1
|
Schönbeck C, Kari J, Westh P. ITC analysis of polydisperse systems: Unravelling the impact of sample heterogeneity. Anal Biochem 2024; 687:115446. [PMID: 38147946 DOI: 10.1016/j.ab.2023.115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Binding interactions often involve heterogeneous samples displaying a distribution of binding sites that vary in affinity and binding enthalpy. Examples include biological samples like proteins and chemically produced samples like modified cyclodextrins. Experimental studies often ignore sample heterogeneity and treat the system as an interaction of two homogeneous species, i.e. a chemically well-defined ligand binding to one type of site. The present study explores, by simulations and experiments, the impact of heterogeneity in isothermal titration calorimetry (ITC) setups where one of the binding components is heterogeneous. It is found that the standard single-site model, based on the assumption of two homogeneous binding components, provides excellent fits to simulated ITC data when the binding free energy is normally distributed and all sites have similar binding enthalpies. In such cases, heterogeneity can easily go undetected but leads to underestimated binding constants. Heterogeneity in the binding enthalpy is a bigger problem and may result in enthalpograms of increased complexity that are likely to be misinterpreted as two-site binding or other complex binding models. Finally, it is shown that heterogeneity can account for previously observed experimental anomalies. All simulations are accessible in Google Colab for readers to experiment with the simulation parameters.
Collapse
Affiliation(s)
| | - Jeppe Kari
- Department of Science and Environment, Roskilde University, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| |
Collapse
|
2
|
Dean KR, Novak B, Moradipour M, Tong X, Moldovan D, Knutson BL, Rankin SE, Lynn BC. Complexation of Lignin Dimers with β-Cyclodextrin and Binding Stability Analysis by ESI-MS, Isothermal Titration Calorimetry, and Molecular Dynamics Simulations. J Phys Chem B 2022; 126:1655-1667. [PMID: 35175769 DOI: 10.1021/acs.jpcb.1c09190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lignin derived from lignocellulosic biomass is the largest source of renewable bioaromatics present on earth and requires environmentally sustainable separation strategies to selectively obtain high-value degradation products. Applications of supramolecular interactions have the potential to isolate lignin compounds from biomass degradation fractions by the formation of variable inclusion complexes with cyclodextrins (CDs). CDs are commonly used as selective adsorbents for many applications and can capture guest molecules in their internal hydrophobic cavity. The strength of supramolecular interactions between CDs and lignin model compounds that represent potential lignocellulosic biomass degradation products can be characterized by assessing the thermodynamics of binding stability. Consequently, the inclusion interactions of β-CD and lignin model compounds G-(β-O-4')-G, G-(β-O-4')-truncG (guaiacylglycerol-β-guaiacyl ether), and G-(β-β')-G (pinoresinol) were investigated empirically by electrospray ionization mass spectrometry and isothermal titration calorimetry, complemented by molecular dynamics (MD) simulations. Empirical results indicate that there are substantial differences in binding stability dependent on the linkage type. The lignin model β-β' dimer showed more potential bound states including 1:1, 2:1, and 1:2 (guest:host) complexation and, based on binding stability determinations, was consistently the most energetically favorable guest. Empirical results are supported by MD simulations that reveal that the capture of G-(β-β')-G by β-CD is promising with a 66% probability of being bound for G-(β-O-4')-truncG compared to 88% for G-(β-β')-G (unbiased distance trajectory and explicit counting of bound states). These outcomes indicate CDs as a promising material to assist in separations of lignin oligomers from heterogeneous mixtures for the development of environmentally sustainable isolations of lignin compounds from biomass fractions.
Collapse
Affiliation(s)
- Kimberly R Dean
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Brian Novak
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mahsa Moradipour
- Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Xinjie Tong
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Dorel Moldovan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Barbara L Knutson
- Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Stephen E Rankin
- Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
3
|
Belica-Pacha S, Daśko M, Buko V, Zavodnik I, Miłowska K, Bryszewska M. Thermodynamic Studies of Interactions between Sertraline Hydrochloride and Randomly Methylated β-Cyclodextrin Molecules Supported by Circular Dichroism Spectroscopy and Molecular Docking Results. Int J Mol Sci 2021; 22:12357. [PMID: 34830239 PMCID: PMC8620473 DOI: 10.3390/ijms222212357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/20/2022] Open
Abstract
The interaction between sertraline hydrochloride (SRT) and randomly methylated β-cyclodextrin (RMβCD) molecules have been investigated at 298.15 K under atmospheric pressure. The method used-Isothermal Titration Calorimetry (ITC) enabled to determine values of the thermodynamic functions like the enthalpy (ΔH), the entropy (ΔS) and the Gibbs free energy (ΔG) of binding for the examined system. Moreover, the stoichiometry coefficient of binding (n) and binding/association constant (K) value have been calculated from the experimental results. The obtained outcome was compared with the data from the literature for other non-ionic βCD derivatives interacting with SRT and the enthalpy-entropy compensation were observed and interpreted. Furthermore, the connection of RMβCD with SRT was characterized by circular dichroism spectroscopy (CD) and complexes of βCD derivatives with SRT were characterized through the computational studies with the use of molecular docking (MD).
Collapse
Affiliation(s)
- Sylwia Belica-Pacha
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236 Lodz, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Vyacheslav Buko
- Division of Biochemical Pharmacology, Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, BLK-50, 230030 Grodno, Belarus; (V.B.); (I.Z.)
- Department of Biotechnology, School of Medical Sciences, Krakowska 9, 15-875 Bialystok, Poland
| | - Ilya Zavodnik
- Division of Biochemical Pharmacology, Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, BLK-50, 230030 Grodno, Belarus; (V.B.); (I.Z.)
- Department of Biochemistry, Yanka Kupala Grodno State University, BLK-50, 230030 Grodno, Belarus
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (M.B.)
| |
Collapse
|
4
|
|
5
|
Wang Z, Landy D, Sizun C, Cézard C, Solgadi A, Przybylski C, de Chaisemartin L, Herfindal L, Barratt G, Legrand FX. Cyclodextrin complexation studies as the first step for repurposing of chlorpromazine. Int J Pharm 2020; 584:119391. [PMID: 32376444 DOI: 10.1016/j.ijpharm.2020.119391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023]
Abstract
The antipsychotic drug chlorpromazine (CPZ) has potential for the treatment of acute myeloid leukemia, if central nervous system side-effects resulting from its passage through the blood-brain barrier can be prevented. A robust drug delivery system for repurposed CPZ would be drug-in-cyclodextrin-in-liposome that would redirect the drug away from the brain while avoiding premature release in the circulation. As a first step, CPZ complexation with cyclodextrin (CD) has been studied. The stoichiometry, binding constant, enthalpy, and entropy of complex formation between CPZ and a panel of CDs was investigated by isothermal titration calorimetry (ITC). All the tested CDs were able to include CPZ, in the form of 1:1, 1:2 or a mixture of 1:1 and 1:2 complexes. In particular, a substituted γ-CD, sugammadex (the octasodium salt of octakis(6-deoxy-6-S-(2-carboxyethyl)-6-thio)cyclomaltooctaose), formed exclusively 1:2 complexes with an extremely high association constant of 6.37 × 109 M-2. Complexes were further characterized by heat capacity changes, one- and two-dimensional (ROESY) nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations. Finally, protection of CPZ against photodegradation by CDs was assessed. This was accelerated rather than reduced by complexation with CD. Altogether these results provide a molecular basis for the use of CD in delayed release formulations for CPZ.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Christina Sizun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Christine Cézard
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, CNRS UMR 7378, Université de Picardie Jules Verne, 80000 Amiens, France
| | - Audrey Solgadi
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 92290 Châtenay-Malabry, France
| | - Cédric Przybylski
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 75005 Paris, France
| | - Luc de Chaisemartin
- Service d'Immunologie, Hôpital Bichat-Claude-Bernard, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France; Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France
| | - Lars Herfindal
- Department of Clinical Science, University of Bergen, Jonas Lies Vei 87, 5009 Bergen, Norway
| | - Gillian Barratt
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - François-Xavier Legrand
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
6
|
Schönbeck C. Complexation Kinetics of Cyclodextrins with Bile Salt Anions: Energy Barriers for the Threading of Ionic Groups. J Phys Chem B 2019; 123:9831-9838. [PMID: 31664833 DOI: 10.1021/acs.jpcb.9b09415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Binding constants for thousands of cyclodextrin complexes have been reported in the literature, but much less is known about the kinetics of these host-guest complexes. In the present study, inclusion complexes of bile salts with β-cyclodextrin, γ-cyclodextrin, and a methylated β-cyclodextrin were studied by nuclear magnetic resonance (NMR) lineshape analysis to explore the structural factors that govern the complexation kinetics. For complexes with β-cyclodextrin, the association rate constants ranged from 2 × 106 to 2 × 107 M-1 s-1 while the dissociation rate constants ranged from 12 to 6000 s-1 at 25 °C. The kinetics were thus significantly slower than for any other β-cyclodextrin complex reported in the literature, due to the large energy barrier for threading the ionic sidechains of the bile salt anions. Bile salts with taurine and glycine sidechains had identical binding affinities, but the kinetics differed by a factor of 10. Introduction of a single hydroxyl group at the binding site of the bile salts reduced the lifetimes and binding constants of the complexes by more than 50 times. The strong temperature dependence of the rate constants revealed that the large activation energies were mainly enthalpic with a small contribution from entropy. The larger γ-cyclodextrin was threaded by the nonionic end of the bile salts, and the kinetics were too fast to be accurately determined. The study demonstrates that ionic groups on guest molecules constitute significant energy barriers for the threading and dethreading of β-cyclodextrin hosts.
Collapse
Affiliation(s)
- Christian Schönbeck
- Department of Science and Environment , Roskilde University , Universitetsvej 1 , DK-4000 Roskilde , Denmark
| |
Collapse
|
7
|
Schönbeck C, Holm R. Exploring the Origins of Enthalpy–Entropy Compensation by Calorimetric Studies of Cyclodextrin Complexes. J Phys Chem B 2019; 123:6686-6693. [DOI: 10.1021/acs.jpcb.9b03393] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Christian Schönbeck
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - René Holm
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
8
|
Daramola O, Cullen J. Identifying absolute configurations of PCB atropisomers by comparison of their experimental specific rotations with their DFT calculated values. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nineteen enantiomer pairs of polychlorinated biphenyls (PCBs) with three or four chloro substituents about the central carbon–carbon bond form a stable subclass of compounds whose biological effects vary with their chirality. Optical rotations for this group of PCBs were determined from density functional calculations employing extended atomic orbital gauge invariant basis sets. A comparison of these results with the experimental ones found from the literature for 10 of the pairs enabled the identification of their absolute configurations as analytes in gas chromatography studies.
Collapse
Affiliation(s)
- Oluwadamilola Daramola
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - John Cullen
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Vargas C, Schönbeck C, Heimann I, Keller S. Extracavity Effect in Cyclodextrin/Surfactant Complexation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5781-5787. [PMID: 29683671 DOI: 10.1021/acs.langmuir.8b00682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyclodextrin (CD) complexation is a convenient method to sequester surfactants in a controllable way, for example, during membrane-protein reconstitution. Interestingly, the equilibrium stability of CD/surfactant inclusion complexes increases with the length of the nonpolar surfactant chain even beyond the point where all hydrophobic contacts within the canonical CD cavity are saturated. To rationalize this observation, we have dissected the inclusion complexation equilibria of a structurally well-defined CD, that is, heptakis(2,6-di- O-methyl)-β-CD (DIMEB), and a homologous series of surfactants, namely, n-alkyl- N, N-dimethyl-3-ammonio-1-propanesulfonates (SB3- x) with chain lengths ranging from x = 8 to 14. Thermodynamic parameters obtained by isothermal titration calorimetry and structural insights derived from nuclear magnetic resonance spectroscopy and molecular dynamics simulations revealed that, upon inclusion, long-chain surfactants with x = ≥10 extend beyond the canonical CD cavity. This enables the formation of hydrophobic contacts between long surfactant chains and the extracavity parts of DIMEB, which make additional favorable contributions to the stability of the inclusion complex. These results explain the finding that the stability of CD/surfactant inclusion complexes monotonously increases with the surfactant chain length even for long chains that completely fill the canonical CD cavity.
Collapse
Affiliation(s)
- Carolyn Vargas
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| | - Christian Schönbeck
- Department of Science and Environment , Roskilde University , Universitetsvej 1 , 4000 Roskilde , Denmark
| | - Ina Heimann
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| | - Sandro Keller
- Molecular Biophysics , Technische Universität Kaiserslautern (TUK) , Erwin-Schrödinger-Str. 13 , 67663 Kaiserslautern , Germany
| |
Collapse
|
10
|
Gebhardt J, Kleist C, Jakobtorweihen S, Hansen N. Validation and Comparison of Force Fields for Native Cyclodextrins in Aqueous Solution. J Phys Chem B 2018; 122:1608-1626. [PMID: 29287148 DOI: 10.1021/acs.jpcb.7b11808] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular dynamics simulations of native α-, β-, and γ-cyclodextrin in aqueous solution have been conducted with the goal to investigate the performance of the CHARMM36 force field, the AMBER-compatible q4md-CD force field, and five variants of the GROMOS force field. The properties analyzed are structural parameters derived from X-ray diffraction and NMR experiments as well as hydrogen bonds and hydration patterns, including hydration free enthalpies. Recent revisions of the torsional-angle parameters for carbohydrate systems within the GROMOS family of force fields lead to a significant improvement of the agreement between simulated and experimental NMR data. Therefore, we recommend using the variant 53A6GLYC instead of 53A6 and 56A6CARBO_R or 2016H66 instead of 56A6CARBO to simulate cyclodextrins in solution. The CHARMM36 and q4md-CD force fields show a similar performance as the three recommended GROMOS parameter sets. A significant difference is the more flexible nature of the cyclodextrins modeled with the CHARMM36 and q4md-CD force fields compared to the three recommended GROMOS parameter sets.
Collapse
Affiliation(s)
- Julia Gebhardt
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany
| | - Catharina Kleist
- Institute of Thermal Separation Processes, Hamburg University of Technology , D-21073 Hamburg, Germany
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology , D-21073 Hamburg, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany
| |
Collapse
|
11
|
Dang P, Ye R, Meng F, Han Y, Zhou Y, Gong X, Zhou B. Microencapsulation thermodynamics of methylated β-cyclodextrins with bile salt: enthalpy, entropy, and solvent effect. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0716-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Cova TFGG, Nunes SCC, Pais AACC. Free-energy patterns in inclusion complexes: the relevance of non-included moieties in the stability constants. Phys Chem Chem Phys 2017; 19:5209-5221. [DOI: 10.1039/c6cp08081b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MD/PMF-based procedure is designed for quantification of the interaction and respective components, guiding complex formation in water between β-CD and several naphthalene derivatives, highlighting the relevance of substituents.
Collapse
Affiliation(s)
- Tânia F. G. G. Cova
- Coimbra Chemistry Centre
- Department of Chemistry
- University of Coimbra
- 3004-535 Coimbra
- Portugal
| | - Sandra C. C. Nunes
- Coimbra Chemistry Centre
- Department of Chemistry
- University of Coimbra
- 3004-535 Coimbra
- Portugal
| | - Alberto A. C. C. Pais
- Coimbra Chemistry Centre
- Department of Chemistry
- University of Coimbra
- 3004-535 Coimbra
- Portugal
| |
Collapse
|
13
|
Køhler J, Schönbeck C, Westh P, Holm R. Hydration Differences Explain the Large Variations in the Complexation Thermodynamics of Modified γ-Cyclodextrins with Bile Salts. J Phys Chem B 2016; 120:396-405. [DOI: 10.1021/acs.jpcb.5b10536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonatan Køhler
- Pharmaceutical
Science and CMC Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
- NSM,
Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Christian Schönbeck
- Pharmaceutical
Science and CMC Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
- NSM,
Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Peter Westh
- NSM,
Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - René Holm
- Pharmaceutical
Science and CMC Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| |
Collapse
|
14
|
Holm R, Olesen NE, Alexandersen SD, Dahlgaard BN, Westh P, Mu H. Thermodynamic investigation of the interaction between cyclodextrins and preservatives - Application and verification in a mathematical model to determine the needed preservative surplus in aqueous cyclodextrin formulations. Eur J Pharm Sci 2015; 87:22-9. [PMID: 26391874 DOI: 10.1016/j.ejps.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022]
Abstract
Preservatives are inactivated when added to conserve aqueous cyclodextrin (CD) formulations due to complex formation between CDs and the preservative. To maintain the desired conservation effect the preservative needs to be added in apparent surplus to account for this inactivation. The purpose of the present work was to establish a mathematical model, which defines this surplus based upon knowledge of stability constants and the minimal concentration of preservation to inhibit bacterial growth. The stability constants of benzoic acid, methyl- and propyl-paraben with different frequently used βCDs were determined by isothermal titration calorimetry. Based upon this knowledge mathematical models were constructed to account for the equilibrium systems and to calculate the required concentration of the preservations, which was evaluated experimentally based upon the USP/Ph. Eur./JP monograph. The mathematical calculations were able to predict the needed concentration of preservation in the presence of CDs; it clearly demonstrated the usefulness of including all underlying chemical equilibria in a mathematical model, such that the formulation design can be based on quantitative arguments.
Collapse
Affiliation(s)
- René Holm
- Biologics and Pharmaceutical Science, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark; Department of Pharmacy, Faculty of Health and Medical Sciences, Copenhagen University, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Niels Erik Olesen
- Biologics and Pharmaceutical Science, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark; NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Signe Dalgaard Alexandersen
- Biologics and Pharmaceutical Science, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark; Department of Pharmacy, Faculty of Health and Medical Sciences, Copenhagen University, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Birgitte N Dahlgaard
- Pharmaceutical Development, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Peter Westh
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, Copenhagen University, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Zhang Q, Guo J, Xiao Y, Crommen J, Jiang Z. Comparative evaluation of a one-pot strategy for the preparation of β-cyclodextrin-functionalized monoliths: Effect of the degree of amino substitution of β-cyclodextrin on the column performance. J Sep Sci 2015; 38:1813-21. [DOI: 10.1002/jssc.201500124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Qiaoxuan Zhang
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou China
- Department of Laboratory Medicine; the Second Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Jialiang Guo
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou China
| | - Yuan Xiao
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou China
| | - Jacques Crommen
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou China
- Laboratory of Analytical Pharmaceutical Chemistry; Department of Pharmaceutical Sciences; University of Liege; Liege Belgium
| | - Zhengjin Jiang
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou China
| |
Collapse
|