1
|
Hu G, Liu P, Jensen L. Calculating Molecular Polarizabilities Using Exact Frozen Density Embedding with External Orthogonality. J Chem Theory Comput 2024. [PMID: 39105755 DOI: 10.1021/acs.jctc.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Frozen density embedding (FDE) with freeze-thaw cycles is a formally exact embedding scheme. In practice, this method is limited to systems with small density overlaps when approximate nonadditive kinetic energy functionals are used. It has been shown that the use of approximate nonadditive kinetic energy functionals can be avoided when external orthogonality (EO) is enforced, and FDE can then generate exact results even for strongly overlapping subsystems. In this work, we present an implementation of exact FDEc-EO (coupled FDE TDDFT with EO) for the calculation of polarizabilities in the Amsterdam density functional program package. EO is enforced using the level-shift projection operator method, which ensures that orbitals between fragments are orthogonal. For pure functionals, we show that only the symmetric EO contributions to the induced density matrix are needed. This leads to a simplified implementation for the calculation of polarizability that can exactly reproduce the supermolecular TDDFT results. We further discuss the limitation of exact FDEc-EO in interpreting subsystem polarizabilities due to the nonunique partitioning of the total density. We show that this limitation is due to the fact that subsystem polarizability partitioning is dependent on how the subsystems are initially polarized. As supermolecular virtual orbitals are exactly reproduced, this dependence is attributed to the description of the occupied orbitals. In contrast, for excitations of subsystems that are localized within one subsystem, we show that the excitation energies are stable with respect to the order of polarization. This observation shows that impacts from the nonunique nature of exact FDE on subsystem properties can be minimized by better fragmentation of the supermolecular systems if the property is localized. For global properties like polarizability, this is not the case, and nonuniqueness remains independent of the fragmentation used.
Collapse
Affiliation(s)
- Gaohe Hu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Pengchong Liu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Shi Y, Shi Y, Wasserman A. Stretching Bonds without Breaking Symmetries in Density Functional Theory. J Phys Chem Lett 2024; 15:826-833. [PMID: 38232318 DOI: 10.1021/acs.jpclett.3c03073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Kohn-Sham density functional theory (KS-DFT) stands out among electronic structure methods due to its balance of accuracy and computational efficiency. However, to achieve chemically accurate energies, standard density functional approximations in KS-DFT often need to break underlying symmetries, a long-standing "symmetry dilemma". By employing fragment spin densities as the main variables in calculations (rather than total molecular densities, as in KS-DFT), we present an embedding framework in which this symmetry dilemma is understood and partially resolved. The spatial overlap between fragment densities is used as the main ingredient to construct a simple, physically motivated approximation to a universal functional of the fragment densities. This "overlap approximation" is shown to significantly improve semilocal KS-DFT binding energies of molecules without artificially breaking either charge or spin symmetries. The approach is shown to be applicable to covalently bonded molecules and to systems of the "strongly correlated" type.
Collapse
Affiliation(s)
- Yuming Shi
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yi Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Adam Wasserman
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Mi W, Luo K, Trickey SB, Pavanello M. Orbital-Free Density Functional Theory: An Attractive Electronic Structure Method for Large-Scale First-Principles Simulations. Chem Rev 2023; 123:12039-12104. [PMID: 37870767 DOI: 10.1021/acs.chemrev.2c00758] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Kohn-Sham Density Functional Theory (KSDFT) is the most widely used electronic structure method in chemistry, physics, and materials science, with thousands of calculations cited annually. This ubiquity is rooted in the favorable accuracy vs cost balance of KSDFT. Nonetheless, the ambitions and expectations of researchers for use of KSDFT in predictive simulations of large, complicated molecular systems are confronted with an intrinsic computational cost-scaling challenge. Particularly evident in the context of first-principles molecular dynamics, the challenge is the high cost-scaling associated with the computation of the Kohn-Sham orbitals. Orbital-free DFT (OFDFT), as the name suggests, circumvents entirely the explicit use of those orbitals. Without them, the structural and algorithmic complexity of KSDFT simplifies dramatically and near-linear scaling with system size irrespective of system state is achievable. Thus, much larger system sizes and longer simulation time scales (compared to conventional KSDFT) become accessible; hence, new chemical phenomena and new materials can be explored. In this review, we introduce the historical contexts of OFDFT, its theoretical basis, and the challenge of realizing its promise via approximate kinetic energy density functionals (KEDFs). We review recent progress on that challenge for an array of KEDFs, such as one-point, two-point, and machine-learnt, as well as some less explored forms. We emphasize use of exact constraints and the inevitability of design choices. Then, we survey the associated numerical techniques and implemented algorithms specific to OFDFT. We conclude with an illustrative sample of applications to showcase the power of OFDFT in materials science, chemistry, and physics.
Collapse
Affiliation(s)
- Wenhui Mi
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, PR China
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, PR China
- International Center of Future Science, Jilin University, Changchun 130012, PR China
| | - Kai Luo
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - S B Trickey
- Quantum Theory Project, Department of Physics and Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Michele Pavanello
- Department of Physics and Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
Di Felice R, Mayes ML, Richard RM, Williams-Young DB, Chan GKL, de Jong WA, Govind N, Head-Gordon M, Hermes MR, Kowalski K, Li X, Lischka H, Mueller KT, Mutlu E, Niklasson AMN, Pederson MR, Peng B, Shepard R, Valeev EF, van Schilfgaarde M, Vlaisavljevich B, Windus TL, Xantheas SS, Zhang X, Zimmerman PM. A Perspective on Sustainable Computational Chemistry Software Development and Integration. J Chem Theory Comput 2023; 19:7056-7076. [PMID: 37769271 PMCID: PMC10601486 DOI: 10.1021/acs.jctc.3c00419] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 09/30/2023]
Abstract
The power of quantum chemistry to predict the ground and excited state properties of complex chemical systems has driven the development of computational quantum chemistry software, integrating advances in theory, applied mathematics, and computer science. The emergence of new computational paradigms associated with exascale technologies also poses significant challenges that require a flexible forward strategy to take full advantage of existing and forthcoming computational resources. In this context, the sustainability and interoperability of computational chemistry software development are among the most pressing issues. In this perspective, we discuss software infrastructure needs and investments with an eye to fully utilize exascale resources and provide unique computational tools for next-generation science problems and scientific discoveries.
Collapse
Affiliation(s)
- Rosa Di Felice
- Departments
of Physics and Astronomy and Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- CNR-NANO
Modena, Modena 41125, Italy
| | - Maricris L. Mayes
- Department
of Chemistry and Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | | | | | - Garnet Kin-Lic Chan
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Wibe A. de Jong
- Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Niranjan Govind
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Martin Head-Gordon
- Pitzer Center
for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew R. Hermes
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Karol Kowalski
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Xiaosong Li
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Karl T. Mueller
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Erdal Mutlu
- Advanced
Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Anders M. N. Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mark R. Pederson
- Department
of Physics, The University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Bo Peng
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Ron Shepard
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Edward F. Valeev
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - Bess Vlaisavljevich
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Theresa L. Windus
- Department
of Chemistry, Iowa State University and
Ames Laboratory, Ames, Iowa 50011, United States
| | - Sotiris S. Xantheas
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Advanced
Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xing Zhang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Paul M. Zimmerman
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Zhang K, Wasserman A. Split electrons in partition density functional theory. J Chem Phys 2022; 156:224113. [PMID: 35705418 DOI: 10.1063/5.0091024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study a two-stage procedure in which the sum of fragment energies is lowered when electrons flow from fragments of lower electronegativity to fragments of higher electronegativity. The global minimum is reached when all electronegativities are equal. The non-integer fragment populations are dealt with in two different ways: (1) An ensemble approach (ENS) that involves averaging over calculations with different numbers of electrons (always integers) and (2) a simpler approach that involves fractionally occupying orbitals (FOO). We compare and contrast these two approaches and examine their performance in some of the simplest systems where one can transparently apply both, including simple models of heteronuclear diatomic molecules and actual diatomic molecules with two and four electrons. We find that, although both ENS and FOO methods lead to the same total energy and density, the ENS fragment densities are less distorted than those of FOO when compared to their isolated counterparts, and they tend to retain integer numbers of electrons. We establish the conditions under which the ENS populations can become fractional and observe that, even in those cases, the total charge transferred is always lower in ENS than in FOO. Similarly, the FOO fragment dipole moments provide an upper bound to the ENS dipoles. We explain why and discuss the implications.
Collapse
Affiliation(s)
- Kui Zhang
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Adam Wasserman
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
6
|
Erhard J, Trushin E, Görling A. Numerically stable inversion approach to construct Kohn-Sham potentials for given electron densities within a Gaussian basis set framework. J Chem Phys 2022; 156:204124. [PMID: 35649824 DOI: 10.1063/5.0087356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a Kohn-Sham (KS) inversion approach to construct KS exchange-correlation potentials corresponding to given electron densities. This method is based on an iterative procedure using linear response to update potentials. All involved quantities, i.e., orbitals, potentials, and response functions, are represented by Gaussian basis functions. In contrast to previous KS inversion methods relying on Gaussian basis sets, the method presented here is numerically stable even for standard basis sets from basis set libraries due to a preprocessing of the auxiliary basis used to represent an exchange-correlation charge density that generates the exchange-correlation potential. The new KS inversion method is applied to reference densities of various atoms and molecules obtained by full configuration interaction or CCSD(T) (coupled cluster singles doubles perturbative triples). The considered examples encompass cases known to be difficult, such as stretched hydrogen or lithium hydride molecules or the beryllium isoelectronic series. For the stretched hydrogen molecule, potentials of benchmark quality are obtained by employing large basis sets. For the carbon monoxide molecule, we show that the correlation potential from the random phase approximation (RPA) is in excellent qualitative and quantitative agreement with the correlation potential from the KS inversion of a CCSD(T) reference density. This indicates that RPA correlation potentials, in contrast to those from semi-local density-functionals, resemble the exact correlation potential. Besides providing exchange-correlation potentials for benchmark purposes, the proposed KS inversion method may be used in density-partition-based quantum embedding and in subsystem density-functional methods because it combines numerical stability with computational efficiency.
Collapse
Affiliation(s)
- Jannis Erhard
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Egor Trushin
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| |
Collapse
|
7
|
Abstract
Quantum embedding schemes are a promising way to extend multireference computations to large molecules with strong correlation effects localized on a small number of atoms. This work introduces a second-order active-space embedding theory [ASET(2)] which improves upon mean-field frozen embedding by treating fragment-environment interactions via an approximate canonical transformation. The canonical transformation employed in ASET(2) is formulated using the driven similarity renormalization group. The ASET(2) scheme is benchmarked on the N═N bond dissociation in pentyldiazene, the S0 to S1 excitation in 1-octene, and the interaction energy of the O2-benzene complex. The ASET(2) explicit treatment of fragment-environment interactions beyond the mean-field level generally improves the accuracy of embedded computations, and it becomes necessary to achieve an accurate description of excitation energies of 1-octene and the singlet-triplet gap of the O2-benzene complex.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
8
|
Graham DS, Wen X, Chulhai DV, Goodpaster J. Huzinaga Projection Embedding for Efficient and Accurate Energies of Systems with Localized Spin-densities. J Chem Phys 2022; 156:054112. [DOI: 10.1063/5.0076493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Xuelan Wen
- Department of Chemistry, University of Minnesota Twin Cities, United States of America
| | | | | |
Collapse
|
9
|
Schäfer T, Gallo A, Irmler A, Hummel F, Grüneis A. Surface science using coupled cluster theory via local Wannier functions and in-RPA-embedding: The case of water on graphitic carbon nitride. J Chem Phys 2021; 155:244103. [PMID: 34972356 DOI: 10.1063/5.0074936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A first-principles study of the adsorption of a single water molecule on a layer of graphitic carbon nitride is reported employing an embedding approach for many-electron correlation methods. To this end, a plane-wave based implementation to obtain intrinsic atomic orbitals and Wannier functions for arbitrary localization potentials is presented. In our embedding scheme, the localized occupied orbitals allow for a separate treatment of short-range and long-range correlation contributions to the adsorption energy by a fragmentation of the simulation cell. In combination with unoccupied natural orbitals, the coupled cluster ansatz with single, double, and perturbative triple particle-hole excitation operators is used to capture the correlation in local fragments centered around the adsorption process. For the long-range correlation, a seamless embedding into the random phase approximation yields rapidly convergent adsorption energies with respect to the local fragment size. Convergence of computed binding energies with respect to the virtual orbital basis set is achieved employing a number of recently developed techniques. Moreover, we discuss fragment size convergence for a range of approximate many-electron perturbation theories. The obtained benchmark results are compared to a number of density functional calculations.
Collapse
Affiliation(s)
- Tobias Schäfer
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| | - Alejandro Gallo
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| | - Andreas Irmler
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| | - Felix Hummel
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| | - Andreas Grüneis
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| |
Collapse
|
10
|
Bensberg M, Neugebauer J. Direct orbital selection within the domain-based local pair natural orbital coupled-cluster method. J Chem Phys 2021; 155:224102. [PMID: 34911318 DOI: 10.1063/5.0071347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Domain-based local pair natural orbital coupled cluster (DLPNO-CC) has become increasingly popular to calculate relative energies (e.g., reaction energies and reaction barriers). It can be applied within a multi-level DLPNO-CC-in-DLPNO-CC ansatz to reduce the computational cost and focus the available computational resources on a specific subset of the occupied orbitals. We demonstrate how this multi-level DLPNO-CC ansatz can be combined with our direct orbital selection (DOS) approach [M. Bensberg and J. Neugebauer, J. Chem. Phys. 150, 214106 (2019)] to automatically select orbital sets for any multi-level calculation. We find that the parameters for the DOS procedure can be chosen conservatively such that they are transferable between reactions. The resulting automatic multi-level DLPNO-CC method requires no user input and is extremely robust and accurate. The computational cost is easily reduced by a factor of 3 without sacrificing accuracy. We demonstrate the accuracy of the method for a total of 61 reactions containing up to 174 atoms and use it to predict the relative stability of conformers of a Ru-based catalyst.
Collapse
Affiliation(s)
- Moritz Bensberg
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
11
|
Waldrop JM, Windus TL, Govind N. Projector-Based Quantum Embedding for Molecular Systems: An Investigation of Three Partitioning Approaches. J Phys Chem A 2021; 125:6384-6393. [PMID: 34260852 DOI: 10.1021/acs.jpca.1c03821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Projector-based embedding is a relatively recent addition to the collection of methods that seek to utilize chemical locality to provide improved computational efficiency. This work considers the interactions between the different proposed procedures for this method and their effects on the accuracy of the results. The interplay between the embedded background, projector type, partitioning scheme, and level of atomic orbital (AO) truncation are investigated on a selection of reactions from the literature. The Huzinaga projection approach proves to be more reliable than the level-shift projection when paired with other procedural options. Active subsystem partitioning from the subsystem projected AO decomposition (SPADE) procedure proves slightly better than the combination of Pipek-Mezey localization and Mulliken population screening (PMM). Along with these two options, a new partitioning criteria is proposed based on subsystem von Neumann entropy and the related subsystem orbital occupancy. This new method overlaps with the previous PMM method, but the screening process is computationally simpler. Finally, AO truncation proves to be a robust option for the tested systems when paired with the Huzinaga projection, with satisfactory results being acquired at even the most severe truncation level.
Collapse
Affiliation(s)
| | - Theresa L Windus
- Ames Laboratory, Ames, Iowa 50011, United States.,Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Nam S, McCarty RJ, Park H, Sim E. KS-pies: Kohn–Sham inversion toolkit. J Chem Phys 2021; 154:124122. [DOI: 10.1063/5.0040941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Seungsoo Nam
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, South Korea
| | - Ryan J. McCarty
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA
| | - Hansol Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, South Korea
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
13
|
Kraisler E, Hodgson MJP, Gross EKU. From Kohn-Sham to Many-Electron Energies via Step Structures in the Exchange-Correlation Potential. J Chem Theory Comput 2021; 17:1390-1407. [PMID: 33595312 PMCID: PMC8363072 DOI: 10.1021/acs.jctc.0c01093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Accurately
describing excited states within Kohn–Sham (KS)
density functional theory (DFT), particularly those which induce ionization
and charge transfer, remains a great challenge. Common exchange-correlation
(xc) approximations are unreliable for excited states owing, in part,
to the absence of a derivative discontinuity in the xc energy (Δ),
which relates a many-electron energy difference to the corresponding
KS energy difference. We demonstrate, analytically and numerically,
how the relationship between KS and many-electron energies leads to
the step structures observed in the exact xc potential in four scenarios:
electron addition, molecular dissociation, excitation of a finite
system, and charge transfer. We further show that steps in the potential
can be obtained also with common xc approximations, as simple as the
LDA, when addressed from the ensemble perspective. The article therefore
highlights how capturing the relationship between KS and many-electron
energies with advanced xc approximations is crucial for accurately
calculating excitations, as well as the ground-state density and energy
of systems which consist of distinct subsystems.
Collapse
Affiliation(s)
- Eli Kraisler
- Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9091401 Jerusalem, Israel
| | - M J P Hodgson
- Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom.,Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| | - E K U Gross
- Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9091401 Jerusalem, Israel
| |
Collapse
|
14
|
Schäfer T, Libisch F, Kresse G, Grüneis A. Local embedding of coupled cluster theory into the random phase approximation using plane waves. J Chem Phys 2021; 154:011101. [PMID: 33412868 DOI: 10.1063/5.0036363] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We present an embedding approach to treat local electron correlation effects in periodic environments. In a single consistent framework, our plane wave based scheme embeds a local high-level correlation calculation [here, Coupled Cluster (CC) theory], employing localized orbitals, into a low-level correlation calculation [here, the direct Random Phase Approximation (RPA)]. This choice allows for an accurate and efficient treatment of long-range dispersion effects. Accelerated convergence with respect to the local fragment size can be observed if the low-level and high-level long-range dispersions are quantitatively similar, as is the case for CC in RPA. To demonstrate the capabilities of the introduced embedding approach, we calculate adsorption energies of molecules on a surface and in a chabazite crystal cage, as well as the formation energy of a lattice impurity in a solid at the level of highly accurate many-electron perturbation theories. The absorption energy of a methane molecule in a zeolite chabazite is converged with an error well below 20 meV at the CC level. As our largest periodic benchmark system, we apply our scheme to the adsorption of a water molecule on titania in a supercell containing more than 1000 electrons.
Collapse
Affiliation(s)
- Tobias Schäfer
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| | - Florian Libisch
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| | - Georg Kresse
- University of Vienna, Faculty of Physics and Center for Computational Materials Science, Kolingasse 14-16, A-1090 Vienna, Austria
| | - Andreas Grüneis
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| |
Collapse
|
15
|
Tölle J, Cupellini L, Mennucci B, Neugebauer J. Electronic couplings for photo-induced processes from subsystem time-dependent density-functional theory: The role of the diabatization. J Chem Phys 2020; 153:184113. [PMID: 33187428 DOI: 10.1063/5.0022677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Subsystem time-dependent density-functional theory (sTDDFT) making use of approximate non-additive kinetic energy (NAKE) functionals is known to be capable of describing excitation energy transfer processes in a variety of applications. Here, we show that sTDDFT, especially when combined with projection-based embedding (PbE), can be employed for the entire range of photo-induced electronic couplings essential for modeling photophysical properties of complex chemical and biological systems and therefore represents a complete toolbox for this class of problems. This means that it is capable of capturing the interaction/coupling associated with local- and charge-transfer (CT) excitons. However, this requires the choice of a reasonable diabatic basis. We therefore propose different diabatization strategies of the virtual orbital space in PbE-sTDDFT and show how CT excitations can be included in sTDDFT using NAKE functionals via a phenomenological approach. Finally, these electronic couplings are compared to couplings from a multistate fragment excitation difference (FED)-fragment charge difference (FCD) diabatization procedure. We show that both procedures, multistate FED-FCD and sTDDFT (with the right diabatization procedure chosen), lead to an overall good agreement for the electronic couplings, despite differences in their general diabatization strategy. We conclude that the entire range of photo-induced electronic couplings can be obtained using sTDDFT (with the right diabatization procedure chosen) in a black-box manner.
Collapse
Affiliation(s)
- Johannes Tölle
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany
| | - Lorenzo Cupellini
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
16
|
Bensberg M, Neugebauer J. Orbital Alignment for Accurate Projection-Based Embedding Calculations along Reaction Paths. J Chem Theory Comput 2020; 16:3607-3619. [DOI: 10.1021/acs.jctc.0c00104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Moritz Bensberg
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
17
|
Graham DS, Wen X, Chulhai DV, Goodpaster JD. Robust, Accurate, and Efficient: Quantum Embedding Using the Huzinaga Level-Shift Projection Operator for Complex Systems. J Chem Theory Comput 2020; 16:2284-2295. [DOI: 10.1021/acs.jctc.9b01185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel S. Graham
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Xuelan Wen
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Dhabih V. Chulhai
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Kraisler E. Asymptotic Behavior of the Exchange‐Correlation Energy Density and the Kohn‐Sham Potential in Density Functional Theory: Exact Results and Strategy for Approximations. Isr J Chem 2020. [DOI: 10.1002/ijch.201900103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eli Kraisler
- Fritz Haber Center for Molecular Dynamics and Institute of Chemistry The Hebrew University of Jerusalem 9091401 Jerusalem Israel
| |
Collapse
|
19
|
Abstract
By invoking a divide-and-conquer strategy, subsystem DFT dramatically reduces the computational cost of large-scale, ab initio electronic structure simulations of molecules and materials. The central ingredient setting subsystem DFT apart from Kohn-Sham DFT is the nonadditive kinetic energy functional (NAKE). Currently employed NAKEs are at most semilocal (i.e., they only depend on the electron density and its gradient), and as a result of this approximation, so far large-scale simulations only included systems composed of weakly interacting subsystems. In this work, we advance the state-of-the-art by introducing fully nonlocal NAKEs in subsystem DFT simulations for the first time. A benchmark analysis based on the S22-5 test set shows that nonlocal NAKEs considerably improve the computed interaction energies and electron densities compared to commonly employed GGA NAKEs, especially when increasing intersubsystem electron density overlap is considered. Most importantly, we resolve the long-standing problem of too attractive interaction energy curves typically resulting from the use of GGA NAKEs.
Collapse
Affiliation(s)
- Wenhui Mi
- Department of Chemistry , Rutgers University , Newark , New Jersey 07102 , United States
- Department of Physics , Rutgers University , Newark , New Jersey 07102 , United States
| | - Michele Pavanello
- Department of Chemistry , Rutgers University , Newark , New Jersey 07102 , United States
- Department of Physics , Rutgers University , Newark , New Jersey 07102 , United States
| |
Collapse
|
20
|
Bensberg M, Neugebauer J. Density functional theory based embedding approaches for transition-metal complexes. Phys Chem Chem Phys 2020; 22:26093-26103. [PMID: 33201953 DOI: 10.1039/d0cp05188h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transition metal species are commonly discussed by considering the metal atom embedded in a ligand environment. This apparently makes them interesting targets for modern embedding strategies based on Kohn-Sham density functional theory (DFT), which aim at modelling accurate predictions for large systems by combining different quantum chemical methods. In this perspective, we will focus on subsystem density functional theory and projection-based embedding. We review the developments in the field for transition metal species, demonstrate benefits, drawbacks and analyse error sources of the different strategies using the example of chromium hexacarbonyle, before giving a perspective where the field is currently heading.
Collapse
Affiliation(s)
- Moritz Bensberg
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149 Münster, Germany.
| | | |
Collapse
|
21
|
Mordovina U, Reinhard TE, Theophilou I, Appel H, Rubio A. Self-Consistent Density-Functional Embedding: A Novel Approach for Density-Functional Approximations. J Chem Theory Comput 2019; 15:5209-5220. [PMID: 31490684 PMCID: PMC6785802 DOI: 10.1021/acs.jctc.9b00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 11/29/2022]
Abstract
In the present work, we introduce a self-consistent density-functional embedding technique, which leaves the realm of standard energy-functional approaches in density functional theory and targets directly the density-to-potential mapping that lies at its heart. Inspired by the density matrix embedding theory, we project the full system onto a set of small interacting fragments that can be solved accurately. Based on the rigorous relation of density and potential in density functional theory, we then invert the fragment densities to local potentials. Combining these results in a continuous manner provides an update for the Kohn-Sham potential of the full system, which is then used to update the projection. We benchmark our approach for molecular bond stretching in one and two dimensions and show that, in these cases, the scheme converges to accurate approximations for densities and Kohn-Sham potentials. We demonstrate that the known steps and peaks of the exact exchange-correlation potential are reproduced by our method with remarkable accuracy.
Collapse
Affiliation(s)
- Uliana Mordovina
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Teresa E. Reinhard
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Iris Theophilou
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Heiko Appel
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United
States
| |
Collapse
|
22
|
Niffenegger K, Oueis Y, Nafziger J, Wasserman A. Density embedding with constrained chemical potential. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1618939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- K. Niffenegger
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Y. Oueis
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - J. Nafziger
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - A. Wasserman
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
23
|
Bensberg M, Neugebauer J. Direct orbital selection for projection-based embedding. J Chem Phys 2019; 150:214106. [DOI: 10.1063/1.5099007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Moritz Bensberg
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
24
|
Jiang K, Nafziger J, Wasserman A. Constructing a non-additive non-interacting kinetic energy functional approximation for covalent bonds from exact conditions. J Chem Phys 2018; 149:164112. [PMID: 30384751 DOI: 10.1063/1.5051455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kaili Jiang
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, Indiana 47907, USA
| | - Jonathan Nafziger
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette Indiana 47907, USA
| | - Adam Wasserman
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, Indiana 47907, USA
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette Indiana 47907, USA
| |
Collapse
|
25
|
Schnieders D, Neugebauer J. Accurate embedding through potential reconstruction: A comparison of different strategies. J Chem Phys 2018; 149:054103. [DOI: 10.1063/1.5037638] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David Schnieders
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
26
|
Zhang X, Carter EA. Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets. J Chem Phys 2018; 148:034105. [PMID: 29352791 DOI: 10.1063/1.5005839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Emily A Carter
- School of Engineering and Applied Science, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
27
|
Jiang K, Nafziger J, Wasserman A. Non-additive non-interacting kinetic energy of rare gas dimers. J Chem Phys 2018; 148:104113. [PMID: 29544312 DOI: 10.1063/1.5016308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Approximations of the non-additive non-interacting kinetic energy (NAKE) as an explicit functional of the density are the basis of several electronic structure methods that provide improved computational efficiency over standard Kohn-Sham calculations. However, within most fragment-based formalisms, there is no unique exact NAKE, making it difficult to develop general, robust approximations for it. When adjustments are made to the embedding formalisms to guarantee uniqueness, approximate functionals may be more meaningfully compared to the exact unique NAKE. We use numerically accurate inversions to study the exact NAKE of several rare-gas dimers within partition density functional theory, a method that provides the uniqueness for the exact NAKE. We find that the NAKE decreases nearly exponentially with atomic separation for the rare-gas dimers. We compute the logarithmic derivative of the NAKE with respect to the bond length for our numerically accurate inversions as well as for several approximate NAKE functionals. We show that standard approximate NAKE functionals do not reproduce the correct behavior for this logarithmic derivative and propose two new NAKE functionals that do. The first of these is based on a re-parametrization of a conjoint Perdew-Burke-Ernzerhof (PBE) functional. The second is a simple, physically motivated non-decomposable NAKE functional that matches the asymptotic decay constant without fitting.
Collapse
Affiliation(s)
- Kaili Jiang
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, Indiana 47907, USA
| | - Jonathan Nafziger
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, USA
| | - Adam Wasserman
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, Indiana 47907, USA
| |
Collapse
|
28
|
Wasserman A, Nafziger J, Jiang K, Kim MC, Sim E, Burke K. The Importance of Being Inconsistent. Annu Rev Phys Chem 2017; 68:555-581. [PMID: 28463652 DOI: 10.1146/annurev-physchem-052516-044957] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Adam Wasserman
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907
| | - Jonathan Nafziger
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Kaili Jiang
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907
| | - Min-Cheol Kim
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea
| | - Eunji Sim
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
29
|
Gómez S, Nafziger J, Restrepo A, Wasserman A. Partition-DFT on the water dimer. J Chem Phys 2017; 146:074106. [DOI: 10.1063/1.4976306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sara Gómez
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Jonathan Nafziger
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Adam Wasserman
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, USA
| |
Collapse
|
30
|
Cheng J, Libisch F, Yu K, Chen M, Dieterich JM, Carter EA. Potential Functional Embedding Theory at the Correlated Wave Function Level. 1. Mixed Basis Set Embedding. J Chem Theory Comput 2017; 13:1067-1080. [DOI: 10.1021/acs.jctc.6b01010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Florian Libisch
- Institute
for Theoretical Physics, Vienna University of Technology, 1040 Vienna, Austria, EU
| | | | | | | | | |
Collapse
|
31
|
Cheng J, Yu K, Libisch F, Dieterich JM, Carter EA. Potential Functional Embedding Theory at the Correlated Wave Function Level. 2. Error Sources and Performance Tests. J Chem Theory Comput 2017; 13:1081-1093. [DOI: 10.1021/acs.jctc.6b01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Florian Libisch
- Institute
for Theoretical Physics, Vienna University of Technology, 1040 Vienna, Austria, EU
| | | | | |
Collapse
|
32
|
Nafziger J, Jiang K, Wasserman A. Accurate Reference Data for the Nonadditive, Noninteracting Kinetic Energy in Covalent Bonds. J Chem Theory Comput 2017; 13:577-586. [PMID: 28075588 DOI: 10.1021/acs.jctc.6b01050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan Nafziger
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kaili Jiang
- Department
of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Adam Wasserman
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Department
of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
33
|
Huang C. Extending the density functional embedding theory to finite temperature and an efficient iterative method for solving for embedding potentials. J Chem Phys 2016; 144:124106. [PMID: 27036426 DOI: 10.1063/1.4944464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A key element in the density functional embedding theory (DFET) is the embedding potential. We discuss two major issues related to the embedding potential: (1) its non-uniqueness and (2) the numerical difficulty for solving for it, especially for the spin-polarized systems. To resolve the first issue, we extend DFET to finite temperature: all quantities, such as the subsystem densities and the total system's density, are calculated at a finite temperature. This is a physical extension since materials work at finite temperatures. We show that the embedding potential is strictly unique at T > 0. To resolve the second issue, we introduce an efficient iterative embedding potential solver. We discuss how to relax the magnetic moments in subsystems and how to equilibrate the chemical potentials across subsystems. The solver is robust and efficient for several non-trivial examples, in all of which good quality spin-polarized embedding potentials were obtained. We also demonstrate the solver on an extended periodic system: iron body-centered cubic (110) surface, which is related to the modeling of the heterogeneous catalysis involving iron, such as the Fischer-Tropsch and the Haber processes. This work would make it efficient and accurate to perform embedding simulations of some challenging material problems, such as the heterogeneous catalysis and the defects of complicated spin configurations in electronic materials.
Collapse
Affiliation(s)
- Chen Huang
- Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306-4120, USA
| |
Collapse
|
34
|
Genova A, Ceresoli D, Pavanello M. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical. J Chem Phys 2016; 144:234105. [DOI: 10.1063/1.4953363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alessandro Genova
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| | - Davide Ceresoli
- CNR-ISTM: Institute of Molecular Sciences and Technologies, Milano, Italy
| | - Michele Pavanello
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
35
|
Nafziger J, Wasserman A. Fragment-based treatment of delocalization and static correlation errors in density-functional theory. J Chem Phys 2016; 143:234105. [PMID: 26696044 DOI: 10.1063/1.4937771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
One of the most important open challenges in modern Kohn-Sham (KS) density-functional theory (DFT) is the correct treatment of systems involving fractional electron charges and spins. Approximate exchange-correlation functionals struggle with such systems, leading to pervasive delocalization and static correlation errors. We demonstrate how these errors, which plague density-functional calculations of bond-stretching processes, can be avoided by employing the alternative framework of partition density-functional theory (PDFT) even using the local density approximation for the fragments. Our method is illustrated with explicit calculations on simple systems exhibiting delocalization and static-correlation errors, stretched H2 (+), H2, He2 (+), Li2 (+), and Li2. In all these cases, our method leads to greatly improved dissociation-energy curves. The effective KS potential corresponding to our self-consistent solutions displays key features around the bond midpoint; these are known to be present in the exact KS potential, but are absent from most approximate KS potentials and are essential for the correct description of electron dynamics.
Collapse
Affiliation(s)
- Jonathan Nafziger
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, USA
| | - Adam Wasserman
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, USA
| |
Collapse
|
36
|
Wesolowski TA, Shedge S, Zhou X. Frozen-Density Embedding Strategy for Multilevel Simulations of Electronic Structure. Chem Rev 2015; 115:5891-928. [DOI: 10.1021/cr500502v] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tomasz A. Wesolowski
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Sapana Shedge
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Xiuwen Zhou
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
37
|
Śmiga S, Fabiano E, Laricchia S, Constantin LA, Della Sala F. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals. J Chem Phys 2015; 142:154121. [DOI: 10.1063/1.4917257] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Szymon Śmiga
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Eduardo Fabiano
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), Via per Arnesano 16, I-73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano, LE, Italy
| | - Savio Laricchia
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Lucian A. Constantin
- Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano, LE, Italy
| | - Fabio Della Sala
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), Via per Arnesano 16, I-73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano, LE, Italy
| |
Collapse
|
38
|
Ramos P, Papadakis M, Pavanello M. Performance of Frozen Density Embedding for Modeling Hole Transfer Reactions. J Phys Chem B 2015; 119:7541-57. [DOI: 10.1021/jp511275e] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pablo Ramos
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Markos Papadakis
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Michele Pavanello
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
39
|
Akimov AV, Prezhdo OV. Large-Scale Computations in Chemistry: A Bird’s Eye View of a Vibrant Field. Chem Rev 2015; 115:5797-890. [DOI: 10.1021/cr500524c] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alexey V. Akimov
- Department
of Chemistry, University of South California, Los Angeles, California 90089, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of South California, Los Angeles, California 90089, United States
| |
Collapse
|
40
|
Affiliation(s)
- Aurora Pribram-Jones
- Department of Chemistry, University of California, Irvine, California 92697-2025;
| | - David A. Gross
- Department of Chemistry, University of California, Irvine, California 92697-2025;
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697-2025;
| |
Collapse
|
41
|
Luber S. Local electric dipole moments for periodic systems via density functional theory embedding. J Chem Phys 2014; 141:234110. [DOI: 10.1063/1.4903828] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|