1
|
Martyka M, Jankowska J. New insights into the photocyclization reaction of a popular diarylethene switch: a nonadiabatic molecular dynamics study. Phys Chem Chem Phys 2024; 26:13383-13394. [PMID: 38646878 DOI: 10.1039/d3cp06256b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Diarylethene (DAE) molecular switches have continued to attract the attention of researchers for over 20 years. Their remarkable photophysical properties endow them with countless applications in photonics and molecular technologies. However, despite extensive experimental and theoretical research, the mechanism of DAE photoswitching is not yet fully rationalized. In this work, we investigate the ring closure dynamics of a popular DAE switch, 1,2-bis(3-methyl-5-phenyl-2 thienyl)perfluorocyclopentene (PT), using nonadiabatic molecular dynamics (NAMD) simulations. Employing the fewest switches surface hopping protocol, along with the semi-empirical multireference ODM2/MRCI-SD method, we investigate possible reaction pathways for this photoprocess, as well as their timescales and resulting photoproducts. Furthermore, using a dynamic configuration-space sampling procedure, we elucidate the role of triplet states in the photocyclization of PT, supporting available experimental data for the closely related DMPT molecule, which indicate an ultrafast intersystem crossing (ISC) transition competing with the singlet-driven photoswitching reaction. Our findings not only corroborate experimental studies on DAE switches, but also provide new mechanistic insights into the potential use in the rational design of DAE switches tailored for specific technological applications.
Collapse
Affiliation(s)
- Mikołaj Martyka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland.
- Interdisciplinary Doctoral School, University of Warsaw, Dobra 56/66, Warsaw, 00-312, Poland
| | - Joanna Jankowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland.
| |
Collapse
|
2
|
Martyka M, Jankowska J. Nonadiabatic molecular dynamics study of a complete photoswitching cycle for a full-size diarylethene system. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Jankowska J, Martyka M, Michalski M. Photo-cycloreversion mechanism in diarylethenes revisited: A multireference quantum-chemical study at the ODM2/MRCI level. J Chem Phys 2021; 154:204305. [PMID: 34241185 DOI: 10.1063/5.0045830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photoswitchable diarylethenes (DAEs), over years of intense fundamental and applied research, have been established among the most commonly chosen molecular photoswitches, often employed as controlling units in molecular devices and smart materials. At the same time, providing reliable explanation for their photophysical behavior, especially the mechanism of the photo-cycloreversion transformation, turned out to be a highly challenging task. Herein, we investigate this mechanism in detail by means of multireference semi-empirical quantum chemistry calculations, allowing, for the first time, for a balanced treatment of the static and dynamic correlation effects, both playing a crucial role in DAE photochemistry. In the course of our study, we find the second singlet excited state of double electronic-excitation character to be the key to understanding the nature of the photo-cycloreversion transformation in DAE molecular photoswitches.
Collapse
Affiliation(s)
- J Jankowska
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| | - M Martyka
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| | - M Michalski
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| |
Collapse
|
4
|
Balasubramani SG, Chen GP, Coriani S, Diedenhofen M, Frank MS, Franzke YJ, Furche F, Grotjahn R, Harding ME, Hättig C, Hellweg A, Helmich-Paris B, Holzer C, Huniar U, Kaupp M, Marefat Khah A, Karbalaei Khani S, Müller T, Mack F, Nguyen BD, Parker SM, Perlt E, Rappoport D, Reiter K, Roy S, Rückert M, Schmitz G, Sierka M, Tapavicza E, Tew DP, van Wüllen C, Voora VK, Weigend F, Wodyński A, Yu JM. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J Chem Phys 2020; 152:184107. [PMID: 32414256 PMCID: PMC7228783 DOI: 10.1063/5.0004635] [Citation(s) in RCA: 593] [Impact Index Per Article: 118.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 01/30/2023] Open
Abstract
TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE's functionality, including excited-state methods, RPA and Green's function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE's current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE's development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.
Collapse
Affiliation(s)
- Sree Ganesh Balasubramani
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Guo P Chen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Michael Diedenhofen
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Marius S Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Yannick J Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Arnim Hellweg
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Christof Holzer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Uwe Huniar
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Alireza Marefat Khah
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Thomas Müller
- Forschungszentrum Jülich, Jülich Supercomputer Centre, Wilhelm-Jonen Straße, 52425 Jülich, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Eva Perlt
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Dmitrij Rappoport
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kevin Reiter
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Saswata Roy
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Matthias Rückert
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Marek Sierka
- TURBOMOLE GmbH, Litzenhardtstraße 19, 76135 Karlsruhe, Germany
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, USA
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstaße 1, 70569 Stuttgart, Germany
| | - Christoph van Wüllen
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Staße 52, 67663 Kaiserslautern, Germany
| | - Vamsee K Voora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Florian Weigend
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Artur Wodyński
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jason M Yu
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
5
|
Jarota A, Pastorczak E, Abramczyk H. A deeper look into the photocycloreversion of a yellow diarylethene photoswitch: why is it so fast? Phys Chem Chem Phys 2020; 22:5408-5412. [DOI: 10.1039/c9cp05452a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The DMT photoswitch features an efficient ring-opening reaction at a sub-picosecond timescale owing to a single-channel relaxation from the S1 state which leads to a conical intersection with the ground state.
Collapse
Affiliation(s)
- Arkadiusz Jarota
- Institute of Applied Radiation Chemistry
- Lodz University of Technology
- 93-590 Łódź
- Poland
| | - Ewa Pastorczak
- Institute of Physics
- Lodz University of Technology
- Łódź
- Poland
| | - Halina Abramczyk
- Institute of Applied Radiation Chemistry
- Lodz University of Technology
- 93-590 Łódź
- Poland
| |
Collapse
|
6
|
Ye L, Xu C, Gu FL, Zhu C. Functional and Basis Set Dependence for Time-Dependent Density Functional Theory Trajectory Surface Hopping Molecular Dynamics: Cis-Azobenzene Photoisomerization. J Comput Chem 2019; 41:635-645. [PMID: 31743473 DOI: 10.1002/jcc.26116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022]
Abstract
Within three functionals (TD-B3LYP, TD-BHandHLYP, and TD-CAM-B3LYP) in combination with four basis sets (3-21g, 6-31g, 6-31g(d), and cc-pvdz), global switching (GS) trajectory surface hopping molecular dynamics has been performed for cis-to-trans azobenzene photoisomerization up to the S1 (nπ*) excitation. Although all the combinations show artificial double-cone structure of conical intersection between ground and first excited states, simulated quantum yields and lifetimes are in good agreement with one another; 0.6 (±5%) and 40.5 fs (±10%) by TD-B3LYP, 0.5 (±10%) and 35.5 fs (±4%) by TD-BHandHLYP, and 0.44 (±9%) and 35.2 fs (±10%) by TD-CAM-B3LYP. By analyzing distributions of excited-state population decays, hopping spots, and typical trajectories with performance of 12 functional/basis set combinations, it has been concluded that functional dependence for given basis set is slightly more sensitive than basis set dependence for given functional. The present GS on-the-fly time-dependent density functional theory (TDDFT) trajectory surface hopping simulation can provide practical benchmark guidelines for conical intersection driven excited-state molecular dynamics simulation involving in large complex system within ordinary TDDFT framework. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Linfeng Ye
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment of South China Normal University, Guangzhou, 51006, People's Republic of China
| | - Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment of South China Normal University, Guangzhou, 51006, People's Republic of China
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment of South China Normal University, Guangzhou, 51006, People's Republic of China
| | - Chaoyuan Zhu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment of South China Normal University, Guangzhou, 51006, People's Republic of China.,Institute of Molecular Science and Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan.,Key Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
7
|
Dolgopolova EA, Galitskiy VA, Martin CR, Gregory HN, Yarbrough BJ, Rice AM, Berseneva AA, Ejegbavwo OA, Stephenson KS, Kittikhunnatham P, Karakalos SG, Smith MD, Greytak AB, Garashchuk S, Shustova NB. Connecting Wires: Photoinduced Electronic Structure Modulation in Metal–Organic Frameworks. J Am Chem Soc 2019; 141:5350-5358. [DOI: 10.1021/jacs.8b13853] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ekaterina A. Dolgopolova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Vladimir A. Galitskiy
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Corey R. Martin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Haley N. Gregory
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brandon J. Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Allison M. Rice
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Anna A. Berseneva
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Otega A. Ejegbavwo
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Kenneth S. Stephenson
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Preecha Kittikhunnatham
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Stavros G. Karakalos
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D. Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Andrew B. Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
8
|
Sotome H, Kitagawa D, Nakahama T, Ito S, Kobatake S, Irie M, Miyasaka H. Cyclization reaction dynamics of an inverse type diarylethene derivative as revealed by time-resolved absorption and fluorescence spectroscopies. Phys Chem Chem Phys 2019; 21:8623-8632. [PMID: 30816903 DOI: 10.1039/c8cp07393g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Photocyclization reaction dynamics of an inverse type diarylethene derivative was investigated in alkane solutions by means of ultrafast laser spectroscopies. Femtosecond transient absorption spectroscopy showed that the Franck-Condon state formed by photoexcitation is geometrically relaxed to a transient species within 100 fs and subsequently the cyclization process takes place with a time constant of 36 ps. This time constant is much longer than those in normal type derivatives. Steady-state and time-resolved fluorescence measurements with the aid of quantum chemical calculations revealed that there exist three kinds of conformers, one parallel and two anti-parallel forms, in the ground state. One of the anti-parallel conformers undergoes the cyclization reaction, while the other two conformers are nonreactive species and their major relaxation processes are radiative decay and intersystem crossing into the triplet states. The triplet states thus formed no longer undergo the cyclization reaction in the late time region.
Collapse
Affiliation(s)
- Hikaru Sotome
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Tapavicza E, Thompson T, Redd K, Kim D. Tuning the photoreactivity of Z-hexatriene photoswitches by substituents - a non-adiabatic molecular dynamics study. Phys Chem Chem Phys 2018; 20:24807-24820. [PMID: 30229769 PMCID: PMC6211802 DOI: 10.1039/c8cp05181j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To understand how substituents can be used to increase the quantum yield of photochemical electrocyclic ring-closing of the Z-hexa-1,3,5-triene (HT) photoswitch forming cyclohexadiene (CHD), we investigate the S1 photo dynamics of HT and its derivatives 2,5-dimethyl-HT (DMHT), 2-isopropyl-5-methyl-HT (2,5-IMHT), 1-isopropyl-4-methyl-HT (1,4-IMHT), and 2,5-diisopropyl-HT (DIHT) using time-dependent density functional theory surface hopping dynamics. We report detailed photoproduct distributions, formation mechanisms, branching ratios, and wavelength-dependent product quantum yields. Most products have been confirmed experimentally and include all-trans HT derivatives, cyclopropanes, cyclobutenes, cyclopentene, cyclohexadienes, and bicyclic compounds. Regarding CHD formation, we find that for the 2,5-substituted derivatives DMHT, 2,5-IMHT, and DIHT, the branching ratios increase with increasing size of the substituents. In contrast the branching ratios of the E/Z-isomerization decrease with increasing size of the substituents. Due to steric interactions, increasing the size of the substituents increases the amount of gZg rotamers in the ground state, which are prone to CHD formation and have lower E/Z-isomerization probability. Furthermore, we find [1,4], [1,5], and [1,6]-sigmatropic hydrogen shift reactions occurring at large percentages (5% to 15%); for sterical reasons these reactions stem from tZg conformers. DIHT shows the lowest percentage of side product formation among the 2,5-substituted molecules and highest CHD branching ratio; its CHD quantum yield can be increased up to more than 64%, by excitation of DIHT on the red tail of its absorption spectrum, whereas the Z/E-isomerization is reduced below 5% and side reactions practically vanish. This makes DIHT the best candidate for applications in molecular switches.
Collapse
Affiliation(s)
- Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA.
| | | | | | | |
Collapse
|
10
|
Sotome H, Nagasaka T, Une K, Morikawa S, Katayama T, Kobatake S, Irie M, Miyasaka H. Cycloreversion Reaction of a Diarylethene Derivative at Higher Excited States Attained by Two-Color, Two-Photon Femtosecond Pulsed Excitation. J Am Chem Soc 2017; 139:17159-17167. [DOI: 10.1021/jacs.7b09763] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hikaru Sotome
- Division
of Frontier Materials Science and Center for Advanced Interdisciplinary
Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tatsuhiro Nagasaka
- Division
of Frontier Materials Science and Center for Advanced Interdisciplinary
Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kanako Une
- Division
of Frontier Materials Science and Center for Advanced Interdisciplinary
Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Soichiro Morikawa
- Division
of Frontier Materials Science and Center for Advanced Interdisciplinary
Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tetsuro Katayama
- Division
of Frontier Materials Science and Center for Advanced Interdisciplinary
Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Seiya Kobatake
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka City University, Sumiyoshi,
Osaka 558-8585, Japan
| | - Masahiro Irie
- Department
of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1
Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Hiroshi Miyasaka
- Division
of Frontier Materials Science and Center for Advanced Interdisciplinary
Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
11
|
Light penetration-coupled photoisomerization modeling for photodeformation of diarylethene single crystal: upscaling isomerization to macroscopic deformation. Sci Rep 2017; 7:967. [PMID: 28424458 PMCID: PMC5430494 DOI: 10.1038/s41598-017-00910-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/16/2017] [Indexed: 12/02/2022] Open
Abstract
Diarylethene is one of the photo-responsive materials that show rapid and reversible changes in their color/electrochemical properties and macroscopic deformations in the crystalline phase by light irradiation. Photoisomerization is the main cause of the photo reactivity of diarylethene, and we established a statistical model based on the density matrix formalism, which predicts quantitative isomerization progress as a population term. The model reflects photo-switching properties of the target molecule, which were characterized by first principle calculations, and external stimulus factors (light irradiation conditions and temperature). By merging light penetration physics with the model, we derived light penetration depth dependent isomerization progress to theoretically investigate photodeformation of single crystal. The model well reproduced in-plane shear deformation under ultraviolet light irradiation which would provide guideline for photoactuator design. In addition, the statistical model addressed crucial findings (primary stimuli and molecular design parameter for increasing the isomerization rate, external stimuli enhancing fluorescence performance) itself.
Collapse
|
12
|
Zobač V, Lewis JP, Jelínek P. Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions. NANOTECHNOLOGY 2016; 27:285202. [PMID: 27255903 DOI: 10.1088/0957-4484/27/28/285202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report non-adiabatic molecular dynamic simulations of the ring opening reaction of diarylethene (DAE) derivative molecules, both free standing and embedded between gold electrodes. Simulations are performed by the surface hopping method employing density functional theory. Typically, the free-standing molecules exhibit large quantum yields to open and close; however the process is quenched for the molecules embedded between electrodes. Our simulations reveal the importance of the DAE side chemical groups, which explain the efficiency of the quenching process. Namely, delocalization of the LUMO state contributes to electronic coupling between the molecule and electrodes, suppressing or enhancing the reaction process. The simulations indicate that a proper choice of the chemical side group, which provides the strong localization of the LUMO state, can substantially diminish the quenching mechanism. Additionally, we analyze a strong dependency of the quantum yield of the opening reaction coming from the mechanical strength of the molecules.
Collapse
Affiliation(s)
- Vladmír Zobač
- Institute of Physic, Academy of Sciences of the Czech Republic, Cukrovarnická 10, CZ-16200, Prague, Czech Republic. Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 10, CZ-11519, Prague, Czech Republic
| | | | | |
Collapse
|
13
|
Abstract
We review molecular compounds encompassing several photochromic units with a focus on their functionalities.
Collapse
Affiliation(s)
- Arnaud Fihey
- Laboratoire CEISAM
- UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - Aurélie Perrier
- Université Paris Diderot
- Sorbonne Paris Cité
- ITODYS
- UMR CNRS 7086
- 75205 Paris Cedex 13
| | - Wesley R. Browne
- Center for Systems Chemistry
- Stratingh Institute for Chemistry
- Faculty of Mathematics and Natural Sciences
- University of Groningen
- 9747AG Groningen
| | - Denis Jacquemin
- Laboratoire CEISAM
- UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| |
Collapse
|