1
|
Yang X, Peng X, Lu X, He M, Yan J, Kong L. Efficient reductive recovery of arsenic from acidic wastewater by a UV/dithionite process. WATER RESEARCH 2024; 265:122299. [PMID: 39180954 DOI: 10.1016/j.watres.2024.122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The removal of arsenic (As(III)) from acidic wastewater using neutralization or sulfide precipitation generates substantial arsenic-containing hazardous solid waste, posing significant environmental challenges. This study proposed an advanced ultraviolet (UV)/dithionite reduction method to recover As(III) in the form of valuable elemental arsenic (As(0)) from acidic wastewater, thereby avoiding hazardous waste production. The results showed that more than 99.9 % of As(III) was reduced to As(0) with the residual concentration of arsenic below 25.0 μg L-1 within several minutes when the dithionite/As(III) molar ratio exceeded 1.5:1 and the pH was below 4.0. The content of As(0) in precipitate reached 99.70 wt%, achieving the purity requirements for commercial As(0) products. Mechanistic investigations revealed that SO2·‒ and H· radicals generated by dithionite photolysis under UV irradiation are responsible for reducing As(III) to As(0). Dissolved O2, Fe(III), Fe(II), Mn(II), dissolved organic matter (DOM), and turbidity slightly inhibited As(III) reduction via free radicals scavenging or light blocking effect, whereas other coexisting ions, such as Mg(II), Zn(II), Cd(II), Ni(II), F(-I), and Cl(-I), had limited influence on As(III) reduction. Moreover, the cost of treating real arsenic-containing (250.3 mg L-1) acidic wastewater was estimated to be as low as $0.668 m-3, demonstrating the practical applicability of this method. This work provides a novel method for the reductive recovery of As(III) from acidic wastewater.
Collapse
Affiliation(s)
- Xin Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianjia Peng
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyu Lu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiaguo Yan
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin 300450, China; Tianjin Marine Petroleum Environmental and Reservoir Low-Damage Drilling Fluid Enterprise Key Laboratory, Tianjin 300450, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Jiang Y, Zhu K, Hou J, Dai Q, Li Y, Li K, Deng Y, Zhu L, Jia H. Unlocking high-efficiency decontamination by building a novel heterogeneous catalytic reduction system of thiourea dioxide/biochar. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134471. [PMID: 38691994 DOI: 10.1016/j.jhazmat.2024.134471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Herein, we reported a new contaminant purification paradigm, which enabled highly efficient reductive denitration and dechlorination using a green, stable reducing agent thiourea dioxide (TDO) coupled with biochar (BC) over a wide pH range under anoxic conditions. Specifically, BC acted as both activators and electron shuttles for TDO decomposition to achieve complete anoxic degradation of p-nitrophenol (PNP), p-nitroaniline, 4-chlorophenol and 2,4-dichlorophenol within 2 h. During this process, multiple strongly reducing species (i.e., SO22-, SO2•- and e-/H•) were generated in BC/TDO systems, accounting for 13.3%, 9.7% and 75.5% of PNP removal, respectively. While electron transfer between TDO and H+ or contaminants mediated by BC led to H• generation and contaminant reduction. These processes depended on the electron-accepting capacity and electron-conducting domains of biochar. Significantly, the BC/TDO systems were highly efficient at a pH of 2.0-8.0, especially under acidic conditions, which performed robustly in common natural water constituents.
Collapse
Affiliation(s)
- Yuanren Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Jiayi Hou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Qingyang Dai
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yuegen Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kai Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
3
|
Mao L, Quan Z, Liu ZS, Huang CH, Wang ZH, Tang TS, Li PL, Shao J, Liu YJ, Zhu BZ. Molecular mechanism of the metal-independent production of hydroxyl radicals by thiourea dioxide and H 2O 2. Proc Natl Acad Sci U S A 2024; 121:e2302967120. [PMID: 38547063 PMCID: PMC10998598 DOI: 10.1073/pnas.2302967120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/12/2023] [Indexed: 04/08/2024] Open
Abstract
It is well-known that highly reactive hydroxyl radicals (HO•) can be produced by the classic Fenton system and our recently discovered haloquinone/H2O2 system, but rarely from thiol-derivatives. Here, we found, unexpectedly, that HO• can be generated from H2O2 and thiourea dioxide (TUO2), a widely used and environmentally friendly bleaching agent. A carbon-centered radical and sulfite were detected and identified as the transient intermediates, and urea and sulfate as the final products, with the complementary application of electron spin-trapping, oxygen-18 isotope labeling coupled with HPLC/MS analysis. Density functional theory calculations were conducted to further elucidate the detailed pathways for HO• production. Taken together, we proposed that the molecular mechanism for HO• generation by TUO2/H2O2: TUO2 tautomerizes from sulfinic acid into ketone isomer (TUO2-K) through proton transfer, then a nucleophilic addition of H2O2 on the S atom of TUO2-K, forming a S-hydroperoxide intermediate TUO2-OOH, which dissociates homolytically to produce HO•. Our findings represent the first experimental and computational study on an unprecedented new molecular mechanism of HO• production from simple thiol-derived sulfinic acids, which may have broad chemical, environmental, and biomedical significance for future research on the application of the well-known bleaching agent and its analogs.
Collapse
Affiliation(s)
- Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Zhuo Quan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Zhi-Sheng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Zi-Han Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Tian-Shu Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Pei-Lin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
- Center for Advanced Materials Research, College of Chemistry, Beijing Normal University, Zhuhai519087, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
- State Key Laboratory of Chemical Resource Engineering, Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
4
|
Zhu F, Kong L, He M, Fang D, Hu X, Peng X. Effective reduction and recovery of As(III) and As(V) from alkaline wastewater by thiourea dioxide: Efficiency and mechanism. WATER RESEARCH 2023; 243:120355. [PMID: 37506638 DOI: 10.1016/j.watres.2023.120355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
For alkaline wastewater with high arsenic concentration, the traditional lime precipitation inevitably produces large amounts of hazardous waste. Herein, a heat-activated reduction method employing thiourea dioxide (TDO) as the reductant was proposed to efficiently remove and recover As(III)/As(V) from alkaline wastewater in the form of valuable As(0). More than 99.9% of As(III)/As(V) (2-400 mM) were reduced to As(0) with a high purity of more than 99.5 wt% by TDO within 30 min. The highly reductive eaq- and SO2- radical generated during TDO decomposition contribute to the arsenic reduction, and the contribution ratios of eaq- and SO2- radical were estimated to be approximately 57.6% and 42.4% for As(III) removal and 62.2% and 37.8% for As(V) removal, respectively. The arsenic reduction was greatly improved by increasing pH and temperature, which could accelerate the cleavage of C-S bond in TDO for the eaq- and SO2- formation. The presence of dissolved oxygen, which can not only scavenge eaq-/SO2- but also directly oxidize SO22-, had a negative effect on the arsenic removal. The presence of CO32- slightly suppressed the arsenic removal due to the eaq- scavenging effect while SiO32-, PO43-, Cl-, SO42- and NH4+ had negligible effects. The proposed method was a potential technology for the efficient removal and reduction of arsenic in alkaline wastewater.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Duxian Fang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingyun Hu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xianjia Peng
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Olagunju O, Simoyi RH. Oxyhalogen-Sulfur Chemistry: Kinetics and Mechanism of Oxidation of 1,3-Dimethylthiourea by Acidic Bromate. J Phys Chem A 2017; 121:6366-6376. [PMID: 28793188 DOI: 10.1021/acs.jpca.7b07587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of oxidation of the well-known radical scavenger dimethylthiourea, DMTU, by acidic bromate was studied. The stoichiometry of the reaction is 4:3: 4BrO3- + 3CS(NHMe)2 + 3H2O → 3SO42- + 3CO(NHMe)2 + 6H+ + 4Br-. In excess acidic bromate, the reaction stoichiometry is 8:5: 8BrO3- + 5CS(NHMe)2 + H2O → 5SO42- + 5CO(NHMe)2 + 4Br2 + 2H+. In excess bromate, the reaction displays well-defined clock reaction characteristics in which initially there is a quiescent period before formation of bromine. The direct reaction of aqueous bromine with DMTU, with a bimolecular rate constant of k = (1.95 ± 0.15) × 105 M-1 s-1, is much faster than reactions that form bromine such that formation of bromine indicates complete consumption of DMTU. ESI spectrometry showed evidence for an oxidation pathway that passes through the sulfenic, sulfinic, and sulfonic acids before formation of sulfate. In contrast to the oxidation of tetramethylthiourea, these oxoacid intermediates are not as abundant or as stable. The final product of oxidation was dimethylurea, the desulfurized DMTU. EPR spectroscopy implicates more than one set of radical species. The absence of the dimeric DMTU species, even in excess reductant indicates negligible formation of thiyl radicals. This also precludes substantial formation of the sulfenic acid intermediate which would form the dimer from a condensation-type reaction with unreacted DMTU. A 20-step reaction mechanism network was modeled which gave a reasonable fit with experimental data.
Collapse
Affiliation(s)
- Olufunke Olagunju
- Department of Chemistry, Portland State University , Portland, Oregon 97207-0751, United States
| | - Reuben H Simoyi
- Department of Chemistry, Portland State University , Portland, Oregon 97207-0751, United States.,School of Chemistry and Physics, University of KwaZulu-Natal , Westville Campus, Durban 4014, South Africa
| |
Collapse
|
6
|
Dereven’kov IA, Ivlev PA, Salnikov DS, Bischin C, Attia AAA, Silaghi-Dumitrescu R, Makarov SV. Studies of reaction of tetramethylthiourea with hydrogen peroxide: evidence of formation of tetramethylthiourea monoxide as a key intermediate of the reaction. J Sulphur Chem 2017. [DOI: 10.1080/17415993.2017.1321650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ilia A. Dereven’kov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| | - Pavel A. Ivlev
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| | - Denis S. Salnikov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| | - Cristina Bischin
- Departamentul de Chimie, Facultatea de Chimie şi Inginerie Chimică, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| | - Amr A. A. Attia
- Departamentul de Chimie, Facultatea de Chimie şi Inginerie Chimică, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Departamentul de Chimie, Facultatea de Chimie şi Inginerie Chimică, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| | - Sergei V. Makarov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| |
Collapse
|
7
|
Chipiso K, Logan IE, Eskew MW, Omondi B, Simoyi RH. Kinetics and Mechanism of Bioactivation via S-Oxygenation of Anti-Tubercular Agent Ethionamide by Peracetic Acid. J Phys Chem A 2016; 120:8056-8064. [DOI: 10.1021/acs.jpca.6b07375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kudzanai Chipiso
- Department
of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| | - Isabelle E. Logan
- Department
of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| | - Matthew W. Eskew
- Department
of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
| | - Benard Omondi
- School
of Chemistry and Physics, University of KwaZulu-Natal, Westville
Campus, Durban 4000, South Africa
| | - Reuben H. Simoyi
- Department
of Chemistry, Portland State University, Portland, Oregon 97207-0751, United States
- School
of Chemistry and Physics, University of KwaZulu-Natal, Westville
Campus, Durban 4000, South Africa
| |
Collapse
|