1
|
Marcelli A, Patrizi B, Bonamore A, Boffi A, Becucci M, Foggi P. Exciplex Formation in Lipid-bound Escherichia coli Flavohemoglobin. Chemphyschem 2021; 22:1134-1140. [PMID: 33794073 DOI: 10.1002/cphc.202100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Flavohemoglobins have the particular capability of binding unsaturated and cyclopropanated fatty acids as free acids or phospholipids. Fatty acid binding to the ferric heme results in a weak but direct bonding interaction. Ferrous and ferric protein, in presence or absence of a bound lipid molecule, have been characterized by transient absorption spectroscopy. Measurements have been also carried out both on the ferrous deoxygenated and on the CO bound protein to investigate possible long-range interaction between the lipid acyl chain moiety and the ferrous heme. After excitation of the deoxygenated derivatives the relaxation process reveals a slow dynamics (350 ps) in lipid-bound protein but is not observed in the lipid-free protein. The latter feature and the presence of an extra contribution in the absorption spectrum, indicates that the interaction of iron heme with the acyl chain moiety occurs only in the excited electronic state and not in the ground electronic state. Data analysis highlights the formation of a charge-transfer complex in which the iron ion of the lipid-bound protein in the expanded electronic excited state, possibly represented by a high spin Fe III intermediate, is able to bind to the sixth coordination ligand placed at a distance of at 3.5 Å from the iron. A very small nanosecond geminate rebinding is observed for CO adduct in lipid-free but not in the lipid-bound protein. The presence of the lipid thus appears to inhibit the mobility of CO in the heme pocket.
Collapse
Affiliation(s)
- Agnese Marcelli
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara, 1, 50019 Sesto Fiorentino, Florence), Italy
| | - Barbara Patrizi
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara, 1, 50019 Sesto Fiorentino, Florence), Italy.,National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino (Florence), Italy
| | - Alessandra Bonamore
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche, Università "Sapienza" di Roma, P. Aldo Moro 5, 00185, Rome, Italy
| | - Alberto Boffi
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche, Università "Sapienza" di Roma, P. Aldo Moro 5, 00185, Rome, Italy
| | - Maurizio Becucci
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara, 1, 50019 Sesto Fiorentino, Florence), Italy.,Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence), Italy
| | - Paolo Foggi
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara, 1, 50019 Sesto Fiorentino, Florence), Italy.,National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino (Florence), Italy.,Department of Chemistry, University of Perugia, Via Elce di sotto 8, 06100, Perugia, Italy
| |
Collapse
|
2
|
Coppola F, Perrella F, Petrone A, Donati G, Rega N. A Not Obvious Correlation Between the Structure of Green Fluorescent Protein Chromophore Pocket and Hydrogen Bond Dynamics: A Choreography From ab initio Molecular Dynamics. Front Mol Biosci 2020; 7:569990. [PMID: 33195416 PMCID: PMC7653547 DOI: 10.3389/fmolb.2020.569990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/11/2020] [Indexed: 11/23/2022] Open
Abstract
The Green Fluorescent Protein (GFP) is a widely studied chemical system both for its large amount of applications and the complexity of the excited state proton transfer responsible of the change in the protonation state of the chromophore. A detailed investigation on the structure of the chromophore environment and the influence of chromophore form (either neutral or anionic) on it is of crucial importance to understand how these factors could potentially influence the protein function. In this study, we perform a detailed computational investigation based on the analysis of ab-initio molecular dynamics simulations, to disentangle the main structural quantities determining the fine balance in the chromophore environment. We found that specific hydrogen bonds interactions directly involving the chromophore (or not), are correlated to quantities, such as the volume of the cavity in which the chromophore is embedded and that it is importantly affected by the chromophore protonation state. The cross-correlation analysis performed on some of these hydrogen bonds and the cavity volume, demonstrates a direct correlation among them and we also identified the ones specifically involved in this correlation. We also found that specific interactions among residues far in the space are correlated, demonstrating the complexity of the chromophore environment and that many structural quantities have to be taken into account to properly describe and understand the main factors tuning the active site of the protein. From an overall evaluation of the results obtained in this work, it is shown that the residues which a priori are perceived to be spectators play instead an important role in both influencing the chromophore environment (cavity volume) and its dynamics (cross-correlations among spatially distant residues).
Collapse
Affiliation(s)
- Federico Coppola
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Fulvio Perrella
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessio Petrone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Greta Donati
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Nadia Rega
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Naples, Italy
| |
Collapse
|
3
|
Donati G, Petrone A, Rega N. Multiresolution continuous wavelet transform for studying coupled solute-solvent vibrations via ab initio molecular dynamics. Phys Chem Chem Phys 2020; 22:22645-22661. [PMID: 33015693 DOI: 10.1039/d0cp02495c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vibrational analysis in solution and the theoretical determination of infrared and Raman spectra are of key importance in many fields of chemical interest. Vibrational band dynamics of molecules and their sensitivity to the environment can also be captured by these spectroscopies in their time dependent version. However, it is often difficult to provide an interpretation of the experimental data at the molecular scale, such as molecular mechanisms or the processes hidden behind them. In this work, we present a theoretical-computational protocol based on ab initio molecular dynamics simulations and a combination of normal-like (generalized) mode analysis of solute-solvent clusters with a wavelet transform, for the first time. The case study is the vibrational dynamics of N-methyl-acetamide (NMA) in water solution, a well-known model of hydration of peptides and proteins. Amide modes are typical bands of peptide and protein backbone, and their couplings with the environment are very challenging in terms of the accurate prediction of solvent induced intensity and frequency shifts. The contribution of water molecules surrounding NMA to the composition of generalized and time resolved modes is introduced in our vibrational analysis, showing unequivocally its influence on the amide mode spectra. It is also shown that such mode compositions need the inclusion of the first shell solvent molecules to be accurately described. The wavelet analysis is proven to be strongly recommended to follow the time evolution of the spectra, and to capture vibrational band couplings and frequency shifts over time, preserving at the same time a well-balanced time-frequency resolution. This peculiar feature also allows one to perform a combined structural-vibrational analysis, where the different strengths of hydrogen bond interactions can quantitatively affect the amide bands over time at finite temperature. The proposed method allows for the direct connection between vibrational modes and local structural changes, providing a link from the spectroscopic observable to the structure, in this case the peptide backbone, and its hydration layouts.
Collapse
Affiliation(s)
- Greta Donati
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M. S. Angelo, Via Cintia, I-80126 Napoli, Italy.
| | | | | |
Collapse
|
4
|
Patrizi B, Cozza C, Pietropaolo A, Foggi P, Siciliani de Cumis M. Synergistic Approach of Ultrafast Spectroscopy and Molecular Simulations in the Characterization of Intramolecular Charge Transfer in Push-Pull Molecules. Molecules 2020; 25:E430. [PMID: 31968694 PMCID: PMC7024558 DOI: 10.3390/molecules25020430] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 11/28/2022] Open
Abstract
The comprehensive characterization of Intramolecular Charge Transfer (ICT) stemming in push-pull molecules with a delocalized π-system of electrons is noteworthy for a bespoke design of organic materials, spanning widespread applications from photovoltaics to nanomedicine imaging devices. Photo-induced ICT is characterized by structural reorganizations, which allows the molecule to adapt to the new electronic density distribution. Herein, we discuss recent photophysical advances combined with recent progresses in the computational chemistry of photoactive molecular ensembles. We focus the discussion on femtosecond Transient Absorption Spectroscopy (TAS) enabling us to follow the transition from a Locally Excited (LE) state to the ICT and to understand how the environment polarity influences radiative and non-radiative decay mechanisms. In many cases, the charge transfer transition is accompanied by structural rearrangements, such as the twisting or molecule planarization. The possibility of an accurate prediction of the charge-transfer occurring in complex molecules and molecular materials represents an enormous advantage in guiding new molecular and materials design. We briefly report on recent advances in ultrafast multidimensional spectroscopy, in particular, Two-Dimensional Electronic Spectroscopy (2DES), in unraveling the ICT nature of push-pull molecular systems. A theoretical description at the atomistic level of photo-induced molecular transitions can predict with reasonable accuracy the properties of photoactive molecules. In this framework, the review includes a discussion on the advances from simulation and modeling, which have provided, over the years, significant information on photoexcitation, emission, charge-transport, and decay pathways. Density Functional Theory (DFT) coupled with the Time-Dependent (TD) framework can describe electronic properties and dynamics for a limited system size. More recently, Machine Learning (ML) or deep learning approaches, as well as free-energy simulations containing excited state potentials, can speed up the calculations with transferable accuracy to more complex molecules with extended system size. A perspective on combining ultrafast spectroscopy with molecular simulations is foreseen for optimizing the design of photoactive compounds with tunable properties.
Collapse
Affiliation(s)
- Barbara Patrizi
- National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (B.P.); (P.F.)
- European Laboratory for Non-Linear Spectroscopy (LENS),Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Concetta Cozza
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (C.C.); (A.P.)
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (C.C.); (A.P.)
| | - Paolo Foggi
- National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (B.P.); (P.F.)
- European Laboratory for Non-Linear Spectroscopy (LENS),Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | |
Collapse
|
5
|
Patrizi B, Siciliani de Cumis M, Viciani S, D'Amato F. Dioxin and Related Compound Detection: Perspectives for Optical Monitoring. Int J Mol Sci 2019; 20:E2671. [PMID: 31151286 PMCID: PMC6600530 DOI: 10.3390/ijms20112671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Dioxins and related compounds are environmental xenobiotics that are dangerous to human life, due to the accumulation and persistence in the environment and in the food chain. Cancer, reproductive and developmental issues, and damage to the immune system and endocrine system are only a few examples of the impact of such substances in everyday life. For these reasons, it is fundamental to detect and monitor these molecules in biological samples. The consolidated technique for analytical evaluation is gas chromatography combined with high-resolution mass spectrometry. Nowadays, the development of mid-infrared optical components like broadband laser sources, optical frequency combs, high performance Fourier-transform infrared spectroscopy, and plasmonic sensors open the way to new techniques for detection and real time monitoring of these organic pollutants in gaseous or liquid phase, with sufficient sensitivity and selectivity, and in short time periods. In this review, we report the latest techniques for the detection of dioxins, furans and related compounds based on optical and spectroscopic methods, looking at future perspectives.
Collapse
Affiliation(s)
- Barbara Patrizi
- National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy.
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara n. 1, 50019 Sesto Fiorentino, Italy.
| | - Mario Siciliani de Cumis
- National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy.
- Italian Space Agency, Contrada Terlecchia snc, 75100 Matera, Italy.
| | - Silvia Viciani
- National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy.
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara n. 1, 50019 Sesto Fiorentino, Italy.
| | - Francesco D'Amato
- National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy.
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara n. 1, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|