1
|
Xu T, Lei L, Fu Y, Yang X, Luo H, Chen X, Wu X, Wang Y, Jia MA. Molecular Characterization of a Novel Polerovirus Infecting Soybean in China. Viruses 2022; 14:v14071428. [PMID: 35891408 PMCID: PMC9322011 DOI: 10.3390/v14071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Poleroviruses are positive-sense, single-stranded viruses. In this study, we describe the identification of a novel polerovirus isolated from soybean displaying curled leaves. The complete viral genome sequence was identified using high-throughput sequencing and confirmed using rapid amplification of cDNA ends (RACE), RT-PCR and Sanger sequencing. Its genome organization is typical of the members of genus Polerovirus, containing seven putative open reading frames (ORFs). The full genome is composed of single-stranded RNA of 5822 nucleotides in length, with the highest nucleotide sequence identity (79.07% with 63% coverage) for cowpea polerovirus 2 (CPPV2). Amino acid sequence identities of the protein products between the virus and its relatives are below the threshold determined by the International Committee of Taxonomy of Viruses (ICTV) for species demarcation, and this strongly supports this virus’ status as a novel species, for which the name soybean chlorotic leafroll virus (SbCLRV) is proposed. Recombination analysis identified a recombination event in the ORF5 of the 3’ portion in the genome. Phylogenetic analyses of the genome and encoded protein sequences revealed that the new virus is closely related to phasey bean mild yellows virus, CPPV2 and siratro latent polerovirus. Subsequently, we demonstrated the infectivity of SbCLRV in Nicotiana benthamiana via infectious cDNA clone generation and agroinoculation.
Collapse
Affiliation(s)
- Tengzhi Xu
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (T.X.); (Y.F.); (X.Y.); (H.L.); (X.C.); (X.W.)
| | - Lei Lei
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China;
| | - Yong Fu
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (T.X.); (Y.F.); (X.Y.); (H.L.); (X.C.); (X.W.)
| | - Xiaolan Yang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (T.X.); (Y.F.); (X.Y.); (H.L.); (X.C.); (X.W.)
| | - Hao Luo
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (T.X.); (Y.F.); (X.Y.); (H.L.); (X.C.); (X.W.)
| | - Xiangru Chen
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (T.X.); (Y.F.); (X.Y.); (H.L.); (X.C.); (X.W.)
| | - Xiaomao Wu
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (T.X.); (Y.F.); (X.Y.); (H.L.); (X.C.); (X.W.)
| | - Yaqin Wang
- State Key Laboratory of Rice Biology Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.W.); (M.-a.J.)
| | - Meng-ao Jia
- Guizhou Academy of Tobacco Sciences, Guiyang 550001, China
- Correspondence: (Y.W.); (M.-a.J.)
| |
Collapse
|
2
|
Gupta A, Bansal M. RNA-mediated translation regulation in viral genomes: computational advances in the recognition of sequences and structures. Brief Bioinform 2020; 21:1151-1163. [PMID: 31204430 PMCID: PMC7109810 DOI: 10.1093/bib/bbz054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/24/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
RNA structures are widely distributed across all life forms. The global conformation of these structures is defined by a variety of constituent structural units such as helices, hairpin loops, kissing-loop motifs and pseudoknots, which often behave in a modular way. Their ubiquitous distribution is associated with a variety of functions in biological processes. The location of these structures in the genomes of RNA viruses is often coordinated with specific processes in the viral life cycle, where the presence of the structure acts as a checkpoint for deciding the eventual fate of the process. These structures have been found to adopt complex conformations and exert their effects by interacting with ribosomes, multiple host translation factors and small RNA molecules like miRNA. A number of such RNA structures have also been shown to regulate translation in viruses at the level of initiation, elongation or termination. The role of various computational studies in the preliminary identification of such sequences and/or structures and subsequent functional analysis has not been fully appreciated. This review aims to summarize the processes in which viral RNA structures have been found to play an active role in translational regulation, their global conformational features and the bioinformatics/computational tools available for the identification and prediction of these structures.
Collapse
Affiliation(s)
- Asmita Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
3
|
Thulson E, Hartwick EW, Cooper-Sansone A, Williams MAC, Soliman ME, Robinson LK, Kieft JS, Mouzakis KD. An RNA pseudoknot stimulates HTLV-1 pro-pol programmed -1 ribosomal frameshifting. RNA (NEW YORK, N.Y.) 2020; 26:512-528. [PMID: 31980578 PMCID: PMC7075266 DOI: 10.1261/rna.070490.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Programmed -1 ribosomal frameshifts (-1 PRFs) are commonly used by viruses to regulate their enzymatic and structural protein levels. Human T-cell leukemia virus type 1 (HTLV-1) is a carcinogenic retrovirus that uses two independent -1 PRFs to express viral enzymes critical to establishing new HTLV-1 infections. How the cis-acting RNA elements in this viral transcript function to induce frameshifting is unknown. The objective of this work was to conclusively define the 3' boundary of and the RNA elements within the HTLV-1 pro-pol frameshift site. We hypothesized that the frameshift site structure was a pseudoknot and that its 3' boundary would be defined by the pseudoknot's 3' end. To test these hypotheses, the in vitro frameshift efficiencies of three HTLV-1 pro-pol frameshift sites with different 3' boundaries were quantified. The results indicated that nucleotides included in the longest construct were essential to highly efficient frameshift stimulation. Interestingly, only this construct could form the putative frameshift site pseudoknot. Next, the secondary structure of this frameshift site was determined. The dominant structure was an H-type pseudoknot which, together with the slippery sequence, stimulated frameshifting to 19.4(±0.3)%. The pseudoknot's critical role in frameshift stimulation was directly revealed by examining the impact of structural changes on HTLV-1 pro-pol -1 PRF. As predicted, mutations that occluded pseudoknot formation drastically reduced the frameshift efficiency. These results are significant because they demonstrate that a pseudoknot is important to HTLV-1 pro-pol -1 PRF and define the frameshift site's 3' boundary.
Collapse
Affiliation(s)
- Eliza Thulson
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado 81301, USA
| | - Erik W Hartwick
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Andrew Cooper-Sansone
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado 81301, USA
| | - Marcus A C Williams
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado 81301, USA
| | - Mary E Soliman
- Department of Chemistry and Biochemistry, Loyola Marymount University, Los Angeles, California 90045, USA
| | - Leila K Robinson
- Department of Chemistry and Biochemistry, Loyola Marymount University, Los Angeles, California 90045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Kathryn D Mouzakis
- Department of Chemistry and Biochemistry, Loyola Marymount University, Los Angeles, California 90045, USA
| |
Collapse
|
4
|
Dever TE, Dinman JD, Green R. Translation Elongation and Recoding in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032649. [PMID: 29610120 DOI: 10.1101/cshperspect.a032649] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we highlight the current understanding of translation elongation and recoding in eukaryotes. In addition to providing an overview of the process, recent advances in our understanding of the role of the factor eIF5A in both translation elongation and termination are discussed. We also highlight mechanisms of translation recoding with a focus on ribosomal frameshifting during elongation. We see that the balance between the basic steps in elongation and the less common recoding events is determined by the kinetics of the different processes as well as by specific sequence determinants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
5
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
6
|
Q Nguyen KK, Gomez YK, Bakhom M, Radcliffe A, La P, Rochelle D, Lee JW, Sorin EJ. Ensemble simulations: folding, unfolding and misfolding of a high-efficiency frameshifting RNA pseudoknot. Nucleic Acids Res 2017; 45:4893-4904. [PMID: 28115636 PMCID: PMC5416846 DOI: 10.1093/nar/gkx012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Massive all-atom molecular dynamics simulations were conducted across a distributed computing network to study the folding, unfolding, misfolding and conformational plasticity of the high-efficiency frameshifting double mutant of the 26 nt potato leaf roll virus RNA pseudoknot. Our robust sampling, which included over 40 starting structures spanning the spectrum from the extended unfolded state to the native fold, yielded nearly 120 μs of cumulative sampling time. Conformational microstate transitions on the 1.0 ns to 10.0 μs timescales were observed, with post-equilibration sampling providing detailed representations of the conformational free energy landscape and the complex folding mechanism inherent to the pseudoknot motif. Herein, we identify and characterize two alternative native structures, three intermediate states, and numerous misfolded states, the latter of which have not previously been characterized via atomistic simulation techniques. While in line with previous thermodynamics-based models of a general RNA folding mechanism, our observations indicate that stem-strand-sequence-separation may serve as an alternative predictor of the order of stem formation during pseudoknot folding. Our results contradict a model of frameshifting based on structural rigidity and resistance to mechanical unfolding, and instead strongly support more recent studies in which conformational plasticity is identified as a determining factor in frameshifting efficiency.
Collapse
Affiliation(s)
- Khai K Q Nguyen
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA.,Department of Computer Engineering & Computer Science, California State University Long Beach, Long Beach, CA 90840, USA
| | - Yessica K Gomez
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA.,Department of Physics & Astronomy, California State University Long Beach, Long Beach, CA 90840, USA
| | - Mona Bakhom
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Amethyst Radcliffe
- Department of Physics & Astronomy, California State University Long Beach, Long Beach, CA 90840, USA
| | - Phuc La
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Dakota Rochelle
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Ji Won Lee
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Eric J Sorin
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
7
|
Gupta A, Bansal M. The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study. Phys Chem Chem Phys 2016; 18:28767-28780. [DOI: 10.1039/c6cp04617g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This work highlights a sequence dependent unfolding pathway of an RNA pseudoknot under force-induced pulling conditions.
Collapse
Affiliation(s)
- Asmita Gupta
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Manju Bansal
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|