1
|
Assomo JGGN, Ebrahimi S, Jay-Gerin JP, Soldera A. Supercritical Water: A Simulation Study to Unravel the Heterogeneity of Its Molecular Structures. Molecules 2024; 29:2947. [PMID: 38931011 PMCID: PMC11206336 DOI: 10.3390/molecules29122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: In the quest to accurately model the radiolysis of water in its supercritical state, a detailed understanding of water's molecular structure, particularly how water molecules are arranged in this unique state, is essential. (2) Methods: We conducted molecular dynamics simulations using the SPC/E water model to investigate the molecular structures of supercritical water (SCW) over a wide temperature range, extending up to 800 °C. (3) Results: Our results show that at a constant pressure of 25 MPa, the average intermolecular distance around a reference water molecule remains remarkably stable at ~2.9 Å. This uniformity persists across a substantial temperature range, demonstrating the unique heterogeneous nature of SCW under these extreme conditions. Notably, the simulations also reveal intricate patterns within SCW, indicating the simultaneous presence of regions with high and low density. As temperatures increase, we observe a rise in the formation of molecular clusters, which are accompanied by a reduction in their average size. (4) Conclusions: These findings highlight the necessity of incorporating the molecular complexity of SCW into traditional track-structure chemistry models to improve predictions of SCW behavior under ionizing radiation. The study establishes a foundational reference for further exploration of the properties of supercritical water, particularly for its application in advanced nuclear technologies, including the next generation of water-cooled reactors and their small modular reactor variants that utilize SCW as a coolant.
Collapse
Affiliation(s)
- Joseph Guy Gérard Ndongo Assomo
- Département de Physique, Faculté des Sciences, Université de Maroua, Maroua BP 814, Cameroon;
- Laboratory of Physical Chemistry of Matter (LPCM), Department of Chemistry, Faculty of Sciences, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, QC J1K 2R1, Canada;
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| | - Sadollah Ebrahimi
- Laboratory of Physical Chemistry of Matter (LPCM), Department of Chemistry, Faculty of Sciences, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Jean-Paul Jay-Gerin
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| | - Armand Soldera
- Laboratory of Physical Chemistry of Matter (LPCM), Department of Chemistry, Faculty of Sciences, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
2
|
Shagurin A, Miannay FA, Kiselev MG, Jedlovszky P, Affouard F, Idrissi A. Widom Line in Supercritical Water in Terms of Changes in Local Structure: Theoretical Perspective. J Phys Chem Lett 2024; 15:5831-5837. [PMID: 38787641 DOI: 10.1021/acs.jpclett.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Performing molecular dynamics simulations with the TIP4P/2005 water model along 9 isobars (from 175 to 375 bar) in the temperature range between 300 and 1100 K, we have found that the loci of the extrema in the rate of change of specific structural properties can be used to define purely structure-based Widom lines. We have examined several parameters that describe the local structure of water, such as the tetrahedral arrangement, nearest neighbor distance, local density around the molecules, and the size of the largest dense domain. The last two parameters were determined using the Voronoi polyhedral and density-based spatial clustering of applications with noise methods, respectively. By analyzing the moments of the associated distributions, we show that along a given isobar, the temperature at which we observe a maximum in the fluctuation, the rate of change of the average values, or in the skewness values unambiguously determines the Widom line that is in agreement with the experimentally detected, thermodynamic response function-based ones.
Collapse
Affiliation(s)
- Artem Shagurin
- University of Lille, CNRS UMR 8516 -LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, 153045 Russia
| | - Francois A Miannay
- University of Lille, CNRS UMR 8516 -LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France
| | - Michael G Kiselev
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, 153045 Russia
| | - Pal Jedlovszky
- Department of Chemistry, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary
| | - Frederic Affouard
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Abdenacer Idrissi
- University of Lille, CNRS UMR 8516 -LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France
| |
Collapse
|
3
|
Yang W, Xu D, Diao Y, Zhao J, Jing Z, Guo Y. Molecular dynamics simulations on K2SO4 nucleation in supercritical water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Song M, Zhu S, Jiao Z, Ou Z, Liu Y, Guo L. Search for the superiority of supercritical water with ab initio molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Sun Q, Fu Y, Wang W. Temperature effects on hydrophobic interactions: Implications for protein unfolding. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Maxim F, Karalis K, Boillat P, Banuti DT, Marquez Damian JI, Niceno B, Ludwig C. Thermodynamics and Dynamics of Supercritical Water Pseudo-Boiling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002312. [PMID: 33552857 PMCID: PMC7856905 DOI: 10.1002/advs.202002312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Supercritical fluid pseudo-boiling (PB), recently brought to the attention of the scientific community, is the phenomenon occurring when fluid changes its structure from liquid-like (LL) to gas-like (GL) states across the Widom line. This work provides the first quantitative analysis on the thermodynamics and the dynamics of water's PB, since the understanding of this phase transition is mandatory for the successful implementation of technologies using supercritical water (scH2O) for environmental, energy, and nanomaterial applications. The study combines computational techniques with in situ neutron imaging measurements. The results demonstrate that, during isobaric heating close to the critical point, while water density drops by a factor of three in the PB transitional region, the system needs >16 times less energy to increase its temperature by 1 K than to change its structure from LL to GL phase. Above the PB-Widom line, the structure of LL water consists mainly of tetramers and trimers, while below the line mostly dimers and monomers form in the GL phase. At atomic level, the PB dynamics are similar to those of the subcritical water vaporization. This fundamental knowledge has great impact on water science, as it helps to establish the structure-properties relationship of scH2O.
Collapse
Affiliation(s)
- Florentina Maxim
- Laboratory for Chemical Thermodynamics“Ilie Murgulescu” Institute of Physical ChemistrySplaiul Independentei 202Bucharest060021Romania
- Laboratory for Bioenergy and Catalysis (LBK)ENE DivisionPaul Scherrer InstituteVilligen PSI5232Switzerland
| | | | - Pierre Boillat
- Electrochemistry Laboratory (LEC)ENE DivisionPaul Scherrer InstituteVilligen PSI5232Switzerland
- Laboratory for Neutron Scattering and Imaging (LNS)NUM DivisionPaul Scherrer InstituteVilligen PSI5232Switzerland
| | - Daniel T. Banuti
- Department of Mechanical EngineeringThe University of New MexicoMSC01 1150AlbuquerqueNM87131USA
| | | | - Bojan Niceno
- Laboratory for Scientific Computing and Modelling (LSM)NES DivisionPaul Scherrer InstituteVilligen PSI5232Switzerland
- Eidgenössische Technische Hochschule Zürich (ETHZ)MAVT‐LKEZurich8092Switzerland
| | - Christian Ludwig
- Laboratory for Bioenergy and Catalysis (LBK)ENE DivisionPaul Scherrer InstituteVilligen PSI5232Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL)ENAC IIE GR‐LUDLausanne1015Switzerland
| |
Collapse
|
7
|
Stability of copper acetate at high P-T and the role of organic acids and CO 2 in metallic mineralization. Sci Rep 2020; 10:5387. [PMID: 32214163 PMCID: PMC7096451 DOI: 10.1038/s41598-020-62250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/11/2020] [Indexed: 12/02/2022] Open
Abstract
Many metal deposits were formed by carbonic fluids (rich in CO2) as indicated by fluid inclusions in minerals, but the precise role of CO2 in metal mineralization remains unclear. The main components in fluid inclusions, i.e. H2O and CO2, correspond to the decomposed products of organic acids, which lead us to consider that in the mineralization process the organic acids transport and then discharge metals when they are stable and unstable, respectively. Here we show that the thermal stability of copper acetate solution at 15–350 °C (0.1–830 MPa) provides insight as to the role of organic acids in metal transport. Results show that the copper acetate solution is stable at high P-T conditions under low geothermal gradient of <19 °C/km, with an isochore of P = 1.89 T + 128.58, verifying the possibility of copper transportation as acetate solution. Increasing geothermal gradient leads to thermal dissociation of copper acetate in the way of 4Cu(CH3 COO)2 + 2H2O = 4Cu + 2CO2 + 7CH3COOH. The experimental results and inferences in this contribution agree well with the frequently observed fluid inclusions and wall-rock alterations of carbonate, sericite and quartz in hydrothermal deposits, and provide a new dimension in the understanding of the role of CO2 during mineralization.
Collapse
|
8
|
Yusupov VI. Formation of Supercritical Water under Laser Radiation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793119070297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
|
10
|
Zhou L, Mernagh TP, Le Losq C. Observation of the Chemical Structure of Water up to the Critical Point by Raman Spectroscopic Analysis of Fluid Inclusions. J Phys Chem B 2019; 123:5841-5847. [PMID: 31188605 DOI: 10.1021/acs.jpcb.9b02129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Raman spectra were obtained simultaneously from the liquid and vapor phases of pure water trapped at the critical density (322 kg·m-3) within synthetic inclusions in quartz. As these inclusions are heated up to the critical temperature (373.946 °C), the liquid phase decreases in density and the maximum of the Raman OH-stretching band increases in wavenumber. Conversely, as the vapor phase increases in density, the maximum of the Raman OH-stretching band decreases in wavenumber. The Raman bands of the liquid and vapor phases converge to a single band at the critical point of water, where the fluid exists as a single phase. A comparison of the band centroids for the vapor and liquid phases of water indicates respective increases and decreases in the amount of hydrogen bonding in these phases as a function of increasing and decreasing density. These effects were further quantified by peak-fitting the Raman OH-stretching peak with five Gaussian components. All the Gaussian components of the liquid phase decrease in amplitude with increasing temperature with the exception of the double donor-single acceptor (H2O)4 cluster, which increases in amplitude and becomes the most intense component at temperatures above 300 °C. The Raman spectra of the vapor phase are dominated by the free OH component at temperatures below 300 °C, but, above this temperature, the double donor-single acceptor (H2O)4 cluster is again the most intense band. The results indicate that a significant quantity of water clusters is present in both liquid and vapor water at high temperatures and that supercritical water can be considered as a mixture of small water clusters [(H2O)n, n = 1-4] dominated by the double donor-single acceptor (H2O)4 cluster.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550002 , China
| | - Terrence Patrick Mernagh
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550002 , China.,Research School of Earth Sciences , The Australian National University , Acton , Australian Capital Territory 2601 , Australia
| | - Charles Le Losq
- Research School of Earth Sciences , The Australian National University , Acton , Australian Capital Territory 2601 , Australia
| |
Collapse
|
11
|
Fujii K, Aramaki M, Kimura Y. Excited-State Proton Transfer of 5,8-Dicyano-2-naphthol in High-Temperature and High-Pressure Methanol: Effect of Solvent Polarity and Hydrogen Bonding Ability. J Phys Chem B 2018; 122:12363-12374. [DOI: 10.1021/acs.jpcb.8b09235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaori Fujii
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Megumi Aramaki
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yoshifumi Kimura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
12
|
Strong SE, Shi L, Skinner JL. Percolation in supercritical water: Do the Widom and percolation lines coincide? J Chem Phys 2018; 149:084504. [DOI: 10.1063/1.5042556] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Steven E. Strong
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Liang Shi
- School of Natural Sciences, University of California, Merced, California 95344, USA
| | - J. L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Stefanski J, Schmidt C, Jahn S. Aqueous sodium hydroxide (NaOH) solutions at high pressure and temperature: insights from in situ Raman spectroscopy and ab initio molecular dynamics simulations. Phys Chem Chem Phys 2018; 20:21629-21639. [PMID: 30101256 DOI: 10.1039/c8cp00376a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrothermal diamond anvil cell experiments in combination with Raman spectroscopy and first principles molecular dynamics simulations were performed to investigate the structure and dynamics of aqueous NaOH solutions for temperatures up to 700 °C, pressures up to 850 MPa and two different solute concentrations. The significant changes observed in the O-H stretching region of the Raman spectra between ambient and supercritical conditions are explained by both dynamic effects and structural differences. Especially important are a Grotthuss-like proton transport process and the decreasing network connectivity of the water molecules with increasing temperature. The observed transfer of Raman intensity towards lower wavenumbers by the proton transfer affects a wide range of frequencies and must be considered in the interpretation of Raman spectra of highly basic solutions. We suggest a deconvolution of the spectra using a model with four Gaussian functions, which are assigned to the molecular H2O and OH- vibrations, and one asymmetric exponentially modified Gaussian (EMG) function, which is assigned to [HO(H2O)n]- vibrations.
Collapse
Affiliation(s)
- Johannes Stefanski
- Institute of Geology and Mineralogy, University of Cologne, Zülpicher Straße 49b, 50674 Köln, Germany.
| | | | | |
Collapse
|
14
|
Samanta T, Dutta R, Biswas R, Bagchi B. Infrared spectroscopic study of super-critical water across the Widom line. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Skarmoutsos I, Guardia E, Samios J. Local structural fluctuations, hydrogen bonding and structural transitions in supercritical water. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
|
17
|
|
18
|
Sokhan VP, Jones A, Cipcigan FS, Crain J, Martyna GJ. Molecular-scale remnants of the liquid-gas transition in supercritical polar fluids. PHYSICAL REVIEW LETTERS 2015; 115:117801. [PMID: 26406855 DOI: 10.1103/physrevlett.115.117801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Indexed: 06/05/2023]
Abstract
An electronically coarse-grained model for water reveals a persistent vestige of the liquid-gas transition deep into the supercritical region. A crossover in the density dependence of the molecular dipole arises from the onset of nonpercolating hydrogen bonds. The crossover points coincide with the Widom line in the scaling region but extend farther, tracking the heat capacity maxima, offering evidence for liquidlike and gaslike state points in a "one-phase" fluid. The effect is present even in dipole-limit models, suggesting that it is common for all molecular liquids exhibiting dipole enhancement in the liquid phase.
Collapse
Affiliation(s)
- V P Sokhan
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - A Jones
- School of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - F S Cipcigan
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
- School of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - J Crain
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
- School of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - G J Martyna
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| |
Collapse
|
19
|
Stirling A, Rozgonyi T, Krack M, Bernasconi M. Pyrite in contact with supercritical water: the desolation of steam. Phys Chem Chem Phys 2015; 17:17375-9. [DOI: 10.1039/c5cp01146a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The supercritical water and pyrite interface has been studied by DFT calculations. A surprisingly dry surface has been found which points to a new reactivity under extreme conditions which has relevance in the iron–sulfur world prebiotic chemistry of the early Earth.
Collapse
Affiliation(s)
- András Stirling
- Institute of Organic Chemistry
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences
- Budapest
- Hungary
| | - Tamás Rozgonyi
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences
- Budapest
- Hungary
| | - Matthias Krack
- Laboratory for Reactor Physics and Systems Behaviour
- Paul Scherrer Institute
- CH-5232 Villigen PSI
- Switzerland
| | - Marco Bernasconi
- Department of Materials Science
- University of Milano-Bicocca
- I-20125 Milano
- Italy
| |
Collapse
|