1
|
Pem B, Brkljača Z, Philippe A, Schaumann GE, Vazdar M, Bakarić D. FTIR spectroscopy and molecular level insight of diluted aqueous solutions of acetic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123135. [PMID: 37454436 DOI: 10.1016/j.saa.2023.123135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Aqueous solutions of acetic acid (AA) have been intensively explored for decades with a particular attention addressed to the hydrogen bond network generated by COOH group at different concentrations. In majority of studies conducted so far the envelope originated from νCO is decomposed into two bands assigned to differently hydrated monomers: the one presumably to AA···H2O, and another one to AA···(H2O)2. In order to examine if species other than the mentioned monomers produce this spectral signature, we performed computational and FTIR spectroscopic study of AA in aqueous solutions. Dilute solutions of deuterated acetic acid (CD3COOD) in D2O and in C2Cl4 as a reference were prepared (c0 = 0.001, 0.01 and 0.1 mol dm-3) as well as of deuterated sodium acetate (CD3COONa) in D2O. CD3COOD in 0.1 mol dm-3 solution in D2O displays a feature that separated in two signals with maxima at 1706 cm-1 and 1687 cm-1. A combined DFT and molecular dynamics study performed in this work showed the assignation of those spectral bands to be a more complex problem than previously thought, with syn-anti isomerism and hydration contributing to the experimentally observed broad νCO envelope.
Collapse
Affiliation(s)
- Barbara Pem
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; Selvita d.o.o. Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Allan Philippe
- University of Koblenz-Landau, iES Landau-Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, D-76829 Landau, Germany
| | - Gabriele E Schaumann
- University of Koblenz-Landau, iES Landau-Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, D-76829 Landau, Germany
| | - Mario Vazdar
- Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Danijela Bakarić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; University of Koblenz-Landau, iES Landau-Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, D-76829 Landau, Germany.
| |
Collapse
|
2
|
Guo J, Albesa A, Wexler C. Advantages of Multidimensional Biasing in Accelerated Dynamics: Application to the Calculation of the Acid p Ka for Acetic Acid. J Phys Chem B 2023; 127:8446-8455. [PMID: 37738501 DOI: 10.1021/acs.jpcb.3c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The use of accelerated sampling methods such as metadynamics has shown a significant advantage in calculations that involve infrequent events, which would otherwise require sampling a prohibitive number of configurations to determine the difference in free energies between two or more chemically distinct states such as in the calculation of acid dissociation constants Ka. In this case, the most common method is to bias the system via a single collective variable (CV) representing the coordination number of the proton donor group, which yields results in reasonable agreement with experiments. Here we study the deprotonation of acetic acid using the reactive force field ReaxFF and observe a significant dependence of Ka on the simulation box size when biasing only the coordination number CV, which is due to incomplete sampling of the deprotonated state for small simulation systems and inefficient sampling for larger ones. Incorporating a second CV representing the distance between the H3O+ cation and the acetate anion results in substantially more efficient sampling, both accelerating the dynamics and virtually eliminating the computational box size dependence.
Collapse
Affiliation(s)
- Jiasen Guo
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Alberto Albesa
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
- INIFTA, Universidad Nacional de La Plata, B1900 La Plata, Argentina
| | - Carlos Wexler
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
3
|
Zhang J, Tanjedrew N, Wenzel M, Royla P, Du H, Kiatisevi S, Lindoy LF, Weigand JJ. Selective Separation of Lithium, Magnesium and Calcium using 4-Phosphoryl Pyrazolones as pH-Regulated Receptors. Angew Chem Int Ed Engl 2023; 62:e202216011. [PMID: 36625760 DOI: 10.1002/anie.202216011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Ensuring continuous and sustainable lithium supply requires the development of highly efficient separation processes such as LLE (liquid-liquid extraction) for both primary sources and certain waste streams. In this work, 4-phosphoryl pyrazolones are used in an efficient pH-controlled stepwise separation of Li+ from Ca2+ , Mg2+ , Na+ and K+ . The factors affecting LLE process, such as the substitution pattern of the extractant, diluent/water distribution, co-ligand, pH, and speciation of the metal complexes involved, were systematically investigated. The maximum extraction efficiency of Li+ at pH 6.0 was 94 % when Mg2+ and Ca2+ were previously separated at pH<5.0, proving that the separation of these ions is possible by simply modulating the pH of the aqueous phase. Our study points a way to separation of lithium from acid brine or from spent lithium ion battery leaching solutions, which supports the future supply of lithium in a more environmentally friendly and sustainable manner.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Narisara Tanjedrew
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Marco Wenzel
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Philipp Royla
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Hao Du
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Supavadee Kiatisevi
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Leonard F Lindoy
- School of Chemistry, F11, University of Sydney, Sydney, NSW-2006, Australia
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
4
|
Zhang J, Wenzel M, Schnaars K, Hennersdorf F, Lindoy LF, Weigand JJ. Highly Tunable 4-Phosphoryl Pyrazolone Receptors for Selective Rare-Earth Separation. Inorg Chem 2023; 62:3212-3228. [PMID: 36752766 DOI: 10.1021/acs.inorgchem.2c04221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Highly selective rare-earth separation has become increasingly important due to the indispensable role of these elements in various cutting-edge technologies including clean energy. However, the similar physicochemical properties of rare-earth elements (REEs) render their separation very challenging, and the development of new selective receptors for these elements is potentially of very considerable economic and environmental importance. Herein, we report the development of a series of 4-phosphoryl pyrazolone receptors for the selective separation of trivalent lanthanum, europium, and ytterbium as the representatives of light, middle, and heavy REEs, respectively. X-ray crystallography studies were employed to obtain solid-state structures across 11 of the resulting complexes, allowing comparative structure-function relationships to be probed, including the effect of lanthanide contraction that occurs along the series from lanthanum to europium to ytterbium and which potentially provides a basis for REE ion separation. In addition, the influence of ligand structure and lipophilicity on lanthanide binding and selectivity was systematically investigated via n-octanol/water distribution and liquid-liquid extraction (LLE) studies. Corresponding stoichiometry relationships between solid and solution states were well established using slope analyses. The results provide new insights into some fundamental lanthanide coordination chemistry from a separation perspective and establish 4-phosphoryl pyrazolone derivatives as potential practical extraction reagents for the selective separation of REEs in the future.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Marco Wenzel
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Kathleen Schnaars
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Felix Hennersdorf
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Leonard F Lindoy
- School of Chemistry, F11, University of Sydney, New South Wales 2006, Sydney, Australia
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany.,Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
5
|
Pooventhiran T, Alzahrani AYA, Rajimon K, Thomas R. Solvent interaction and dynamics of neurotransmitters ‐aspartic acid and ‐glutamic acid with water and ethanol. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Thomas R, Pooventhiran T, Bakht MA, Alzahrani AY, Salem MA. Study of interaction between different solvents and neurotransmitters dopamine, l-adrenaline, and l-noradrenaline using LED, QTAIM and AIMD. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Thomas R, Pooventhiran T. Study of the dynamics of the Interaction of glycine and GABA with water and ethanol using theoretical tools. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Windom ZW, Datta M, Huda MM, Sabuj MA, Rai N. Understanding speciation and solvation of glyphosate from first principles simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Raman AS, Selloni A. Modeling the Solvation and Acidity of Carboxylic Acids Using an Ab Initio Deep Neural Network Potential. J Phys Chem A 2022; 126:7283-7290. [PMID: 36194268 DOI: 10.1021/acs.jpca.2c06252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formic and acetic acid constitute the simplest of carboxylic acids, yet they exhibit fascinating chemistry in the condensed phase such as proton transfer and dimerization. The go-to method of choice for modeling these rare events have been accurate but expensive ab initio molecular dynamics simulations. In this study, we present a deep neural network potential trained using accurate ab initio data that can be used in tandem with enhanced-sampling methods to perform an efficient exploration of the free-energy surface of aqueous solutions of weak carboxylic acids. In particular, we show that our model captures proton dissociation and provides a good estimate of the pKa, as well as the dimerization of formic and acetic acid. This provides a suitable starting point for applications in different research areas where computational efficiency coupled with the accuracy of ab initio methods is required.
Collapse
Affiliation(s)
- Abhinav S Raman
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Annabella Selloni
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| |
Collapse
|
10
|
Understanding the solvation dynamics of metformin in water using theoretical tools. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Evidence of significant non-covalent interactions in the solution of Levetiracetam in water and methanol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Kollias L, Zhang D, Allec SI, Nguyen MT, Lee MS, Cantu DC, Rousseau R, Glezakou VA. Advanced Theory and Simulation to Guide the Development of CO 2 Capture Solvents. ACS OMEGA 2022; 7:12453-12466. [PMID: 35465123 PMCID: PMC9022203 DOI: 10.1021/acsomega.1c07398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Increasing atmospheric concentrations of greenhouse gases due to industrial activity have led to concerning levels of global warming. Reducing carbon dioxide (CO2) emissions, one of the main contributors to the greenhouse effect, is key to mitigating further warming and its negative effects on the planet. CO2 capture solvent systems are currently the only available technology deployable at scales commensurate with industrial processes. Nonetheless, designing these solvents for a given application is a daunting task requiring the optimization of both thermodynamic and transport properties. Here, we discuss the use of atomic scale modeling for computing reaction energetics and transport properties of these chemically complex solvents. Theoretical studies have shown that in many cases, one is dealing with a rich ensemble of chemical species in a coupled equilibrium that is often difficult to characterize and quantify by experiment alone. As a result, solvent design is a balancing act between multiple parameters which have optimal zones of effectiveness depending on the operating conditions of the application. Simulation of reaction mechanisms has shown that CO2 binding and proton transfer reactions create chemical equilibrium between multiple species and that the agglomeration of resulting ions and zwitterions can have profound effects on bulk solvent properties such as viscosity. This is balanced against the solvent systems needing to perform different functions (e.g., CO2 uptake and release) depending on the thermodynamic conditions (e.g., temperature and pressure swings). The latter constraint imposes a "Goldilocks" range of effective parameters, such as binding enthalpy and pK a, which need to be tuned at the molecular level. The resulting picture is that solvent development requires an integrated approach where theory and simulation can provide the necessary ingredients to balance competing factors.
Collapse
Affiliation(s)
- Loukas Kollias
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Difan Zhang
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Sarah I. Allec
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Manh-Thuong Nguyen
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Mal-Soon Lee
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - David C. Cantu
- Department
of Chemical and Materials Engineering, University
of Nevada, Reno, Reno, Nevada 89557, United States
| | - Roger Rousseau
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Vassiliki-Alexandra Glezakou
- Basic
& Applied Molecular Foundations, Physical and Computational Sciences
Directorate, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
13
|
Edeleva M, Van Steenberge PH, Sabbe MK, D’hooge DR. Connecting Gas-Phase Computational Chemistry to Condensed Phase Kinetic Modeling: The State-of-the-Art. Polymers (Basel) 2021; 13:3027. [PMID: 34577928 PMCID: PMC8467432 DOI: 10.3390/polym13183027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, quantum chemical calculations (QCC) have increased in accuracy, not only providing the ranking of chemical reactivities and energy barriers (e.g., for optimal selectivities) but also delivering more reliable equilibrium and (intrinsic/chemical) rate coefficients. This increased reliability of kinetic parameters is relevant to support the predictive character of kinetic modeling studies that are addressing actual concentration changes during chemical processes, taking into account competitive reactions and mixing heterogeneities. In the present contribution, guidelines are formulated on how to bridge the fields of computational chemistry and chemical kinetics. It is explained how condensed phase systems can be described based on conventional gas phase computational chemistry calculations. Case studies are included on polymerization kinetics, considering free and controlled radical polymerization, ionic polymerization, and polymer degradation. It is also illustrated how QCC can be directly linked to material properties.
Collapse
Affiliation(s)
- Mariya Edeleva
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Zwijnaarde, Belgium; (P.H.M.V.S.); (M.K.S.)
| | - Paul H.M. Van Steenberge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Zwijnaarde, Belgium; (P.H.M.V.S.); (M.K.S.)
| | - Maarten K. Sabbe
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Zwijnaarde, Belgium; (P.H.M.V.S.); (M.K.S.)
- Industrial Catalysis and Adsorption Technology (INCAT), Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Zwijnaarde, Belgium; (P.H.M.V.S.); (M.K.S.)
- Centre for Textile Science and Engineering (CTSE), Ghent University, Technologiepark 70a, 9052 Zwijnaarde, Belgium
| |
Collapse
|
14
|
Shiery RC, Cooper KA, Cantu DC. Computational Prediction of All Lanthanide Aqua Ion Acidity Constants. Inorg Chem 2021; 60:10257-10266. [PMID: 34214391 DOI: 10.1021/acs.inorgchem.1c00662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protonation state of lanthanide-ligand complexes, or lanthanide-containing porous materials, with many Brønsted acid sites can change due to proton loss/gain reactions with water or other heteroatom-containing compounds. Consequently, variations in the protonation state of lanthanide-containing species affect their molecular structure and desired properties. Lanthanide(III) aqua ions undergo hydrolysis and form hydroxides; they are the best characterized lanthanide-containing species with multiple Brønsted acid sites. We employed constrained ab initio molecular dynamics simulations and electronic structure calculations to determine all acidity constants of the lanthanide(III) aqua ions solely from computation. The first, second, and third acidity constants of lanthanide(III) aqua ions were predicted, on average, within 1.2, 2.5, and 4.7 absolute pKa units from experiment, respectively. A table includes our predicted pKa values alongside most experimentally measured pKa values known to date. The approach presented is particularly suitable to determine the Brønsted acidity of lanthanide-containing systems with multiple acidic sites, including those whose measured acidity constants cannot be linked to specific acid sites.
Collapse
Affiliation(s)
- Richard C Shiery
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Kyle A Cooper
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
15
|
Ab initio metadynamics calculations reveal complex interfacial effects in acetic acid deprotonation dynamics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Thomsen B, Shiga M. Nuclear quantum effects on autoionization of water isotopologs studied by ab initio path integral molecular dynamics. J Chem Phys 2021; 154:084117. [PMID: 33639728 DOI: 10.1063/5.0040791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, we investigate the nuclear quantum effects (NQEs) on the acidity constant (pKA) of liquid water isotopologs under the ambient condition by path integral molecular dynamics (PIMD) simulations. We compared simulations using a fully explicit solvent model with a classical polarizable force field, density functional tight binding, and ab initio density functional theory, which correspond to empirical, semiempirical, and ab initio PIMD simulations, respectively. The centroid variable with respect to the proton coordination number of a water molecule was restrained to compute the gradient of the free energy, which measures the reversible work of the proton abstraction for the quantum mechanical system. The free energy curve obtained by thermodynamic integration was used to compute the pKA value based on probabilistic determination. This technique not only reproduces the pKA value of liquid D2O experimentally measured (14.86) but also allows for a theoretical prediction of the pKA values of liquid T2O and aqueous HDO and HTO, which are unknown due to their scarcity. It is also shown that the NQEs on the free energy curve can result in a downshift of 4.5 ± 0.9 pKA units in the case of liquid water, which indicates that the NQEs plays an indispensable role in the absolute determination of pKA. The results of this study can help inform further extensions into the calculation of the acidity constants of isotope substituted species with high accuracy.
Collapse
Affiliation(s)
- Bo Thomsen
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Motoyuki Shiga
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| |
Collapse
|
17
|
Weiß M, Brehm M. Exploring Free Energy Profiles of Enantioselective Organocatalytic Aldol Reactions under Full Solvent Influence. Molecules 2020; 25:E5861. [PMID: 33322424 PMCID: PMC7764805 DOI: 10.3390/molecules25245861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
We present a computational study on the enantioselectivity of organocatalytic proline-catalyzed aldol reactions between aldehydes in dimethylformamide (DMF). To explore the free energy surface of the reaction, we apply two-dimensional metadynamics on top of ab initio molecular dynamics (AIMD) simulations with explicit solvent description on the DFT level of theory. We avoid unwanted side reactions by utilizing our newly developed hybrid AIMD (HyAIMD) simulation scheme, which adds a simple force field to the AIMD simulation to prevent unwanted bond breaking and formation. Our condensed phase simulation results are able to nicely reproduce the experimental findings, including the main stereoisomer that is formed, and give a correct qualitative prediction of the change in syn:anti product ratio with different substituents. Furthermore, we give a microscopic explanation for the selectivity. We show that both the explicit description of the solvent and the inclusion of entropic effects are vital to a good outcome-metadynamics simulations in vacuum and static nudged elastic band (NEB) calculations yield significantly worse predictions when compared to the experiment. The approach described here can be applied to a plethora of other enantioselective or organocatalytic reactions, enabling us to tune the catalyst or determine the solvent with the highest stereoselectivity.
Collapse
Affiliation(s)
| | - Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany;
| |
Collapse
|
18
|
Rossi K, Jurásková V, Wischert R, Garel L, Corminbœuf C, Ceriotti M. Simulating Solvation and Acidity in Complex Mixtures with First-Principles Accuracy: The Case of CH 3SO 3H and H 2O 2 in Phenol. J Chem Theory Comput 2020; 16:5139-5149. [PMID: 32567854 DOI: 10.1021/acs.jctc.0c00362] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We present a generally applicable computational framework for the efficient and accurate characterization of molecular structural patterns and acid properties in an explicit solvent using H2O2 and CH3SO3H in phenol as an example. To address the challenges posed by the complexity of the problem, we resort to a set of data-driven methods and enhanced sampling algorithms. The synergistic application of these techniques makes the first-principle estimation of the chemical properties feasible without renouncing to the use of explicit solvation, involving extensive statistical sampling. Ensembles of neural network (NN) potentials are trained on a set of configurations carefully selected out of preliminary simulations performed at a low-cost density functional tight-binding (DFTB) level. The energy and forces of these configurations are then recomputed at the hybrid density functional theory (DFT) level and used to train the neural networks. The stability of the NN model is enhanced by using DFTB energetics as a baseline, but the efficiency of the direct NN (i.e., baseline-free) is exploited via a multiple-time-step integrator. The neural network potentials are combined with enhanced sampling techniques, such as replica exchange and metadynamics, and used to characterize the relevant protonated species and dominant noncovalent interactions in the mixture, also considering nuclear quantum effects.
Collapse
Affiliation(s)
- Kevin Rossi
- Laboratory of Computational Science and Modeling (COSMO), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Veronika Jurásková
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Raphael Wischert
- Eco-Efficient Products and Processes Laboratory, Solvay, RIC Shanghai, Shanghai 201108, China
| | - Laurent Garel
- Aroma Performance Laboratory, Solvay, RIC Lyon, 69190 Saint-Fons, France
| | - Clémence Corminbœuf
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.,National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling (COSMO), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.,National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Chen J, Chan B, Shao Y, Ho J. How accurate are approximate quantum chemical methods at modelling solute-solvent interactions in solvated clusters? Phys Chem Chem Phys 2020; 22:3855-3866. [PMID: 32022044 PMCID: PMC7394230 DOI: 10.1039/c9cp06792b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this paper, the performance of a wide range of DFT methods is assessed for the calculation of interaction energies of thermal clusters of a solute in water. Three different charge states (neutral, proton transfer transition state and zwitterion) of glycine were solvated by 1 to 40 water molecules as sampled from molecular dynamics simulations. While some ab initio composite methods that employ insufficiently large basis sets incurred significant errors even for a cluster containing only 5 water molecules relative to the W1X-2 benchmark, the DLPNO-CCSD(T)/CBS and DSD-PBEP86 (triple zeta basis set) levels of theory predicted very accurate interaction energies. These levels of theory were used to benchmark the performance of 16 density functionals from different rungs of Jacob's Ladder. Of the Rung 4 functionals examined, the ωB97M-V and ωB97X-V functionals stood out for predicting absolute interaction energies in 40-water clusters with mean absolute deviations (MAD) ∼4 kJ mol-1. The B3LYP-D3(BJ) functional performed exceptionally well with a MAD ∼1.7 kJ mol-1 and is the overall best performing method. Calculations of relative interaction energies allow for cancellation of systematic errors, including basis set truncation and superposition errors, and the ωB97M-V and B3LYP-D3(BJ) double zeta basis set calculations yielded relative interaction energies that are within ∼3 kJ mol-1 of the benchmark. The ONIOM approximation provides another strategy for accelerating the calculation of accurate absolute interaction energies provided that the calculations have converged with respect to the size of the "high-level-layer".
Collapse
Affiliation(s)
- Junbo Chen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo-Machi 1-14, Nagasaki 852-8521, Japan.
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
20
|
Sakti AW, Nishimura Y, Nakai H. Recent advances in quantum‐mechanical molecular dynamics simulations of proton transfer mechanism in various water‐based environments. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aditya W. Sakti
- Element Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University Kyoto Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE) Waseda University Tokyo Japan
| | - Hiromi Nakai
- Element Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University Kyoto Japan
- Waseda Research Institute for Science and Engineering (WISE) Waseda University Tokyo Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering Waseda University Tokyo Japan
| |
Collapse
|
21
|
Daub CD, Halonen L. Ab Initio Molecular Dynamics Simulations of the Influence of Lithium Bromide Salt on the Deprotonation of Formic Acid in Aqueous Solution. J Phys Chem B 2019; 123:6823-6829. [PMID: 31310529 PMCID: PMC6750841 DOI: 10.1021/acs.jpcb.9b04618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The deprotonation of formic acid is investigated using metadynamics in tandem with Born-Oppenheimer molecular dynamics simulations. We compare our findings for formic acid in pure water with previous studies before examining formic acid in aqueous solutions of lithium bromide. We carefully consider different definitions for the collective variable(s) used to drive the metadynamics, emphasizing that the variables used must include all of the possible reactive atoms in the system, in this case carboxylate oxygens and water hydrogens. This ensures that all the various possible proton exchange events can be accommodated and the collective variable(s) can distinguish the protonated and deprotonated states, even over rather long ab initio simulation runs (ca. 200-300 ps). Our findings show that the formic acid deprotonation barrier and the free energy of the deprotonated state are higher in concentrated lithium bromide, in agreement with the available experimental data for acids in salt solution. We show that the presence of Br- in proximity to the formic acid hydroxyl group effectively inhibits deprotonation. Our study extends previous work on acid deprotonation in pure water and at air-water interfaces to more complex multicomponent systems of importance in atmospheric and marine chemistry.
Collapse
Affiliation(s)
- Christopher D Daub
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki FIN-00014 , Finland
| | - Lauri Halonen
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki FIN-00014 , Finland
| |
Collapse
|
22
|
Arunachalam V, Tummanapelli AK, Vasudevan S. The multiple dissociation constants of glutathione disulfide: interpreting experimental pH-titration curves with ab initio MD simulations. Phys Chem Chem Phys 2019; 21:9212-9217. [PMID: 30993274 DOI: 10.1039/c9cp00761j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hexapeptide glutathione disulfide (GSSG) has six ionizable groups with six associated dissociation constants. The experimentally measured pH-titration curve, however, does not exhibit the six corresponding equivalence points and bears little resemblance to standard textbook examples of acid-base pH-titration curves. The curve highlights the difficulties in determining multiple pKa values of polyprotic acids - typically proteins and peptides - from experiment. The six pKa values of GSSG can, however, be estimated using Car-Parrinello molecular dynamics (CPMD) simulations in conjunction with metadynamics sampling of the underlying free energy landscape of the dissociation reactions. Ab initio MD simulations were performed on a GSSG molecule solvated by 200 water molecules. Using the estimated pKa values the theoretical titration curve was calculated and found to be in good agreement with experiment. The results clearly highlight how dissociation constants estimated from ab initio MD simulations can facilitate the interpretation of the pH-titration curves of complex chemical and biological systems.
Collapse
|
23
|
Blasius J, Ingenmey J, Perlt E, von Domaros M, Hollóczki O, Kirchner B. Predicting Mole-Fraction-Dependent Dissociation for Weak Acids. Angew Chem Int Ed Engl 2019; 58:3212-3216. [PMID: 30589171 DOI: 10.1002/anie.201811839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/12/2018] [Indexed: 11/10/2022]
Abstract
We demonstrate for formic and acetic acid dissolved in water as examples that the binary quantum cluster equilibrium (bQCE) approach can predict acid strengths over the whole range of acid concentrations. The acid strength increases in a complex rather than a simple way with increasing mole fraction of the acid from 0 to 0.7, reflecting the complex interplay between the dissociated ions or conjugate bases available as compared to the acid and water molecules. Furthermore, our calculated ion concentrations meet the experimental maximum of the conductivity with excellent agreement for acetic acid and satisfactorily for the formic acid/water mixture. As only a limited number of simple quantum-chemical calculations are required for the prediction, bQCE is clearly a valuable approach to access these quantities also in non-aqueous solutions. It is a highly valuable asset for predicting ionization processes in highly concentrated solutions, which are relevant for biological and chemical systems, as well as technological processes.
Collapse
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Johannes Ingenmey
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Eva Perlt
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, Irvine, CA, 92697, USA
| | - Michael von Domaros
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, Irvine, CA, 92697, USA
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| |
Collapse
|
24
|
Abstract
Acid-base reactions are ubiquitous in nature. Understanding their mechanisms is crucial in many fields, from biochemistry to industrial catalysis. Unfortunately, experiments give only limited information without much insight into the molecular behavior. Atomistic simulations could complement experiments and shed precious light on microscopic mechanisms. The large free-energy barriers connected to proton dissociation, however, make the use of enhanced sampling methods mandatory. Here we perform an ab initio molecular dynamics (MD) simulation and enhance sampling with the help of metadynamics. This has been made possible by the introduction of descriptors or collective variables (CVs) that are based on a conceptually different outlook on acid-base equilibria. We test successfully our approach on three different aqueous solutions of acetic acid, ammonia, and bicarbonate. These are representative of acid, basic, and amphoteric behavior.
Collapse
|
25
|
Blasius J, Ingenmey J, Perlt E, von Domaros M, Hollóczki O, Kirchner B. Dissoziation schwacher Säuren über den gesamten Molenbruchbereich. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical ChemistryUniversität Bonn Beringstraße 4 53115 Bonn Deutschland
| | - Johannes Ingenmey
- Mulliken Center for Theoretical ChemistryUniversität Bonn Beringstraße 4 53115 Bonn Deutschland
| | - Eva Perlt
- Department of Chemistry, 1102Natural Sciences IIUniversity of California, Irvine Irvine CA 92697 USA
| | - Michael von Domaros
- Department of Chemistry, 1102Natural Sciences IIUniversity of California, Irvine Irvine CA 92697 USA
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical ChemistryUniversität Bonn Beringstraße 4 53115 Bonn Deutschland
| | - Barbara Kirchner
- Mulliken Center for Theoretical ChemistryUniversität Bonn Beringstraße 4 53115 Bonn Deutschland
| |
Collapse
|
26
|
Fujiki R, Kasai Y, Seno Y, Matsui T, Shigeta Y, Yoshida N, Nakano H. A computational scheme of pK a values based on the three-dimensional reference interaction site model self-consistent field theory coupled with the linear fitting correction scheme. Phys Chem Chem Phys 2018; 20:27272-27279. [PMID: 30167611 DOI: 10.1039/c8cp04354j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A scheme for quantitatively computing the acid dissociation constant, pKa, of hydrated molecules is proposed. It is based on the three-dimensional reference interaction site model self-consistent field (3D-RISM-SCF) theory coupled with the linear fitting correction (LFC) scheme. In LFC/3D-RISM-SCF, pKa values of target molecules are evaluated using the Gibbs energy difference between the protonated and unprotonated states calculated by 3D-RISM-SCF and the parameters fitted by the LFC scheme to the experimental values of training set systems. The pKa values computed by LFC/3D-RISM-SCF show quantitative agreement with the experimental data.
Collapse
Affiliation(s)
- Ryo Fujiki
- Department of Chemistry, Graduate School of Science, Kyushu University, 744, Motooka, Nishiku, Fukuoka, 819-0395, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Sengul MY, Randall CA, van Duin ACT. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures. J Chem Phys 2018; 148:164506. [PMID: 29716228 DOI: 10.1063/1.5025932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.
Collapse
Affiliation(s)
- Mert Y Sengul
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Clive A Randall
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Adri C T van Duin
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
29
|
Zhao Z, Vavrusova M, Skibsted LH. Antioxidant activity and calcium binding of isomeric hydroxybenzoates. J Food Drug Anal 2018; 26:591-598. [PMID: 29567228 PMCID: PMC9322242 DOI: 10.1016/j.jfda.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 11/28/2022] Open
Abstract
The association constant for calcium binding to hydroxybenzoates in aqueous 0.16 M NaCl at 25 °C was found electrochemically to have the value Kass = 280 mol L−1 with ΔHo = −51 kJ mol−1, ΔSo = −122 J mol−1 K−1 for the 2-isomer (salicylate), Kass = 7 mol L−1 with ΔHo = −39 kJ mol−1, ΔSo = −116 J mol−1 K−1 for the 3-isomer, and Kass = 8 mol L−1 with ΔHo = −51 kJ mol−1, ΔSo = −155 J mol−1 K−1 for the 4-isomer. The 3- and 4-isomers were found more efficient as antioxidants than the 2-isomer in decreasing oxygen consumption rate in a peroxidating methyl linoleate emulsion and less sensitive to presence of calcium. All isomers were found prooxidative for iron-catalyzed initiation of oxidation due to enhanced radical formation as shown by electron spin resonance spectroscopy. Calcium salicylate was found to have low solubility with a solubility product Ksp = 4.49·10−6 based on activity with ΔHo = 67 kJ mol−1, ΔSo = 123 J mol−1 K−1 for dissolution in water, when corrected for the strong complex formation. Calcium in food and beverages may thus lower antioxidant activity of plant phenols through complexation or by precipitation.
Collapse
Affiliation(s)
- Zichen Zhao
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Martina Vavrusova
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Leif Horsfelt Skibsted
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
30
|
|
31
|
Shin YK, Sengul MY, Jonayat ASM, Lee W, Gomez ED, Randall CA, Duin ACTV. Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li1+xAlxTi2−x(PO4)3 (LATP). Phys Chem Chem Phys 2018; 20:22134-22147. [DOI: 10.1039/c8cp03586e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Using a ReaxFF reactive force field, we investigated the composition-dependent ionic conductivity and the Li migration behaviors in Li1+xAlxTi2−x(PO4)3 solid electrolyte.
Collapse
Affiliation(s)
- Yun Kyung Shin
- Department of Mechanical and Nuclear Engineering
- Pennsylvania State University
- University Park
- Pennsylvania 16802
- USA
| | - Mert Y. Sengul
- Department of Mechanical and Nuclear Engineering
- Pennsylvania State University
- University Park
- Pennsylvania 16802
- USA
| | - A. S. M. Jonayat
- Department of Mechanical and Nuclear Engineering
- Pennsylvania State University
- University Park
- Pennsylvania 16802
- USA
| | - Wonho Lee
- Department of Chemical Engineering
- Pennsylvania State University
- University Park
- Pennsylvania 16802
- USA
| | - Enrique D. Gomez
- Department of Materials Science and Engineering
- Materials Research Institute
- Pennsylvania State University
- University Park
- Pennsylvania 16802
| | - Clive A. Randall
- Department of Materials Science and Engineering
- Materials Research Institute
- Pennsylvania State University
- University Park
- Pennsylvania 16802
| | - Adri C. T. van Duin
- Department of Mechanical and Nuclear Engineering
- Pennsylvania State University
- University Park
- Pennsylvania 16802
- USA
| |
Collapse
|
32
|
Sakti AW, Nishimura Y, Nakai H. Rigorous pKa Estimation of Amine Species Using Density-Functional Tight-Binding-Based Metadynamics Simulations. J Chem Theory Comput 2017; 14:351-356. [DOI: 10.1021/acs.jctc.7b00855] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aditya Wibawa Sakti
- Department
of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Research
Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department
of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Research
Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
33
|
Yang X, Rees RJ, Conway W, Puxty G, Yang Q, Winkler DA. Computational Modeling and Simulation of CO2 Capture by Aqueous Amines. Chem Rev 2017; 117:9524-9593. [PMID: 28517929 DOI: 10.1021/acs.chemrev.6b00662] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Yang
- CSIRO Manufacturing, Bayview Avenue, Clayton 3169, Australia
- College
of Chemistry, Key Lab of Green Chemistry and Technology in Ministry
of Education, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Robert J. Rees
- Data61
- CSIRO, Door 34 Goods
Shed, Village Street, Docklands VIC 3008, Australia
| | | | | | - Qi Yang
- CSIRO Manufacturing, Bayview Avenue, Clayton 3169, Australia
| | - David A. Winkler
- CSIRO Manufacturing, Bayview Avenue, Clayton 3169, Australia
- Monash Institute of Pharmaceutical Sciences, 392 Royal Parade, Parkville 3052, Australia
- Latrobe Institute for Molecular Science, Bundoora 3046, Australia
- School
of
Chemical and Physical Science, Flinders University, Bedford Park 5042, Australia
| |
Collapse
|
34
|
13C and 1H NMR measurements to investigate the kinetics and the mechanism of acetic acid (CH3CO2H) ionization as a model for organic acid dissociation dynamics for polymeric membrane water filtration. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
35
|
Tshepelevitsh S, Trummal A, Haav K, Martin K, Leito I. Hydrogen-Bond Donicity in DMSO and Gas Phase and Its Dependence on Brønsted Acidity. J Phys Chem A 2016; 121:357-369. [DOI: 10.1021/acs.jpca.6b11115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sofja Tshepelevitsh
- Institute
of Chemistry, University of Tartu, 14a Ravila Street, Tartu 50411, Estonia
| | - Aleksander Trummal
- National Institute of Chemical Physics and Biophysics, 23 Akadeemia tee, Tallinn 12618, Estonia
| | - Kristjan Haav
- Institute
of Chemistry, University of Tartu, 14a Ravila Street, Tartu 50411, Estonia
| | - Kerli Martin
- Institute
of Chemistry, University of Tartu, 14a Ravila Street, Tartu 50411, Estonia
| | - Ivo Leito
- Institute
of Chemistry, University of Tartu, 14a Ravila Street, Tartu 50411, Estonia
| |
Collapse
|
36
|
Silva NM, Deglmann P, Pliego JR. CMIRS Solvation Model for Methanol: Parametrization, Testing, and Comparison with SMD, SM8, and COSMO-RS. J Phys Chem B 2016; 120:12660-12668. [DOI: 10.1021/acs.jpcb.6b10249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Natalia M. Silva
- Departamento
de Ciências Naturais, Universidade Federal de São João del-Rei, 36301-160 São João
del-Rei, Minas Gerais, Brazil
| | - Peter Deglmann
- Polymer Processing & Engineering, BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
| | - Josefredo R. Pliego
- Departamento
de Ciências Naturais, Universidade Federal de São João del-Rei, 36301-160 São João
del-Rei, Minas Gerais, Brazil
| |
Collapse
|
37
|
Jiang Z, Klyukin K, Alexandrov V. Structure, hydrolysis, and diffusion of aqueous vanadium ions from Car-Parrinello molecular dynamics. J Chem Phys 2016. [DOI: 10.1063/1.4962748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
38
|
Nishida N, Tokushima T, Takahashi O. A theoretical study on the pH dependence of X-ray emission spectra for aqueous acetic acid. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.02.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Tummanapelli AK, Vasudevan S. Ab Initio MD Simulations of the Brønsted Acidity of Glutathione in Aqueous Solutions: Predicting pKa Shifts of the Cysteine Residue. J Phys Chem B 2015; 119:15353-8. [PMID: 26550841 DOI: 10.1021/acs.jpcb.5b10093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tripeptide glutathione (GSH) is one of the most abundant peptides and the major repository for nonprotein sulfur in both animal and plant cells. It plays a critical role in intracellular oxidative stress management by the reversible formation of glutathione disulfide with the thiol-disulfide pair acting as a redox buffer. The state of charge of the ionizable groups of GSH can influence the redox couple, and hence the pKa value of the cysteine residue of GSH is critical to its functioning. Here we report ab initio Car-Parrinello molecular dynamics simulations of glutathione solvated by 200 water molecules, all of which are considered in the simulation. We show that the free-energy landscape for the protonation-deprotonation reaction of the cysteine residue of GSH computed using metadynamics sampling provides accurate estimates of the pKa and correctly predicts the shift in the dissociation constant values as compared with the isolated cysteine amino acid.
Collapse
Affiliation(s)
- Anil Kumar Tummanapelli
- Department of Inorganic and Physical Chemistry, Indian Institute of Science , Bangalore 560012, India
| | - Sukumaran Vasudevan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
40
|
Tummanapelli AK, Vasudevan S. Ab Initio Molecular Dynamics Simulations of Amino Acids in Aqueous Solutions: Estimating pKa Values from Metadynamics Sampling. J Phys Chem B 2015; 119:12249-55. [PMID: 26331783 DOI: 10.1021/acs.jpcb.5b05211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation-deprotonation reaction of the 20 canonical α amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metadynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pKa values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error, with respect to experimental results, of 0.2 pKa units.
Collapse
Affiliation(s)
- Anil Kumar Tummanapelli
- Department of Inorganic and Physical Chemistry, Indian Institute of Science , Bangalore 560012, India
| | - Sukumaran Vasudevan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
41
|
Tummanapelli AK, Vasudevan S. Estimating successive pKa values of polyprotic acids from ab initio molecular dynamics using metadynamics: the dissociation of phthalic acid and its isomers. Phys Chem Chem Phys 2015; 17:6383-8. [DOI: 10.1039/c4cp06000h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
pKa values of polyprotic acids estimated from ab initio molecular dynamics computation of the change in free energy upon dissociation.
Collapse
Affiliation(s)
- Anil Kumar Tummanapelli
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Sukumaran Vasudevan
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|