1
|
Interactions of N-hydroxyamphetamine with an iron porphyrin: A unique intramolecular H-bond probed by DFT calculations. J Inorg Biochem 2022; 231:111779. [DOI: 10.1016/j.jinorgbio.2022.111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
|
2
|
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020; 120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Atifi A, Mak PJ, Ryan MD. Proton-coupled reduction of an iron nitrosyl porphyrin in the protic ionic liquid nanodomain. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Smith MA, Lancaster KM. The Eponymous Cofactors in Cytochrome P460s from Ammonia-Oxidizing Bacteria Are Iron Porphyrinoids Whose Macrocycles Are Dibasic. Biochemistry 2018; 57:334-343. [PMID: 29211462 PMCID: PMC6361160 DOI: 10.1021/acs.biochem.7b00921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymes hydroxylamine oxidoreductase and cytochrome (cyt) P460 contain related unconventional "heme P460" cofactors. These cofactors are unusual in their inclusion of nonstandard cross-links between amino acid side chains and the heme macrocycle. Mutagenesis studies performed on the Nitrosomonas europaea cyt P460 that remove its lysine-heme cross-link show that the cross-link is key to defining the spectroscopic properties and kinetic competence of the enzyme. However, exactly how this cross-link confers these features remains unclear. Here we report the 1.45 Å crystal structure of cyt P460 from Nitrosomonas sp. AL212 and conclude that the cross-link does not lead to a change in hybridization of the heme carbon participating in the cross-link but rather enforces structural distortions to the macrocycle away from planarity. Time-dependent density functional theory coupled to experimental structural and spectroscopic analysis suggest that this geometric distortion is sufficient to define the spectroscopic properties of the heme P460 cofactor and provide clues toward establishing a relationship between heme P460 electronic structure and function.
Collapse
Affiliation(s)
- Meghan A Smith
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Vilbert AC, Caranto JD, Lancaster KM. Influences of the heme-lysine crosslink in cytochrome P460 over redox catalysis and nitric oxide sensitivity. Chem Sci 2017; 9:368-379. [PMID: 29629106 PMCID: PMC5872139 DOI: 10.1039/c7sc03450d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022] Open
Abstract
Ammonia (NH3)-oxidizing bacteria (AOB) derive total energy for life from the multi-electron oxidation of NH3 to nitrite (NO2-). One obligate intermediate of this metabolism is hydroxylamine (NH2OH), which can be oxidized to the potent greenhouse agent nitrous oxide (N2O) by the AOB enzyme cytochrome (cyt) P460. We have now spectroscopically characterized a 6-coordinate (6c) {FeNO}7 intermediate on the NH2OH oxidation pathway of cyt P460. This species has two fates: it can either be oxidized to the {FeNO}6 that then undergoes attack by NH2OH to ultimately generate N2O, or it can lose its axial His ligand, thus generating a stable, off-pathway 5-coordinate (5c) {FeNO}7 species. We show that the wild type (WT) cyt P460 exhibits a slow nitric oxide (NO)-independent conversion (kHis-off = 2.90 × 10-3 s-1), whereas a cross-link-deficient Lys70Tyr cyt P460 mutant protein underwent His dissociation via both a NO-independent (kHis-off = 3.8 × 10-4 s-1) and a NO-dependent pathway [kHis-off(NO) = 790 M-1 s-1]. Eyring analyses of the NO-independent pathways for these two proteins revealed a significantly larger (ca. 27 cal mol-1 K-1) activation entropy (ΔS‡) in the cross-link-deficient mutant. Our results suggest that the Lys-heme cross-link confers rigidity to the positioning of the heme P460 cofactor to avoid the fast NO-dependent His dissociation pathway and subsequent formation of the off-pathway 5c {FeNO}7 species. The relevance of these findings to NO signaling proteins such as heme-nitric oxide/oxygen binding (H-NOX) is also discussed.
Collapse
Affiliation(s)
- Avery C Vilbert
- Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA .
| | - Jonathan D Caranto
- Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA .
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853 , USA .
| |
Collapse
|
6
|
Wei WJ, Siegbahn PEM, Liao RZ. Theoretical Study of the Mechanism of the Nonheme Iron Enzyme EgtB. Inorg Chem 2017; 56:3589-3599. [PMID: 28277674 DOI: 10.1021/acs.inorgchem.6b03177] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
EgtB is a nonheme iron enzyme catalyzing the C-S bond formation between γ-glutamyl cysteine (γGC) and N-α-trimethyl histidine (TMH) in the ergothioneine biosynthesis. Density functional calculations were performed to elucidate and delineate the reaction mechanism of this enzyme. Two different mechanisms were considered, depending on whether the sulfoxidation or the S-C bond formation takes place first. The calculations suggest that the S-O bond formation occurs first between the thiolate and the ferric superoxide, followed by homolytic O-O bond cleavage, very similar to the case of cysteine dioxygenase. Subsequently, proton transfer from a second-shell residue Tyr377 to the newly generated iron-oxo moiety takes place, which is followed by proton transfer from the TMH imidazole to Tyr377, facilitated by two crystallographically observed water molecules. Next, the S-C bond is formed between γGC and TMH, followed by proton transfer from the imidazole CH moiety to Tyr377, which was calculated to be the rate-limiting step for the whole reaction, with a barrier of 17.9 kcal/mol in the quintet state. The calculated barrier for the rate-limiting step agrees quite well with experimental kinetic data. Finally, this proton is transferred back to the imidazole nitrogen to form the product. The alternative thiyl radical attack mechanism has a very high barrier, being 25.8 kcal/mol, ruling out this possibility.
Collapse
Affiliation(s)
- Wen-Jie Wei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691 Stockholm, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| |
Collapse
|
7
|
Attia AAA, Silaghi-Dumitrescu R. A mononuclear non-heme-iron dioxygen-carrying protein? J Mol Graph Model 2016; 69:103-10. [PMID: 27607306 DOI: 10.1016/j.jmgm.2016.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
The ability of mononuclear non-heme iron complexes to function as molecular oxygen transporters is investigated by density functional theory. The factors governing the efficiency of the reversible binding of dioxygen at the active site of the dinuclear non-heme iron enzyme hemerythrin, including antiferromagnetic coupling and the conversion of dioxygen to hydroperoxo by a proton coupled 2-electron transfer mechanism, are revisited and considered as possible tools in mononuclear non-heme complexes. Several mononuclear non-heme model complexes, including active sites of enzymes already known to interact with dioxgenic ligands, are constructed and the molecular oxygen transportation capabilities of these complexes are examined computationally. The high-spin nature of the ground state of these complexes implies an intrinsic kinetic lability of the oxy structures, as also evident from potential energy surface calculations towards iron-dioxygen cleavage. Proton affinities as calibrated with reference compounds showed that these complexes are highly unlikely to undergo protonation to form hydroperoxo-like adducts. Mixed superoxo descriptions of the dissociated dioxygenic ligands in all complexes add to the overall conclusion that these model structures are significantly disadvantaged in any attempt to be employed for molecular oxygen transportation.
Collapse
Affiliation(s)
- Amr A A Attia
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania.
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Maalcke WJ, Reimann J, de Vries S, Butt JN, Dietl A, Kip N, Mersdorf U, Barends TRM, Jetten MSM, Keltjens JT, Kartal B. Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle. J Biol Chem 2016; 291:17077-92. [PMID: 27317665 PMCID: PMC5016112 DOI: 10.1074/jbc.m116.735530] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Indexed: 11/06/2022] Open
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria derive their energy for growth from the oxidation of ammonium with nitrite as the electron acceptor. N2, the end product of this metabolism, is produced from the oxidation of the intermediate, hydrazine (N2H4). Previously, we identified N2-producing hydrazine dehydrogenase (KsHDH) from the anammox organism Kuenenia stuttgartiensis as the gene product of kustc0694 and determined some of its catalytic properties. In the genome of K. stuttgartiensis, kustc0694 is one of 10 paralogs related to octaheme hydroxylamine (NH2OH) oxidoreductase (HAO). Here, we characterized KsHDH as a covalently cross-linked homotrimeric octaheme protein as found for HAO and HAO-related hydroxylamine-oxidizing enzyme kustc1061 from K. stuttgartiensis Interestingly, the HDH trimers formed octamers in solution, each octamer harboring an amazing 192 c-type heme moieties. Whereas HAO and kustc1061 are capable of hydrazine oxidation as well, KsHDH was highly specific for this activity. To understand this specificity, we performed detailed amino acid sequence analyses and investigated the catalytic and spectroscopic (electronic absorbance, EPR) properties of KsHDH in comparison with the well defined HAO and kustc1061. We conclude that HDH specificity is most likely derived from structural changes around the catalytic heme 4 (P460) and of the electron-wiring circuit comprising seven His/His-ligated c-type hemes in each subunit. These nuances make HDH a globally prominent N2-producing enzyme, next to nitrous oxide (N2O) reductase from denitrifying microorganisms.
Collapse
Affiliation(s)
- Wouter J Maalcke
- From the Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Joachim Reimann
- From the Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Simon de Vries
- the Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | - Julea N Butt
- the Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom, and
| | - Andreas Dietl
- the Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Nardy Kip
- From the Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Ulrike Mersdorf
- the Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Thomas R M Barends
- the Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Mike S M Jetten
- From the Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands, the Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | - Jan T Keltjens
- From the Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Boran Kartal
- From the Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands,
| |
Collapse
|