1
|
Ucur B, Shiels OJ, Blanksby SJ, Trevitt AJ. Observation of Solvent-Dependence in the Mechanism of Neutral-Catalyzed Isomerization of para-Aminobenzoic Acid Protomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1128-1137. [PMID: 38523556 DOI: 10.1021/jasms.3c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Proton-transfer reactions are commonplace during electrospray ionization (ESI) mass spectrometry experiments and are often responsible for imparting charge to analyte molecules. Multiple protonation-site isomers (protomers) can arise for polyfunctional molecules and these isomers can interconvert via solvent-mediated proton transfer reactions during various stages of the ESI process. Studying the populations and interconversion of protonation isomers provides key insight into the ESI process, ion-molecule interactions, and ion dissociation mechanisms. An archetype molecule to study protomer interconversion fundamentals in this context is para-aminobenzoic acid (pABA), where both the amino and carboxylic acid protomers are typically formed under ESI and the mechanisms for interconversion are still under refinement. Using ion-trap mass spectrometry reaction kinetics (2.5 mTorr, 300 K), this study examines gas-phase interconversion catalysis of pABA protomers by seven neutral species, which are commen solvents and additives used for ESI: water, formic acid, methanol, ethanol, propanol, ammonia, and acetonitrile. Three distinct reaction cases are reported: (i) formic acid, methanol, ethanol, propanol, and ammonia each catalyze the interconversion between the amino and carboxylic acid protomers via a n = 1 solvent-molecule vehicle mechanism; (ii) for water, however, a n = 6 adduct complex is detected and this suggests that the observed protomer interconversion occurs through a Grotthuss mechanism, in accord with literature reports; (iii) acetonitrile inhibits proton transfer by the formation of particularly stable n = 1 and 2 adduct complexes. The second-order rate constants for the protomer interconversion are observed to increase in the following order: H2O < HCO2H < MeOH < EtOH < PrOH < NH3. Potential energy schemes are reported for all neutral-catalyzed proton transfer reactions using the DSD-PBEP86-D3(BJ)/aug-cc-pVDZ level of theory. A central transition state, which connects the protonation site adducts, is shown to be the key rate-limiting step. The energy of this transition state is sensitive to the proton affinity of the neutral solvent, and this is supported by the correlation between the reaction rate and the solvent proton affinity.
Collapse
Affiliation(s)
- Boris Ucur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Oisin J Shiels
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility and the School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
2
|
Das S, Chakraborty A. Computational investigation of the conformer selective complexes of 1,2,3,4-tetrahydroisoquinoline: Ammonia (THIQ: NH3) in S0. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Jouvet C, Miyazaki M, Fujii M. Revealing the role of excited state proton transfer (ESPT) in excited state hydrogen transfer (ESHT): systematic study in phenol-(NH 3) n clusters. Chem Sci 2021; 12:3836-3856. [PMID: 34163653 PMCID: PMC8179502 DOI: 10.1039/d0sc06877b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Excited State Hydrogen Transfer (ESHT), proposed at the end of the 20th century by the corresponding authors, has been observed in many neutral or protonated molecules and become a new paradigm to understand excited state dynamics/photochemistry of aromatic molecules. For example, a significant number of photoinduced proton-transfer reactions from X–H bonds have been re-defined as ESHT, including those of phenol, indole, tryptophan, aromatic amino acid cations and so on. Photo-protection mechanisms of biomolecules, such as isolated nucleic acids of DNA, are also discussed in terms of ESHT. Therefore, a systematic and up-to-date description of ESHT mechanism is important for researchers in chemistry, biology and related fields. In this review, we will present a general model of ESHT which unifies the excited state proton transfer (ESPT) and the ESHT mechanisms and reveals the hidden role of ESPT in controlling the reaction rate of ESHT. For this purpose, we give an overview of experimental and theoretical work on the excited state dynamics of phenol–(NH3)n clusters and related molecular systems. The dynamics has a significant dependence on the number of solvent molecules in the molecular cluster. Three-color picosecond time-resolved IR/near IR spectroscopy has revealed that ESHT becomes an electron transfer followed by a proton transfer in highly solvated clusters. The systematic change from ESHT to decoupled electron/proton transfer according to the number of solvent molecules is rationalized by a general model of ESHT including the role of ESPT. A general model of excited state hydrogen transfer (ESHT) which unifies ESHT and the excited state proton transfer (ESPT) is presented from experimental and theoretical works on phenol–(NH3)n. The hidden role of ESPT is revealed.![]()
Collapse
Affiliation(s)
- Christophe Jouvet
- CNRS, Aix Marseille Université, Physique des Interactions Ioniques et Moleculaires (PIIM), UMR 7345 13397 Marseille Cedex France .,World Research Hub Initiatives, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-15, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Mitsuhiko Miyazaki
- Natural Science Division, Faculty of Core Research, Ochanomizu University 2-1-1 Ohtsuka, Bunkyo-ku Tokyo 112-8610 Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-15, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Masaaki Fujii
- World Research Hub Initiatives, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-15, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-15, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
4
|
Verma A, Prasad NE, Srivastava J, Saha S. Probing the Heterogeneity of Ionic Liquids in Solution through Phenol-Water Phase Behavior. ChemistrySelect 2019. [DOI: 10.1002/slct.201803114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abhineet Verma
- Dept. of Chemistry; Institute of Science; Banaras Hindu University; Varanasi 221005 India
| | - Namburi Eswara Prasad
- Defence Materials and Stores Research and Development Establishment (DMSRDE); Kanpur India
| | - Jyoti Srivastava
- Defence Materials and Stores Research and Development Establishment (DMSRDE); Kanpur India
| | - Satyen Saha
- Dept. of Chemistry; Institute of Science; Banaras Hindu University; Varanasi 221005 India
| |
Collapse
|
5
|
Chatterjee P, Ghosh AK, Samanta M, Chakraborty T. Barrierless Proton Transfer in the Weak C-H···O Hydrogen Bonded Methacrolein Dimer upon Nonresonant Multiphoton Ionization in the Gas Phase. J Phys Chem A 2018; 122:5563-5573. [PMID: 29878781 DOI: 10.1021/acs.jpca.8b02597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intermolecular proton transfer (IMPT) in a C-H···O hydrogen bonded dimer of an α,β-unsaturated aldehyde, methacrolein (MC), upon nonresonant multiphoton ionization by 532 nm laser pulses (10 ns), has been investigated using time-of-flight (TOF) mass spectrometry under supersonic cooling condition. The mass peaks corresponding to both the protonated molecular ion [(MC)H+] and intact dimer cation [(MC)2]•+ show up in the mass spectra, and the peak intensity of the former increases proportionately with the latter with betterment of the jet cooling conditions. The observations indicate that [(MC)2]•+ is the likely precursor of (MC)H+ and, on the basis of electronic structure calculations, IMPT in the dimer cation has been shown to be the key reaction for formation of the latter. Laser power dependences of ion yields indicate that at this wavelength the dimer is photoionized by means of 4-photon absorption process, and the total 4-photon energy is nearly the same as the predicted vertical ionization energy of the dimer. Electronic structure calculations reveal that the optimized structures of [(MC)2]•+ correspond to a proton transferred configuration wherein the aldehydic hydrogen is completely shifted to the carbonyl oxygen of the neighboring moiety. Potential energy scans along the C-H···O coordinate also show that the IMPT in [(MC)2]•+ is a barrierless process.
Collapse
Affiliation(s)
- Piyali Chatterjee
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Arup K Ghosh
- Department of Chemistry , Dharmsinh Desai University , Nadiad 387001 , Gujarat , India
| | - Monoj Samanta
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Tapas Chakraborty
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
6
|
Shimizu T, Hashimoto K, Hada M, Miyazaki M, Fujii M. A theoretical study on the size-dependence of ground-state proton transfer in phenol-ammonia clusters. Phys Chem Chem Phys 2018; 20:3265-3276. [PMID: 29134211 DOI: 10.1039/c7cp05247b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Geometries and infrared (IR) spectra in the mid-IR region of phenol-(ammonia)n (PhOH-(NH3)n) (n = 0-10) clusters have been studied using density functional theory (DFT) to investigate the critical number of solvent molecules necessary to promote ground-state proton transfer (GSPT). For n ≤ 8 clusters, the most stable isomer is a non-proton-transferred (non-PT) structure, and all isomers found within 1.5 kcal mol-1 from it are also non-PT structures. For n = 9, the most stable isomer is also a non-PT structure; however, the second stable isomer is a PT structure, whose relative energy is within the experimental criterion of population (0.7 kcal mol-1). For n = 10, the PT structure is the most stable one. We can therefore estimate that the critical size of GSPT is n = 9. This is confirmed by the fact that these calculated IR spectra are in good accordance with our previous experimental results of mid-IR spectra. It is demonstrated that characteristic changes of the ν9a and ν12 bands in the skeletal vibrational region provide clear information that the GSPT reaction has occurred. It was also found that the shortest distance between the π-ring and the solvent moiety is a good indicator of the PT reaction.
Collapse
Affiliation(s)
- Toshihiko Shimizu
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | | | | | | | | |
Collapse
|
7
|
Novak J, Prlj A, Basarić N, Corminboeuf C, Došlić N. Photochemistry of 1- and 2-Naphthols and Their Water Clusters: The Role of1ππ*(La) Mediated Hydrogen Transfer to Carbon Atoms. Chemistry 2017; 23:8244-8251. [DOI: 10.1002/chem.201700691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jurica Novak
- Department of Physical Chemistry; Ruđer Bošković Institute; Bijenička cesta 54 10000 Zagreb Croatia
| | - Antonio Prlj
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry; Ruđer Bošković Institute; Bijenička cesta 54 10000 Zagreb Croatia
| | - Clémence Corminboeuf
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Nađa Došlić
- Department of Physical Chemistry; Ruđer Bošković Institute; Bijenička cesta 54 10000 Zagreb Croatia
| |
Collapse
|
8
|
Shimizu T, Miyazaki M, Fujii M. Theoretical Study on the Size Dependence of Ground-State Proton Transfer in 1-Naphthol–Ammonia Clusters. J Phys Chem A 2016; 120:7167-74. [DOI: 10.1021/acs.jpca.6b07079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshihiko Shimizu
- Laboratory
for Chemistry
and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Mitsuhiko Miyazaki
- Laboratory
for Chemistry
and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Masaaki Fujii
- Laboratory
for Chemistry
and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
9
|
Shimizu T, Manita S, Yoshikawa S, Hashimoto K, Miyazaki M, Fujii M. The mechanism of excited-state proton transfer in 1-naphthol–piperidine clusters. Phys Chem Chem Phys 2015; 17:25393-402. [DOI: 10.1039/c5cp03620h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoexcitation directly triggers proton transfer in 1-naphthol–(piperidine)n. This mechanism is essentially different from 1-naphthol–(NH3)n in which the internal conversion process is required to promote excited-state proton transfer.
Collapse
Affiliation(s)
- Toshihiko Shimizu
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Shun Manita
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Shunpei Yoshikawa
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Kenro Hashimoto
- Department of Chemistry
- Graduate School of Science and Engineering
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Mitsuhiko Miyazaki
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Masaaki Fujii
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|