1
|
Zheng Q, Zhang Y, Montazerian M, Gulbiten O, Mauro JC, Zanotto ED, Yue Y. Understanding Glass through Differential Scanning Calorimetry. Chem Rev 2019; 119:7848-7939. [DOI: 10.1021/acs.chemrev.8b00510] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiuju Zheng
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanfei Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Maziar Montazerian
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), 13.565-905 São Carlos, SP, Brazil
| | - Ozgur Gulbiten
- Science and Technology Division, Corning Incorporated, Corning, New York 14831, United States
| | - John C. Mauro
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edgar D. Zanotto
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), 13.565-905 São Carlos, SP, Brazil
| | - Yuanzheng Yue
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark
| |
Collapse
|
2
|
Coslovich D, Ozawa M, Kob W. Dynamic and thermodynamic crossover scenarios in the Kob-Andersen mixture: Insights from multi-CPU and multi-GPU simulations. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:62. [PMID: 29774433 DOI: 10.1140/epje/i2018-11671-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/25/2018] [Indexed: 05/23/2023]
Abstract
The physical behavior of glass-forming liquids presents complex features of both dynamic and thermodynamic nature. Some studies indicate the presence of thermodynamic anomalies and of crossovers in the dynamic properties, but their origin and degree of universality is difficult to assess. Moreover, conventional simulations are barely able to cover the range of temperatures at which these crossovers usually occur. To address these issues, we simulate the Kob-Andersen Lennard-Jones mixture using efficient protocols based on multi-CPU and multi-GPU parallel tempering. Our setup enables us to probe the thermodynamics and dynamics of the liquid at equilibrium well below the critical temperature of the mode-coupling theory, [Formula: see text]. We find that below [Formula: see text] the analysis is hampered by partial crystallization of the metastable liquid, which nucleates extended regions populated by large particles arranged in an fcc structure. By filtering out crystalline samples, we reveal that the specific heat grows in a regular manner down to [Formula: see text] . Possible thermodynamic anomalies suggested by previous studies can thus occur only in a region of the phase diagram where the system is highly metastable. Using the equilibrium configurations obtained from the parallel tempering simulations, we perform molecular dynamics and Monte Carlo simulations to probe the equilibrium dynamics down to [Formula: see text]. A temperature-derivative analysis of the relaxation time and diffusion data allows us to assess different dynamic scenarios around [Formula: see text]. Hints of a dynamic crossover come from analysis of the four-point dynamic susceptibility. Finally, we discuss possible future numerical strategies to clarify the nature of crossover phenomena in glass-forming liquids.
Collapse
Affiliation(s)
- Daniele Coslovich
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, France.
| | - Misaki Ozawa
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, France
| | - Walter Kob
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
3
|
Yang X, Liu R, Yang M, Wang WH, Chen K. Structures of Local Rearrangements in Soft Colloidal Glasses. PHYSICAL REVIEW LETTERS 2016; 116:238003. [PMID: 27341261 DOI: 10.1103/physrevlett.116.238003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 06/06/2023]
Abstract
We image local structural rearrangements in soft colloidal glasses under small periodic perturbations induced by thermal cycling. Local structural entropy S_{2} positively correlates with observed rearrangements in colloidal glasses. The high S_{2} values of the rearranging clusters in glasses indicate that fragile regions in glasses are structurally less correlated, similar to structural defects in crystalline solids. Slow-evolving high S_{2} spots are capable of predicting local rearrangements long before the relaxations occur, while fluctuation-created high S_{2} spots best correlate with local deformations right before the rearrangement events. Local free volumes are also found to correlate with particle rearrangements at extreme values, although the ability to identify relaxation sites is substantially lower than S_{2}. Our experiments provide an efficient structural identifier for the fragile regions in glasses and highlight the important role of structural correlations in the physics of glasses.
Collapse
Affiliation(s)
- Xiunan Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Rui Liu
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wei-Hua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
4
|
Zhou C, Hu L, Sun Q, Zheng H, Zhang C, Yue Y. Structural evolution during fragile-to-strong transition in CuZr(Al) glass-forming liquids. J Chem Phys 2015; 142:064508. [DOI: 10.1063/1.4907374] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Chao Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Lina Hu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Qijing Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Haijiao Zheng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Chunzhi Zhang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yuanzheng Yue
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
- Section of Chemistry, Aalborg University, DK-9000 Aalborg, Denmark
| |
Collapse
|
5
|
Wang C, Hu L, Wei C, Tong X, Zhou C, Sun Q, Hui X, Yue Y. Sub-Tg relaxation patterns in Cu-based metallic glasses far from equilibrium. J Chem Phys 2014; 141:164507. [DOI: 10.1063/1.4898695] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Caiwei Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Lina Hu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Chen Wei
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Xu Tong
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Chao Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Qijing Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Xidong Hui
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuanzheng Yue
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
- Section of Chemistry, Aalborg University, DK-9000 Aalborg, Denmark
| |
Collapse
|