1
|
Hong Y, Najafi S, Casey T, Shea JE, Han SI, Hwang DS. Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins. Nat Commun 2022; 13:7326. [PMID: 36443315 PMCID: PMC9705477 DOI: 10.1038/s41467-022-35001-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Intrinsically disordered proteins rich in cationic amino acid groups can undergo Liquid-Liquid Phase Separation (LLPS) in the presence of charge-balancing anionic counterparts. Arginine and Lysine are the two most prevalent cationic amino acids in proteins that undergo LLPS, with arginine-rich proteins observed to undergo LLPS more readily than lysine-rich proteins, a feature commonly attributed to arginine's ability to form stronger cation-π interactions with aromatic groups. Here, we show that arginine's ability to promote LLPS is independent of the presence of aromatic partners, and that arginine-rich peptides, but not lysine-rich peptides, display re-entrant phase behavior at high salt concentrations. We further demonstrate that the hydrophobicity of arginine is the determining factor giving rise to the reentrant phase behavior and tunable viscoelastic properties of the dense LLPS phase. Controlling arginine-induced reentrant LLPS behavior using temperature and salt concentration opens avenues for the bioengineering of stress-triggered biological phenomena and drug delivery systems.
Collapse
Affiliation(s)
- Yuri Hong
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Saeed Najafi
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Thomas Casey
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Joan-Emma Shea
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
| | - Song-I Han
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Dong Soo Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
2
|
Wang C, Biok NA, Nayani K, Wang X, Yeon H, Derek Ma CK, Gellman SH, Abbott NL. Cationic Side Chain Identity Directs the Hydrophobically Driven Self-Assembly of Amphiphilic β-Peptides in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3288-3298. [PMID: 33683138 DOI: 10.1021/acs.langmuir.0c03255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydrophobic interactions mediated by nonpolar molecular fragments in water are influenced by local chemical and physical contexts in ways that are not yet fully understood. Here, we use globally amphiphilic (GA) β-peptides (GA-Lys and GA-Arg) with stable conformations to explore if replacement of β3-homolysine (βLys) with β3-homoarginine (βArg) influences the hydrophobically driven assembly of these peptides in bulk aqueous solution. The studies were conducted in 10 mM triethanolamine buffer at pH 7, where both βLys (ammonium) and βArg (guanidinium) side chains are substantially protonated. Comparisons of light scattering measurements and cryo-electron micrographs before and after the addition of 60 vol% MeOH indicate very different outcomes of the hydrophobically driven assembly of AcY-GA-Lys versus AcY-GA-Arg (AcY denotes an N-acetylated-β3-homotyrosine (βTyr) at each N-terminus). Nuclear magnetic resonance and analytical ultracentrifugation confirm that AcY-GA-Lys assembles into large aggregates in aqueous buffer, whereas AcY-GA-Arg at comparable concentrations forms only small oligomers. Titration of AcY-GA-Arg into aqueous solutions of AcY-GA-Lys reveals that the driving force for AcY-GA-Lys association is far stronger than that for AcY-GA-Arg association. We discuss these results in the light of past experimental observations involving single molecule force measurements with GA β-peptides and hydrophobically driven dimerization of conventional peptides that form a GA α-helix upon dimerization (but do not display the Lys versus Arg trend predicted by extrapolating from the earlier AFM studies with β-peptides). Overall, our results establish that the identity of proximal cationic groups, ammonium versus guanidinium, profoundly modulates the hydrophobically driven self-assembly of conformationally stable β-peptides in bulk aqueous solution.
Collapse
Affiliation(s)
- Chenxuan Wang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison53706, Wisconsin, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison53706, Wisconsin, United States
- Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Naomi A Biok
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison53706, Wisconsin, United States
| | - Karthik Nayani
- Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca14853, New York, United States
| | - Xiaoguang Wang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison53706, Wisconsin, United States
| | - Hongseung Yeon
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison53706, Wisconsin, United States
| | - Chi-Kuen Derek Ma
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison53706, Wisconsin, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison53706, Wisconsin, United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca14853, New York, United States
| |
Collapse
|
3
|
Pan Y, Barba‐Bon A, Tian H, Ding F, Hennig A, Nau WM, Guo D. An Amphiphilic Sulfonatocalix[5]arene as an Activator for Membrane Transport of Lysine‐rich Peptides and Proteins. Angew Chem Int Ed Engl 2020; 60:1875-1882. [DOI: 10.1002/anie.202011185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/24/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yu‐Chen Pan
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| | - Andrea Barba‐Bon
- Department of Life Sciences and Chemistry Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Han‐Wen Tian
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| | - Fei Ding
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| | - Andreas Hennig
- Department of Life Sciences and Chemistry Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
- Institute of Chemistry of New Materials and School of Biology/Chemistry Universität Osnabrück Osnabrück Germany
- Center of Cellular Nanoanalytics (CellNanOs) Universität Osnabrück Osnabrück Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Dong‐Sheng Guo
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| |
Collapse
|
4
|
Pan Y, Barba‐Bon A, Tian H, Ding F, Hennig A, Nau WM, Guo D. An Amphiphilic Sulfonatocalix[5]arene as an Activator for Membrane Transport of Lysine‐rich Peptides and Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yu‐Chen Pan
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| | - Andrea Barba‐Bon
- Department of Life Sciences and Chemistry Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Han‐Wen Tian
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| | - Fei Ding
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| | - Andreas Hennig
- Department of Life Sciences and Chemistry Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
- Institute of Chemistry of New Materials and School of Biology/Chemistry Universität Osnabrück Osnabrück Germany
- Center of Cellular Nanoanalytics (CellNanOs) Universität Osnabrück Osnabrück Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Dong‐Sheng Guo
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) National Demonstration Center for Experimental Chemistry Education Nankai University Tianjin 300071 China
| |
Collapse
|
5
|
Hebert MJ, Russell DH. Hydration of Guanidinium Ions: An Experimental Search for Like-Charged Ion Pairs. J Phys Chem Lett 2019; 10:1349-1354. [PMID: 30840463 DOI: 10.1021/acs.jpclett.9b00268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Guanidinium ions (GdmH+) are reported to form stable complexes (GdmH+/GdmH+) in aqueous solution despite strong repulsive interactions between the like-charged centers. These complexes are thought to play important roles in protein folding, membrane penetration, and formation of protein dimers. Although GdmH+ ions are weakly hydrated, semiempirical calculations provide evidence that these like-charged complexes are stabilized by water molecules, which serve important structural and energetic roles. Specifically, water molecules bridge between the GdmH+ ions of GdmH+/GdmH+ complexes as well as complexes involving the guanidinium side chains of arginine. Potential biological significances of like-charged complexes have been largely confirmed by ab initio molecular dynamics simulations and indirect experimental evidence. We report cryo-ion mobility-mass spectrometry results for the GdmH+/GdmH+ ion pair confined in a nanodroplet- the first direct experimental observation of this like-charged complex. A second like-charged complex, described as a water-mediated complex involving GdmH+ and H3O+, was also observed.
Collapse
Affiliation(s)
- Michael J Hebert
- Department of Chemistry Texas A&M University College Station , Texas 77843 , United States
| | - David H Russell
- Department of Chemistry Texas A&M University College Station , Texas 77843 , United States
| |
Collapse
|
6
|
Houriez C, Meot-Ner Mautner M, Masella M. Solvation of the Guanidinium Ion in Pure Aqueous Environments: A Theoretical Study from an "Ab Initio"-Based Polarizable Force Field. J Phys Chem B 2017; 121:11219-11228. [PMID: 29182348 DOI: 10.1021/acs.jpcb.7b07874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report simulation results regarding the hydration process of the guanidinium cation in water droplets and in bulk liquid water, at a low concentration of 0.03 M, performed using a polarizable approach to model both water/water and ion/water interactions. In line with earlier theoretical studies, our simulations show a preferential orientation of guanidinium at water-vacuum interfaces, i.e., a parallel orientation of the guanidinium plane to the aqueous surface. In an apparent contradiction with earlier simulation studies, we show also that guanidinium has a stronger propensity for the cores of aqueous systems than the ammonium cation. However, our bulk simulation conditions correspond to weaker cation concentrations than in earlier studies, by 2 orders of magnitude, and that the same simulations performed using a standard nonpolarizable force field leads to the same conclusion. From droplet data, we extrapolate the guanidinium single hydration enthalpy value to be -82.9 ± 2.2 kcal mol-1. That is about half as large as the sole experimental estimate reported to date, about -144 kcal mol-1. Our result yields a guanidinium absolute bulk hydration free energy at ambiant conditions to be -78.4 ± 2.6 kcal mol-1, a value smaller by 3 kcal mol-1 compared to ammonium. The relatively large magnitude of our guanidinium hydration free energy estimate suggests the Gdm+ protein denaturing properties to result from a competition between the cation hydration effects and the cation/protein interactions, a competition that can be modulated by weak differences in the protein or in the cation chemical environment.
Collapse
Affiliation(s)
- Céline Houriez
- MINES ParisTech, PSL Research University, CTP - Centre Thermodynamique des Procédés , 35 rue Saint-Honoré, 77300 Fontainebleau, France
| | - Michael Meot-Ner Mautner
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States.,Department of Chemistry, University of Canterbury , Christchurch 8001, New Zealand
| | - Michel Masella
- Laboratoire de Biologie Structurale et Radiobiologie, Service de Bioénergétique, Biologie Structurale et Mécanismes, Institut Joliot, CEA Saclay , F-91191 Gif sur Yvette Cedex, France
| |
Collapse
|
7
|
Cooper RJ, O'Brien JT, Chang TM, Williams ER. Structural and electrostatic effects at the surfaces of size- and charge-selected aqueous nanodrops. Chem Sci 2017; 8:5201-5213. [PMID: 28970907 PMCID: PMC5618692 DOI: 10.1039/c7sc00481h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/17/2017] [Indexed: 11/23/2022] Open
Abstract
The effects of ion charge, polarity and size on the surface morphology of size-selected aqueous nanodrops containing a single ion and up to 550 water molecules are investigated with infrared photodissociation (IRPD) spectroscopy and theory.
The effects of ion charge, polarity and size on the surface morphology of size-selected aqueous nanodrops containing a single ion and up to 550 water molecules are investigated with infrared photodissociation (IRPD) spectroscopy and theory. IRPD spectra of M(H2O)n where M = La3+, Ca2+, Na+, Li+, I–, SO42– and supporting molecular dynamics simulations indicate that strong interactions between multiply charged ions and water molecules can disrupt optimal hydrogen bonding (H-bonding) at the nanodrop surface. The IRPD spectra also reveal that “free” OH stretching frequencies of surface-bound water molecules are highly sensitive to the ion's identity and the OH bond's local H-bond environment. The measured frequency shifts are qualitatively reproduced by a computationally inexpensive point-charge model that shows the frequency shifts are consistent with a Stark shift from the ion's electric field. For multiply charged cations, pronounced Stark shifting is observed for clusters containing ∼100 or fewer water molecules. This is attributed to ion-induced solvent patterning that extends to the nanodrop surface, and serves as a spectroscopic signature for a cation's ability to influence the H-bond network of water located remotely from the ion. The Stark shifts measured for the larger nanodrops are extrapolated to infinite dilution to obtain the free OH stretching frequency of a surface-bound water molecule at the bulk air–water interface (3696.5–3701.0 cm–1), well within the relatively wide range of values obtained from SFG measurements. These cluster measurements also indicate that surface curvature effects can influence the free OH stretching frequency, and that even nanodrops without an ion have a surface potential that depends on cluster size.
Collapse
Affiliation(s)
- Richard J Cooper
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA . ; Tel: +1 510 643 7161
| | - Jeremy T O'Brien
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA . ; Tel: +1 510 643 7161
| | - Terrence M Chang
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA . ; Tel: +1 510 643 7161
| | - Evan R Williams
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA . ; Tel: +1 510 643 7161
| |
Collapse
|
8
|
Heiles S, Cooper RJ, DiTucci MJ, Williams ER. Sequential water molecule binding enthalpies for aqueous nanodrops containing a mono-, di- or trivalent ion and between 20 and 500 water molecules. Chem Sci 2017; 8:2973-2982. [PMID: 28451364 PMCID: PMC5380113 DOI: 10.1039/c6sc04957e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
Sequential water molecule binding enthalpies, ΔHn,n-1, are important for a detailed understanding of competitive interactions between ions, water and solute molecules, and how these interactions affect physical properties of ion-containing nanodrops that are important in aerosol chemistry. Water molecule binding enthalpies have been measured for small clusters of many different ions, but these values for ion-containing nanodrops containing more than 20 water molecules are scarce. Here, ΔHn,n-1 values are deduced from high-precision ultraviolet photodissociation (UVPD) measurements as a function of ion identity, charge state and cluster size between 20-500 water molecules and for ions with +1, +2 and +3 charges. The ΔHn,n-1 values are obtained from the number of water molecules lost upon photoexcitation at a known wavelength, and modeling of the release of energy into the translational, rotational and vibrational motions of the products. The ΔHn,n-1 values range from 36.82 to 50.21 kJ mol-1. For clusters containing more than ∼250 water molecules, the binding enthalpies are between the bulk heat of vaporization (44.8 kJ mol-1) and the sublimation enthalpy of bulk ice (51.0 kJ mol-1). These values depend on ion charge state for clusters with fewer than 150 water molecules, but there is a negligible dependence at larger size. There is a minimum in the ΔHn,n-1 values that depends on the cluster size and ion charge state, which can be attributed to the competing effects of ion solvation and surface energy. The experimental ΔHn,n-1 values can be fit to the Thomson liquid drop model (TLDM) using bulk ice parameters. By optimizing the surface tension and temperature change of the logarithmic partial pressure for the TLDM, the experimental sequential water molecule binding enthalpies can be fit with an accuracy of ±3.3 kJ mol-1 over the entire range of cluster sizes.
Collapse
Affiliation(s)
- Sven Heiles
- Department of Chemistry , University of California , Berkeley B42 Hildebrand Hall , Berkeley , California 94720-1460 , USA . ; Tel: +1-510-643-7161
| | - Richard J Cooper
- Department of Chemistry , University of California , Berkeley B42 Hildebrand Hall , Berkeley , California 94720-1460 , USA . ; Tel: +1-510-643-7161
| | - Matthew J DiTucci
- Department of Chemistry , University of California , Berkeley B42 Hildebrand Hall , Berkeley , California 94720-1460 , USA . ; Tel: +1-510-643-7161
| | - Evan R Williams
- Department of Chemistry , University of California , Berkeley B42 Hildebrand Hall , Berkeley , California 94720-1460 , USA . ; Tel: +1-510-643-7161
| |
Collapse
|
9
|
Platten F, Hansen J, Wagner D, Egelhaaf SU. Second Virial Coefficient As Determined from Protein Phase Behavior. J Phys Chem Lett 2016; 7:4008-4014. [PMID: 27662500 DOI: 10.1021/acs.jpclett.6b01714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We quantitatively link the macroscopic phase behavior of protein solutions to protein-protein interactions based on a coarse-grained colloidal approach. We exploit the extended law of corresponding states and apply the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in order to infer the second virial coefficient b2, an integral measure of the interaction potential, from the phase behavior, namely, cloud-point temperature (CPT) measurements under conditions favoring protein crystallization. This determination of b2 yields values that quantitatively agree with the results of static light scattering (SLS) experiments. The strength of the attractions is quantified in terms of an effective Hamaker constant, which accounts for van der Waals attractions as well as non-DLVO forces, such as hydration and hydrophobic interactions. Our approach based on simple lab experiments to determine the CPT in combination with the DLVO theory is expected to facilitate further biophysical research on protein-protein interactions in complex solution environments.
Collapse
Affiliation(s)
- Florian Platten
- Condensed Matter Physics Laboratory, Heinrich Heine University , 40225 Düsseldorf, Germany
| | - Jan Hansen
- Condensed Matter Physics Laboratory, Heinrich Heine University , 40225 Düsseldorf, Germany
| | - Dana Wagner
- Condensed Matter Physics Laboratory, Heinrich Heine University , 40225 Düsseldorf, Germany
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University , 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Hansen J, Platten F, Wagner D, Egelhaaf SU. Tuning protein-protein interactions using cosolvents: specific effects of ionic and non-ionic additives on protein phase behavior. Phys Chem Chem Phys 2016; 18:10270-80. [PMID: 27020538 DOI: 10.1039/c5cp07285a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cosolvents are routinely used to modulate the (thermal) stability of proteins and, hence, their interactions with proteins have been studied intensely. However, less is known about their specific effects on protein-protein interactions, which we characterize in terms of the protein phase behavior. We analyze the phase behavior of lysozyme solutions in the presence of sodium chloride (NaCl), guanidine hydrochloride (GuHCl), glycerol, and dimethyl sulfoxide (DMSO). We experimentally determined the crystallization boundary (XB) and, in combination with data on the cloud-point temperatures (CPTs), the crystallization gap. In agreement with other studies, our data indicate that the additives might affect the protein phase behavior through electrostatic screening and additive-specific contributions. At high salt concentrations, where electrostatic interactions are screened, both the CPT and the XB are found to be linear functions of the additive concentration. Their slopes quantify the additive-specific changes of the phase behavior and thus of the protein-protein interactions. While the specific effect of NaCl is to induce attractions between proteins, DMSO, glycerol and GuHCl (with increasing strength) weaken attractions and/or induce repulsions. Except for DMSO, changes of the CPT are stronger than those of the XB. Furthermore, the crystallization gap widens in the case of GuHCl and glycerol and narrows in the case of NaCl. We relate these changes to colloidal interaction models, namely square-well and patchy interactions.
Collapse
Affiliation(s)
- Jan Hansen
- Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
11
|
Platten F, Hansen J, Milius J, Wagner D, Egelhaaf SU. Additivity of the Specific Effects of Additives on Protein Phase Behavior. J Phys Chem B 2015; 119:14986-93. [DOI: 10.1021/acs.jpcb.5b08078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florian Platten
- Condensed Matter Physics
Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jan Hansen
- Condensed Matter Physics
Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Johanna Milius
- Condensed Matter Physics
Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Dana Wagner
- Condensed Matter Physics
Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Stefan U. Egelhaaf
- Condensed Matter Physics
Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Meuzelaar H, Panman MR, Woutersen S. Guanidinium-Induced Denaturation by Breaking of Salt Bridges. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Meuzelaar H, Panman MR, Woutersen S. Guanidinium-Induced Denaturation by Breaking of Salt Bridges. Angew Chem Int Ed Engl 2015; 54:15255-9. [DOI: 10.1002/anie.201508601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/11/2022]
|
14
|
Oberreit D, Rawat VK, Larriba-Andaluz C, Ouyang H, McMurry PH, Hogan CJ. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry. J Chem Phys 2015; 143:104204. [DOI: 10.1063/1.4930278] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Derek Oberreit
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110, USA
| | - Vivek K. Rawat
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Carlos Larriba-Andaluz
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Hui Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Peter H. McMurry
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Christopher J. Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
15
|
Cooper RJ, Heiles S, Williams ER. Effects of electronic structure on the hydration of PbNO3(+) and SrNO3(+) ion pairs. Phys Chem Chem Phys 2015; 17:15963-75. [PMID: 26028325 DOI: 10.1039/c5cp01859e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydration of PbNO3(+) and SrNO3(+) with up to 30 water molecules was investigated with infrared photodissociation (IRPD) spectroscopy and with theory. These ions are the same size, yet the IRPD spectra of these ion pairs for n = 2-8 are significantly different. Bands in the bonded O-H region (∼3000-3550 cm(-1)) indicate that the onset of a second hydration shell begins at n = 5 for PbNO3(+) and n = 6 for SrNO3(+). Spectra for [PbNO3](+)(H2O)2-5 and [SrNO3](+)(H2O)3-6 indicate that the structures of clusters with Pb(ii) are hemidirected with a void in the coordinate sphere. A natural bond orbital analysis of [PbNO3](+)(H2O)5 indicates that the anisotropic solvation of the ion is due to a region of asymmetric electron density on Pb(ii) that can be explained by charge transfer from the nitrate and water ligands into unoccupied p-orbitals on Pb(ii). There are differences in the IRPD spectra of PbNO3(+) and SrNO3(+) with up to 25 water molecules attached. IR intensity in the bonded O-H region is blue-shifted by ∼50 cm(-1) in nanodrops containing SrNO3(+) compared to those containing PbNO3(+), indicative of a greater perturbation of the water H-bond network by strontium. The free O-H stretches of surface water molecules in nanodrops containing 10, 15, 20, and 25 water molecules are red-shifted by ∼3-8 cm(-1) for PbNO3(+) compared to those for SrNO3(+), consistent with more charge transfer between water molecules and Pb(ii). These results demonstrate that the different electronic structure of these ions significantly influences how they are solvated.
Collapse
Affiliation(s)
- Richard J Cooper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| | | | | |
Collapse
|
16
|
Heiles S, Cooper RJ, DiTucci MJ, Williams ER. Hydration of guanidinium depends on its local environment. Chem Sci 2015; 6:3420-3429. [PMID: 28706704 PMCID: PMC5490459 DOI: 10.1039/c5sc00618j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/14/2015] [Indexed: 01/10/2023] Open
Abstract
Hydration of gaseous guanidinium (Gdm+) with up to 100 water molecules attached was investigated using infrared photodissociation spectroscopy in the hydrogen stretch region between 2900 and 3800 cm-1. Comparisons to IR spectra of low-energy computed structures indicate that at small cluster size, water interacts strongly with Gdm+ with three inner shell water molecules each accepting two hydrogen bonds from adjacent NH2 groups in Gdm+. Comparisons to results for tetramethylammonium (TMA+) and Na+ enable structural information for larger clusters to be obtained. The similarity in the bonded OH region for Gdm(H2O)20+vs. Gdm(H2O)100+ and the similarity in the bonded OH regions between Gdm+ and TMA+ but not Na+ for clusters with <50 water molecules indicate that Gdm+ does not significantly affect the hydrogen-bonding network of water molecules at large size. These results indicate that the hydration around Gdm+ changes for clusters with more than about eight water molecules to one in which inner shell water molecules only accept a single H-bond from Gdm+. More effective H-bonding drives this change in inner-shell water molecule binding to other water molecules. These results show that hydration of Gdm+ depends on its local environment, and that Gdm+ will interact with water even more strongly in an environment where water is partially excluded, such as the surface of a protein. This enhanced hydration in a limited solvation environment may provide new insights into the effectiveness of Gdm+ as a protein denaturant.
Collapse
Affiliation(s)
- Sven Heiles
- Department of Chemistry , University of California , B42 Hildebrand Hall , Berkeley , CA 94720 , USA .
| | - Richard J Cooper
- Department of Chemistry , University of California , B42 Hildebrand Hall , Berkeley , CA 94720 , USA .
| | - Matthew J DiTucci
- Department of Chemistry , University of California , B42 Hildebrand Hall , Berkeley , CA 94720 , USA .
| | - Evan R Williams
- Department of Chemistry , University of California , B42 Hildebrand Hall , Berkeley , CA 94720 , USA .
| |
Collapse
|
17
|
Brathwaite AD, Ward TB, Walters RS, Duncan MA. Cation−π and CH−π Interactions in the Coordination and Solvation of Cu+(acetylene)n Complexes. J Phys Chem A 2015; 119:5658-67. [DOI: 10.1021/acs.jpca.5b03360] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antonio D. Brathwaite
- College
of Science and Mathematics, University of the Virgin Islands, St.
Thomas, United States Virgin
Islands 00802
| | - Timothy B. Ward
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Richard S. Walters
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A. Duncan
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Cui D, Ou SC, Patel S. Protein denaturants at aqueous-hydrophobic interfaces: self-consistent correlation between induced interfacial fluctuations and denaturant stability at the interface. J Phys Chem B 2015; 119:164-78. [PMID: 25536388 PMCID: PMC4291035 DOI: 10.1021/jp507203g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/21/2014] [Indexed: 01/16/2023]
Abstract
The notion of direct interaction between denaturing cosolvent and protein residues has been proposed in dialogue relevant to molecular mechanisms of protein denaturation. Here we consider the correlation between free energetic stability and induced fluctuations of an aqueous-hydrophobic interface between a model hydrophobically associating protein, HFBII, and two common protein denaturants, guanidinium cation (Gdm(+)) and urea. We compute potentials of mean force along an order parameter that brings the solute molecule close to the known hydrophobic region of the protein. We assess potentials of mean force for different relative orientations between the protein and denaturant molecule. We find that in both cases of guanidinium cation and urea relative orientations of the denaturant molecule that are parallel to the local protein-water interface exhibit greater stability compared to edge-on or perpendicular orientations. This behavior has been observed for guanidinium/methylguanidinium cations at the liquid-vapor interface of water, and thus the present results further corroborate earlier findings. Further analysis of the induced fluctuations of the aqueous-hydrophobic interface upon approach of the denaturant molecule indicates that the parallel orientation, displaying a greater stability at the interface, also induces larger fluctuations of the interface compared to the perpendicular orientations. The correlation of interfacial stability and induced interface fluctuation is a recurring theme for interface-stable solutes at hydrophobic interfaces. Moreover, observed correlations between interface stability and induced fluctuations recapitulate connections to local hydration structure and patterns around solutes as evidenced by experiment (Cooper et al., J. Phys. Chem. A 2014, 118, 5657.) and high-level ab initio/DFT calculations (Baer et al., Faraday Discuss 2013, 160, 89).
Collapse
Affiliation(s)
- Di Cui
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Shu-Ching Ou
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Sandeep Patel
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|