling, but are also associated to devastating diseases including Alzheimer's disease, Parkinson's disease or type II diabetes. Because of their lack of a stable three-dimensional structure, molecular dynamics simulations are often used to obtain atomistic details that cannot be observed experimentally. The applicability of molecular dynamics simulations depends on the accuracy of the force field chosen to represent the underlying free energy surface of the system. Here, we use replica exchange molecular dynamics simulations to test five modern force fields, OPLS, AMBER99SB, AMBER99SB*ILDN, AMBER99SBILDN-NMR and CHARMM22*, in their ability to model Aβ42 , an intrinsically disordered peptide associated with Alzheimer's disease, and compare our results to nuclear magnetic resonance (NMR) experimental data. We observe that all force fields except AMBER99SBILDN-NMR successfully reproduce local NMR observables, with CHARMM22* being slightly better than the other force fields.
Collapse
Affiliation(s)
- Martín Carballo‐Pacheco
- Institute of Complex Systems, Structural Biochemistry (ICS‐6), Forschungszentrum Jülich GmbHJülich52425Germany
- AICES Graduate School, RWTH Aachen UniversitySchinkelstraße 2Aachen52062Germany
| | - Birgit Strodel
- Institute of Complex Systems, Structural Biochemistry (ICS‐6), Forschungszentrum Jülich GmbHJülich52425Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University DüsseldorfUniversitätstraße 1Düsseldorf40225Germany
| |
Collapse
|
11
|
Structural Modeling of Human Prion Protein's Point Mutations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:105-122. [DOI: 10.1016/bs.pmbts.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Marrone A, Re N, Storchi L. The Effects of Ca2+ Concentration and E200K Mutation on the Aggregation Propensity of PrPC: A Computational Study. PLoS One 2016; 11:e0168039. [PMID: 27959938 PMCID: PMC5154561 DOI: 10.1371/journal.pone.0168039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022] Open
Abstract
The propensity of cellular prion protein to aggregation is reputed essential for the initiation of the amyloid cascade that ultimately lead to the accumulation of neurotoxic aggregates. In this paper, we extended and applied an already reported computational workflow [Proteins 2015; 83: 1751–1765] to elucidate in details the aggregation propensity of PrP protein systems including wild type, wild type treated at different [Ca2+] and E200K mutant. The application of the computational procedure to two segments of PrPC, i.e. 125–228 and 120–231, allowed to emphasize how the inclusion of complete C-terminus and last portion (120–126) of the neurotoxic segment 106–126 may be crucial to unveil significant and unexpected interaction properties. Indeed, the anchoring of N-terminus on H2 domain detected in the wild type resulted to be disrupted upon either E200K mutation or Ca2+ binding, and to unbury hydrophobic spots on the PrPC surface. A peculiar dinuclear Ca2+ binding motif formed by the C-terminus and the S2-H2 loop was detected for [Ca2+] > 5 mM and showed similarities with binding motifs retraced in other protein systems, thus suggesting a possible functional meaning for its formation. Therefore, we potentiated the computational procedure by including a tool that clusterize the minima of molecular interaction fields of a proteinand delimit the regions of space with higher hydrophobic or higher hydrophilic character, hence, more likely involved in the self-assembly process. Plausible models for the self-assembly of either the E200K mutated or Ca2+-bound PrPC were sketched and discussed. The present investigation provides for structure-based information and new prompts that may represent a starting point for future experimental or computational works on the PrPC aggregation.
Collapse
Affiliation(s)
- Alessandro Marrone
- Università “G d’Annunzio” di Chieti-Pescara, Department of Pharmacy, Chieti, Italy
- * E-mail:
| | - Nazzareno Re
- Università “G d’Annunzio” di Chieti-Pescara, Department of Pharmacy, Chieti, Italy
| | - Loriano Storchi
- Università “G d’Annunzio” di Chieti-Pescara, Department of Pharmacy, Chieti, Italy
- Molecular Discovery Limited, Middlesex, London, United Kingdom
| |
Collapse
|
13
|
Ishibashi D, Nakagaki T, Ishikawa T, Atarashi R, Watanabe K, Cruz FA, Hamada T, Nishida N. Structure-Based Drug Discovery for Prion Disease Using a Novel Binding Simulation. EBioMedicine 2016; 9:238-249. [PMID: 27333028 PMCID: PMC4972544 DOI: 10.1016/j.ebiom.2016.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
The accumulation of abnormal prion protein (PrP(Sc)) converted from the normal cellular isoform of PrP (PrP(C)) is assumed to induce pathogenesis in prion diseases. Therefore, drug discovery studies for these diseases have focused on the protein conversion process. We used a structure-based drug discovery algorithm (termed Nagasaki University Docking Engine: NUDE) that ran on an intensive supercomputer with a graphic-processing unit to identify several compounds with anti-prion effects. Among the candidates showing a high-binding score, the compounds exhibited direct interaction with recombinant PrP in vitro, and drastically reduced PrP(Sc) and protein-aggresomes in the prion-infected cells. The fragment molecular orbital calculation showed that the van der Waals interaction played a key role in PrP(C) binding as the intermolecular interaction mode. Furthermore, PrP(Sc) accumulation and microgliosis were significantly reduced in the brains of treated mice, suggesting that the drug candidates provided protection from prion disease, although further in vivo tests are needed to confirm these findings. This NUDE-based structure-based drug discovery for normal protein structures is likely useful for the development of drugs to treat other conformational disorders, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Daisuke Ishibashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Japan.
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Ryuichiro Atarashi
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| | - Ken Watanabe
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Felipe A Cruz
- Nagasaki Advanced Computing Center, Nagasaki University, Japan
| | - Tsuyoshi Hamada
- Nagasaki Advanced Computing Center, Nagasaki University, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| |
Collapse
|
14
|
Bahramali G, Goliaei B, Minuchehr Z, Salari A. Chameleon sequences in neurodegenerative diseases. Biochem Biophys Res Commun 2016; 472:209-16. [PMID: 26920059 PMCID: PMC7124260 DOI: 10.1016/j.bbrc.2016.01.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 01/30/2016] [Indexed: 01/03/2023]
Abstract
Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to "helix to strand (HE)", "helix to coil (HC)" and "strand to coil (CE)" alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Golnaz Bahramali
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran.
| | - Ali Salari
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| |
Collapse
|
15
|
Liu P, Li W, Kan Z, Sun H, Ma J. Factor Analysis of Conformations and NMR Signals of Rotaxanes: AIMD and Polarizable MD Simulations. J Phys Chem A 2016; 120:490-502. [PMID: 26756354 DOI: 10.1021/acs.jpca.5b10085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interlocked ⟨rod | ring⟩ structures of pseudorotaxanes and [2]rotaxanes are usually maintained by the complex hydrogen-bonding (H-bonding) network between the rod and ring. Ab initio molecular dynamics (AIMD) using generalized energy-based fragmentation approach and polarizable force field (polar FF)-based molecular dynamics (MD) simulations were performed to investigate the conformational changes of mechanically interlocked systems and to obtain the ensemble-averaged NMR chemical shifts. Factor analysis (FA) demonstrates that the ring H-donor (2,6 pyridinedicarboxamide group) plays an important role in the ring-rod recognition. In comparison to the conventional fixed-charge force field, the polarization effect is crucial to account for the H-bonding interactions in supramolecular systems. In the hybrid scheme, the polar FF-based MD simulations are used to generate different initial states for the AIMD simulations, which are able to give better prediction of ensemble-averaged NMR signals for chemically equivalent amide protons. The magnitude of the deshielding shift of NMR signal is correlated with the length of hydrogen bond. The polar FF model with variable charges shows that the dipole-dipole interactions between the flexible diethylene glycol chain of ring and polar solvents induce the upfield shifts of NMR signals of rod H-donors and the directional distribution of the neighboring CH3CN solvents.
Collapse
Affiliation(s)
- Pingying Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University , Nanjing 210093, People's Republic of China.,School of Materials Science and Engineering, Jingdezhen Ceramic Institute , Jingdezhen 333403, People's Republic of China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University , Nanjing 210093, People's Republic of China
| | - Zigui Kan
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University , Nanjing 210093, People's Republic of China
| | - Hui Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University , Nanjing 210093, People's Republic of China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University , Nanjing 210093, People's Republic of China
| |
Collapse
|
16
|
Tompa P, Schad E, Tantos A, Kalmar L. Intrinsically disordered proteins: emerging interaction specialists. Curr Opin Struct Biol 2015; 35:49-59. [PMID: 26402567 DOI: 10.1016/j.sbi.2015.08.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/23/2015] [Accepted: 08/28/2015] [Indexed: 12/22/2022]
Abstract
Intrinsically disordered proteins or regions of proteins (IDPs/IDRs) most often function through protein-protein interactions, when they permanently or transiently bind partner molecules with diverse functional consequences. There is a rapid advance in our understanding of the ensuing functional modes, obtained from describing atomic details of individual complexes, proteome-wide studies of interactomes and characterizing loosely assembled hydrogels and tightly packed amyloids. Here we briefly survey the most important recent methodological developments and structural-functional observations, with the aim of increasing the general appreciation of IDPs/IDRs as 'interaction specialists'.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC), Brussels, Belgium; Vrije Universiteit Brussel, Brussels, Belgium; Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary.
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Lajos Kalmar
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|