1
|
Meerbott KB, Monhemi H, Travaglini L, Sawicki A, Ramamurthy S, Slocik JM, Dennis PB, Glover DJ, Walsh TR, Knecht MR. Metamorphic Proteins to Achieve Conformationally Selective Material Surface Binding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408141. [PMID: 39791310 DOI: 10.1002/smll.202408141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/14/2024] [Indexed: 01/12/2025]
Abstract
The controlled binding of proteins on nanoparticle surfaces remains a grand challenge required for many applications ranging from biomedical to energy storage. The difficulty in achieving this ability arises from the different functional groups of the biomolecule that can adsorb on the nanoparticle surface. While most proteins can only adopt a single structure, metamorphic proteins can access at least two different conformations, which presents intriguing opportunities to exploit such structural variations for binding to nanoparticles. Such effects are examined using calmodulin, a sensing messenger protein, that can adopt two conformations based on Ca2+ binding. The affinity of the apo and holo forms of the protein for Au is examined using a highly integrated set of experimental and computation studies, which demonstrated significantly enhanced binding for the holo protein as compared to the apo. Such effects are proposed to arise from changes in the protein structure, which lead to substantially varied biomolecular surfaces that facilitate both Au adsorption and protein-protein assembly once adsorbed. Such studies provide critical information for protein structural design to control nanoparticle adsorption for wide-ranging applications.
Collapse
Affiliation(s)
- Kyle B Meerbott
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Hassan Monhemi
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Lorenzo Travaglini
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Artur Sawicki
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sakthirupini Ramamurthy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joseph M Slocik
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, 45433, USA
| | - Patrick B Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, 45433, USA
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Marc R Knecht
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
2
|
Sun B, Kekenes-Huskey PM. Calmodulin's Interdomain Linker Is Optimized for Dynamics Signal Transmission and Calcium Binding. J Chem Inf Model 2022; 62:4210-4221. [PMID: 35994621 DOI: 10.1021/acs.jcim.2c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linkers are ubiquitous in multidomain proteins. These linkers are integral to protein functions, and accumulating evidence suggests that the linkers' versatile roles are encoded in their sequences. However, a molecular picture of how amino acid differences in the linker influence protein function is still lacking. By using extensive Gaussian-accelerated MD coupled with dynamic network analysis, we reveal the molecular bases underlying the linker's role in Calmodulin (CaM), a highly conserved Ca2+-signaling hub in eukaryotes. Three CaM constructs comprising a wild-type linker, a flexible linker (four glycines at position D78-S81), and a rigid linker (four prolines at position D78-S81) were simulated. We show that the flexible linker resembles the wild type in allowing CaM to sample a large ensemble of conformations while the rigid linker confines the sampling. Our simulations recapture experimental observations that target binding enhances the Ca2+ affinity to CaM's EF-hand sites at the N-domain. However, only the wild-type linker can both correctly capture the Ca2+ binding order and maintain the α-helical structure of the domain. The other two constructs either bind Ca2+ in an incorrect order or exhibit unfolding of an N-domain helix. We demonstrate that the wild-type linker achieves these outcomes by transmitting interdomain dynamics efficiently. This was evidenced by stronger (anti)correlations among the linker residues, decoupling of the hydrogen bonds between A1-A15 and V35-E45, and structuring of the N-domain for Ca2+ binding. This decoupling was not evident for the other two constructs. Lastly, we show that the wild-type linker's optimal transmission stems from its thermodynamically favorable strain and solvation relative to the other two constructs. Our results show how the linker sequence tunes CaM function, suggesting possible mechanisms for changes in linker properties such as mutations or post-translational modifications to modulate protein/substrate binding.
Collapse
Affiliation(s)
- Bin Sun
- Department of Pharmacology, Harbin Medical University, Harbin 150081, China
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois 60153, United States
| |
Collapse
|
3
|
Sun B, Kekenes-Huskey PM. Assessing the Role of Calmodulin's Linker Flexibility in Target Binding. Int J Mol Sci 2021; 22:ijms22094990. [PMID: 34066691 PMCID: PMC8125811 DOI: 10.3390/ijms22094990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Calmodulin (CaM) is a highly-expressed Ca2+ binding protein known to bind hundreds of protein targets. Its binding selectivity to many of these targets is partially attributed to the protein’s flexible alpha helical linker that connects its N- and C-domains. It is not well established how its linker mediates CaM’s binding to regulatory targets yet. Insights into this would be invaluable to understanding its regulation of diverse cellular signaling pathways. Therefore, we utilized Martini coarse-grained (CG) molecular dynamics simulations to probe CaM/target assembly for a model system: CaM binding to the calcineurin (CaN) regulatory domain. The simulations were conducted assuming a ‘wild-type’ calmodulin with normal flexibility of its linker, as well as a labile, highly-flexible linker variant to emulate structural changes that could be induced, for instance, by post-translational modifications. For the wild-type model, 98% of the 600 simulations across three ionic strengths adopted a bound complex within 2 μs of simulation time; of these, 1.7% sampled the fully-bound state observed in the experimentally-determined crystallographic structure. By calculating the mean-first-passage-time for these simulations, we estimated the association rate to be ka= 8.7 × 108 M−1 s−1, which is similar to the diffusion-limited, experimentally-determined rate of 2.2 × 108 M−1 s−1. Furthermore, our simulations recapitulated its well-known inverse relationship between the association rate and the solution ionic strength. In contrast, although over 97% of the labile linker simulations formed tightly-bound complexes, only 0.3% achieved the fully-bound configuration. This effect appears to stem from a difference in the ensembles of extended and collapsed states which are controlled by the linker flexibility. Therefore, our simulations suggest that variations in the CaM linker’s propensity for alpha helical secondary structure can modulate the kinetics of target binding.
Collapse
|
4
|
Chen J, Wang J, Pang L, Wang W, Zhao J, Zhu W. Deciphering molecular mechanism behind conformational change of the São Paolo metallo-β-lactamase 1 by using enhanced sampling. J Biomol Struct Dyn 2019; 39:140-151. [DOI: 10.1080/07391102.2019.1707121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Plata JJ, Remesal ER, Graciani J, Márquez AM, Rodríguez JA, Sanz JF. Understanding the Photocatalytic Properties of Pt/CeO x /TiO 2 : Structural Effects on Electronic and Optical Properties. Chemphyschem 2019; 20:1624-1629. [PMID: 31046196 DOI: 10.1002/cphc.201900141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/10/2019] [Indexed: 01/12/2023]
Abstract
Ceria-titania interfaces play a crucial role in different chemical processes but are especially promising for the photocatalytic splitting of water using light in the visible wavelength region when Pt is added to the system. However, the complexity of this hierarchical structure hampers the study of the origin of its outstanding properties. In this article, the structural, electronic and optoelectronic properties of CeO2 /TiO2 systems containing 1D, 2D, and 3D particles of ceria are analyzed by means of density functional calculations. Adsorption sites and vacancy effects have been studied to model Pt adsorption. Density of states calculations and absorption spectra simulations explain the behavior of these systems. Finally, these models are used for the screening of other metals that can be combined with this heterostructure to potentially find more efficient water splitting photocatalysts.
Collapse
Affiliation(s)
- J J Plata
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla s/n, 41012, Sevilla
| | - E R Remesal
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla s/n, 41012, Sevilla
| | - Jesús Graciani
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla s/n, 41012, Sevilla
| | - A M Márquez
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla s/n, 41012, Sevilla
| | - J A Rodríguez
- Chemistry Department, Brookhaven National Laboratory Upton, New York, 11973-5000, United States
| | - Javier Fernández Sanz
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla s/n, 41012, Sevilla
| |
Collapse
|
6
|
Zhao L, Lai L, Zhang Z. How calcium ion binding induces the conformational transition of the calmodulin N-terminal domain—an atomic level characterization. Phys Chem Chem Phys 2019; 21:19795-19804. [DOI: 10.1039/c9cp03917a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Ca2+binding and triggering conformation transition of nCaM were detected in unbiased molecular dynamics simulations.
Collapse
Affiliation(s)
- Likun Zhao
- College of Life Science
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Luhua Lai
- BNLMS, and Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
- Center for Quantitative Biology
| | - Zhuqing Zhang
- College of Life Science
- University of Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
7
|
Chen J, Peng C, Wang J, Zhu W. Exploring molecular mechanism of allosteric inhibitor to relieve drug resistance of multiple mutations in HIV-1 protease by enhanced conformational sampling. Proteins 2018; 86:1294-1305. [PMID: 30260044 DOI: 10.1002/prot.25610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/02/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022]
Abstract
Recently, allosteric regulations of HIV-1 protease (PR) are suggested as a promising approach to relieve drug resistance of mutations toward inhibitors targeting the active site of PR. Replica-exchange molecular dynamics (REMD) simulations and normal mode analysis (NMA) are integrated to enhance conformational sampling of PR. Molecular mechanics generalized Born surface area (MM-GBSA) method was applied to calculate binding free energies of three inhibitors APV, DRV, and NIT to the wild-type (WT) and multidrug resistance (MDR) PRs. The results suggest that binding free energies of APV and DRV are decreased in the MDR PR relative to the WT PR, suggesting drug resistance of mutations on these two inhibitors. However, the binding ability of the allosteric inhibitor NIT is not impaired in the MDR PR. In addition, internal dynamics analysis based on REMD simulations proves that mutations hardly produce obvious effect on the conformation of the MDR PR in comparison to the WT PR. Scanning of hydrophobic contacts and hydrogen bond contacts of inhibitors with residues of PRs on the concatenated trajectories of REMD demonstrates that mutations change the symmetric interaction networks of APV and DRV with PR, but do not generate obvious influence on the asymmetric interaction network of NIT with PR. In summary, allosteric inhibitor NIT can adapt the MDR PR better than those inhibitors toward the active site of PR, thus allosteric inhibitors of PR may be a possible channel to overcome drug resistance of PR.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China.,Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Peng
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Chen J, Wang J, Pang L, Zhu W. Inhibiting mechanism of small molecule toward the p53-MDM2 interaction: A molecular dynamic exploration. Chem Biol Drug Des 2018; 92:1763-1777. [DOI: 10.1111/cbdd.13345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Jianzhong Chen
- School of Science; Shandong Jiaotong University; Jinan China
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Jinan Wang
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Laixue Pang
- School of Science; Shandong Jiaotong University; Jinan China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| |
Collapse
|
9
|
Chen J, Wang J, Zhu W. Zinc ion-induced conformational changes in new Delphi metallo-β-lactamase 1 probed by molecular dynamics simulations and umbrella sampling. Phys Chem Chem Phys 2018; 19:3067-3075. [PMID: 28079218 DOI: 10.1039/c6cp08105c] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hydrolysis of a β-lactam core ring caused by new Delphi metallo-β-lactamase 1 (NDM-1) with the help of two zinc cofactors induces significant resistance toward β-lactam antibiotics. Molecular dynamics (MD) simulations and the umbrella sampling method are integrated to study the conformational change mechanism of NDM-1 mediated by zinc ion binding. The statistical analyses of interaction contacts of the antibiotic ampicillin (AMP) with residues based on MD trajectories suggest that two Zn ions are essential for maintaining the binding of AMP with NDM-1. Umbrella sampling simulations further reveal that double-Zn coordination exerts strong restriction on the motions of loop L10 relative to loops L3 and L4. Principal component (PC) analysis also demonstrates that zinc ion binding totally inhibits the motion extent of NDM-1 and changes internal motion modes in NDM-1. We expect that the current study can provide significant dynamical information involving conformational changes of NDM-1 for the development of efficient inhibitors to decrease drug resistance of NDM-1 toward antibiotics.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250014, China.
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
10
|
Su J, Liu X, Zhang S, Yan F, Zhang Q, Chen J. A computational insight into binding modes of inhibitors XD29, XD35, and XD28 to bromodomain-containing protein 4 based on molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:1212-1224. [DOI: 10.1080/07391102.2017.1317666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jing Su
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Fangfang Yan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| |
Collapse
|
11
|
Shi S, Zhang S, Zhang Q. Insight into binding mechanisms of inhibitors MKP56, MKP73, MKP86, and MKP97 to HIV-1 protease by using molecular dynamics simulation. J Biomol Struct Dyn 2017; 36:981-992. [PMID: 28279118 DOI: 10.1080/07391102.2017.1305296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
HIV-1 protease (PR) has been a significant target for design of potent inhibitors curing acquired immunodeficiency syndrome. Molecular dynamics simulations coupled with molecular mechanics Poisson-Boltzmann surface area method were performed to study interaction modes of four inhibitors MKP56, MKP73, MKP86, and MKP97 with PR. The results suggest that the main force controlling interactions of inhibitors with PR should be contributed by van der Waals interactions between inhibitors and PR. The cross-correlation analyses based on MD trajectories show that inhibitor binding produces significant effect on the flap dynamics of PR. Hydrogen bond analyses indicate that inhibitors can form stable hydrogen bonding interactions with the residues from the catalytic strands of PR. The contributions of separate residues to inhibitor bindings are evaluated by using residue-based free energy decomposition method and the results demonstrate that the CH-π and CH-CH interactions between the hydrophobic groups of inhibitors with residues drive the associations of inhibitors with PR. We expect that this study can provide a significant theoretical aid for design of potent inhibitors targeting PR.
Collapse
Affiliation(s)
- Shuhua Shi
- a School of Science , Shandong Jianzhu University , Jinan 250101 , China
| | - Shaolong Zhang
- b College of Physics and Electronics , Shandong Normal University , Jinan 250014 , China
| | - Qinggang Zhang
- b College of Physics and Electronics , Shandong Normal University , Jinan 250014 , China
| |
Collapse
|
12
|
Chen J, Wang J, Zhu W. Mutation L1196M-induced conformational changes and the drug resistant mechanism of anaplastic lymphoma kinase studied by free energy perturbation and umbrella sampling. Phys Chem Chem Phys 2017; 19:30239-30248. [DOI: 10.1039/c7cp05418a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Anaplastic lymphoma kinase (ALK) has been regarded as a promising drug target in the treatment of tumors and the mutation L1196M induces different levels of drug resistance toward the existing inhibitors.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University
- Jinan
- China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences
- Shanghai
- China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
13
|
Molecular Mechanism and Energy Basis of Conformational Diversity of Antibody SPE7 Revealed by Molecular Dynamics Simulation and Principal Component Analysis. Sci Rep 2016; 6:36900. [PMID: 27830740 PMCID: PMC5103278 DOI: 10.1038/srep36900] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/21/2016] [Indexed: 01/12/2023] Open
Abstract
More and more researchers are interested in and focused on how a limited repertoire of antibodies can bind and correspondingly protect against an almost limitless diversity of invading antigens. In this work, a series of 200-ns molecular dynamics (MD) simulations followed by principal component (PC) analysis and free energy calculations were performed to probe potential mechanism of conformational diversity of antibody SPE7. The results show that the motion direction of loops H3 and L3 is different relative to each other, implying that a big structural difference exists between these two loops. The calculated energy landscapes suggest that the changes in the backbone angles ψ and φ of H-Y101 and H-Y105 provide significant contributions to the conformational diversity of SPE7. The dihedral angle analyses based on MD trajectories show that the side-chain conformational changes of several key residues H-W33, H-Y105, L-Y34 and L-W93 around binding site of SPE7 play a key role in the conformational diversity of SPE7, which gives a reasonable explanation for potential mechanism of cross-reactivity of single antibody toward multiple antigens.
Collapse
|
14
|
Niknam N, Khakzad H, Arab SS, Naderi-Manesh H. PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory. Comput Biol Med 2016; 72:151-9. [PMID: 27043857 DOI: 10.1016/j.compbiomed.2016.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/15/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022]
Abstract
The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity.
Collapse
Affiliation(s)
- Niloofar Niknam
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hamed Khakzad
- Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Seyed Shahriar Arab
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Naderi-Manesh
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
15
|
Liu T, Lu D, Zhang H, Zheng M, Yang H, Xu Y, Luo C, Zhu W, Yu K, Jiang H. Applying high-performance computing in drug discovery and molecular simulation. Natl Sci Rev 2016; 3:49-63. [PMID: 32288960 PMCID: PMC7107815 DOI: 10.1093/nsr/nww003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 12/31/2022] Open
Abstract
In recent decades, high-performance computing (HPC) technologies and supercomputers in China have significantly advanced, resulting in remarkable achievements. Computational drug discovery and design, which is based on HPC and combines pharmaceutical chemistry and computational biology, has become a critical approach in drug research and development and is financially supported by the Chinese government. This approach has yielded a series of new algorithms in drug design, as well as new software and databases. This review mainly focuses on the application of HPC to the fields of drug discovery and molecular simulation at the Chinese Academy of Sciences, including virtual drug screening, molecular dynamics simulation, and protein folding. In addition, the potential future application of HPC in precision medicine is briefly discussed.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dong Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huaiyu Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kunqian Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|