1
|
Wang Y, Li YX, Li Q, Jia R, Tang Q, Huang H, Zhang Y, Feng X. Highly Ordered Gyroid Nanostructured Polymers: Facile Fabrication by Polymerizable Pluronic Surfactants. ACS Macro Lett 2024; 13:550-557. [PMID: 38634712 DOI: 10.1021/acsmacrolett.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Highly ordered, network-nanostructured polymers offer compelling geometric features and application potential. However, their practical utilization is hampered by the restricted accessibility. Here, we address this challenge using commercial Pluronic surfactants with a straightforward modification of tethering polymerizable groups. By leveraging lyotropic self-assembly, we achieve facile production of double-gyroid mesophases, which are subsequently solidified via photoinduced cross-linking. The exceptionally ordered periodicities of Ia3d symmetry in the photocured polymers are unambiguously confirmed by synchrotron small-angle X-ray scattering (SAXS), which can capture single-crystal-like diffraction patterns. Electron density maps reconstructed from SAXS data complemented by transmission electron microscopy analysis further elucidate the real-space gyroid assemblies. Intriguingly, by tuning the cross-linking through thiol-acrylate chemistry, the mechanical properties of the polymer are modulated without compromising the integrity of Ia3d assemblies. The 3-D percolating gyroid nanochannels demonstrate an ionic conductivity that surpasses that of disordered structures, offering promising prospects for scalable fabrication.
Collapse
Affiliation(s)
- Yinuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Ya-Xin Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Ruoyin Jia
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qingchen Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Hairui Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Yizhou Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Salvati Manni L, Fong WK, Wood K, Kirby N, Seibt S, Atkin R, Warr GG. H-bond network, interfacial tension and chain melting temperature govern phospholipid self-assembly in ionic liquids. J Colloid Interface Sci 2024; 657:320-326. [PMID: 38043233 DOI: 10.1016/j.jcis.2023.11.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
HYPOTHESIS The self-assembly structures and phase behaviour of phospholipids in protic ionic liquids (ILs) depend on intermolecular forces that can be controlled through changes in the size, polarity, and H-bond capacity of the solvent. EXPERIMENTS The structure and temperature stability of the self-assembled phases formed by four phospholipids in three ILs was determined by a combination of small- and wide-angle X-ray scattering (SAXS and WAXS) and small-angle neutron scattering (SANS). The phospholipids have identical phosphocholine head groups but different alkyl tail lengths and saturations (DOPC, POPC, DPPC and DSPC), while the ILs' amphiphilicity, H-bond network density and polarity are varied between propylammonium nitrate (PAN) to ethylammonium nitrate (EAN) to ethanolammonium nitrate (EtAN). FINDINGS The observed structures and phase behaviour of the lipids becomes more surfactant-like with decreasing average solvent polarity, H-bond network density and surface tension. In PAN, all the investigated phospholipids behave like surfactants in water. In EAN they exhibit anomalous phase sequences and unexpected transitions as a function of temperature, while EtAN supports structures that share characteristics with water and EAN. Structures formed are also sensitive to proximity to the lipid chain melting temperature.
Collapse
Affiliation(s)
- Livia Salvati Manni
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Wye-Khay Fong
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Kathleen Wood
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Nigel Kirby
- Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Susanne Seibt
- Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Paporakis S, Brown SJ, Darmanin C, Seibt S, Adams P, Hassett M, Martin AV, Greaves TL. Lyotropic liquid crystal phases of monoolein in protic ionic liquids. J Chem Phys 2024; 160:024901. [PMID: 38189602 DOI: 10.1063/5.0180420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024] Open
Abstract
Monoolein-based liquid crystal phases are established media that are researched for various biological applications, including drug delivery. While water is the most common solvent for self-assembly, some ionic liquids (ILs) can support lipidic self-assembly. However, currently, there is limited knowledge of IL-lipid phase behavior in ILs. In this study, the lyotropic liquid crystal phase behavior of monoolein was investigated in six protic ILs known to support amphiphile self-assembly, namely ethylammonium nitrate, ethanolammonium nitrate, ethylammonium formate, ethanolammonium formate, ethylammonium acetate, and ethanolammonium acetate. These ILs were selected to identify specific ion effects on monoolein self-assembly, specifically increasing the alkyl chain length of the cation or anion, the presence of a hydroxyl group in the cation, and varying the anion. The lyotropic liquid crystal phases with 20-80 wt. % of monoolein were characterized over a temperature range from 25 to 65 °C using synchrotron small angle x-ray scattering and cross-polarized optical microscopy. These results were used to construct partial phase diagrams of monoolein in each of the six protic ILs, with inverse hexagonal, bicontinuous cubic, and lamellar phases observed. Protic ILs containing the ethylammonium cation led to monoolein forming lamellar and bicontinuous cubic phases, while those containing the ethanolammonium cation formed inverse hexagonal and bicontinuous cubic phases. Protic ILs containing formate and acetate anions favored bicontinuous cubic phases across a broader range of protic IL concentrations than those containing the nitrate anion.
Collapse
Affiliation(s)
- Stefan Paporakis
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne VIC 3000, Australia
| | - Stuart J Brown
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne VIC 3000, Australia
| | - Connie Darmanin
- La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University, Bundoora VIC 3086, Australia
| | - Susanne Seibt
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, 800 Blackburn Road, VIC-3168 Clayton, Australia
| | - Patrick Adams
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne VIC 3000, Australia
| | - Michael Hassett
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne VIC 3000, Australia
| | - Andrew V Martin
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, 124 La Trobe Street, Melbourne VIC 3000, Australia
| |
Collapse
|
4
|
Kumar K, Umapathi R, Venkatesu P. Ionic Liquids Mediated Micellization of Pluronic Copolymers: Aggregation Behavior of Amphiphilic Triblock Copolymers. J Phys Chem B 2023; 127:2107-2120. [PMID: 36867763 DOI: 10.1021/acs.jpcb.2c05683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Understanding the micellization of amphiphilic triblock copolymers, especially Pluronics can play a persuasive role in engineering "smart" formulations for drug delivery applications. Their underlying self-assembly in the presence of designer solvents such as ionic liquids (ILs) provides combinatorial benefits of unique munificent properties of ILs and copolymers. The complex molecular interactions in the Pluronic copolymers/ILs mixed system influence the aggregation mechanism of copolymers depending on various aspects with no standardized factors to govern the structure-property relationship, which led to the practical applications. Here, we summarized recent progress in understanding the micellization process of IL-Pluronic mixed systems. Special emphasis was given to pure Pluronic systems (i.e., PEO-PPO-PEO) without any structural modifications, such as copolymerization with other functional groups, and ILs having cholinium and imidazolium groups. We expect that the correlation between existing/developing experimental and theoretical studies will provide the necessary basis and impetus for successful utilization in drug delivery applications.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi 110 007, India.,Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.,POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Danostia-San Sebastian, Spain
| | - Reddicherla Umapathi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | | |
Collapse
|
5
|
Marlow JB, Atkin R, Warr GG. How Does Nanostructure in Ionic Liquids and Hybrid Solvents Affect Surfactant Self-Assembly? J Phys Chem B 2023; 127:1490-1498. [PMID: 36786772 DOI: 10.1021/acs.jpcb.2c07458] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Ionic liquids (ILs) have recently emerged as novel classes of solvents that support surfactant self-assembly into micelles, liquid crystals, and microemulsions. Their low volatility and wide liquid stability ranges make them attractive for many diverse applications, especially in extreme environments. However, the number of possible ion combinations makes systematic investigations both challenging and rare; this is further amplified when mixtures are considered, whether with water or other H-bonding components such as those found in deep eutectics. In this Perspective we examine what factors determine amphiphilicity, solvophobicity and solvophilicity, in ILs and related exotic environments, in what ways these differ from water, and how the underlying nanostructure of the liquid itself affects the formation and structure of micelles and other self-assembled materials.
Collapse
Affiliation(s)
- Joshua B Marlow
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
|
7
|
Dielectric behavior of water in [bmim] [$$\hbox {Tf}_2$$N] room-temperature ionic liquid: molecular dynamic study. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
König N, Willner L, Carlström G, Zinn T, Knudsen KD, Rise F, Topgaard D, Lund R. Spherical Micelles with Nonspherical Cores: Effect of Chain Packing on the Micellar Shape. Macromolecules 2020; 53:10686-10698. [PMID: 33335341 PMCID: PMC7735752 DOI: 10.1021/acs.macromol.0c01936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/23/2020] [Indexed: 11/30/2022]
Abstract
Self-assembly of amphiphilic polymers into micelles is an archetypical example of a "self-confined" system due to the formation of micellar cores with dimensions of a few nanometers. In this work, we investigate the chain packing and resulting shape of C n -PEOx micelles with semicrystalline cores using small/wide-angle X-ray scattering (SAXS/WAXS), contrast-variation small-angle neutron scattering (SANS), and nuclear magnetic resonance spectroscopy (NMR). Interestingly, the n-alkyl chains adopt a rotator-like conformation and pack into prolate ellipses (axial ratio ϵ ≈ 0.5) in the "crystalline" region and abruptly arrange into a more spheroidal shape (ϵ ≈ 0.7) above the melting point. We attribute the distorted spherical shape above the melting point to thermal fluctuations and intrinsic rigidity of the n-alkyl blocks. We also find evidence for a thin dehydrated PEO layer (≤1 nm) close to the micellar core. The results provide substantial insight into the interplay between crystallinity and molecular packing in confinement and the resulting overall micellar shape.
Collapse
Affiliation(s)
- Nico König
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
- Jülich
Centre for Neutron Science (JCNS-1) and Institute of Biological Information
Processing (IBI-8), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Lutz Willner
- Jülich
Centre for Neutron Science (JCNS-1) and Institute of Biological Information
Processing (IBI-8), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Göran Carlström
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Thomas Zinn
- ESRF
- The European Synchrotron, 38043 Grenoble, France
| | - Kenneth D. Knudsen
- Department
for Neutron Materials Characterization, Institute for Energy Technology, P.O. Box 40, 2027 Kjeller, Norway
| | - Frode Rise
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Daniel Topgaard
- Division
of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Reidar Lund
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
9
|
Kawai R, Yada S, Yoshimura T. Surface Adsorption and Bulk Properties of Surfactants in Quaternary-Ammonium-Salt-Type Amphiphilic Monomeric and Gemini Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5219-5226. [PMID: 32363875 DOI: 10.1021/acs.langmuir.0c00541] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The physicochemical properties of ionic liquids can be readily controlled. Currently, it is necessary to investigate the properties of different surfactants to elucidate the mixtures used in quaternary-ammonium-salt-type ionic liquids. Herein, the surface adsorption and bulk properties of homogeneous polyoxyethylene (EO)-type nonionic surfactant, quaternary-ammonium-salt-type cationic surfactant, and sulfobetaine-type zwitterionic surfactant are elucidated in quaternary-ammonium-salt-type amphiphilic monomeric ionic liquids and gemini ionic liquids with bis(fluorosulfonyl)imide or bis(trifluoromethanesulfonyl)imide as counterions. The monomeric amphiphilic ionic liquids that adsorbed at the interface were replaced with CxEOy (where x and y represent alkyl and EO chain lengths, respectively) as the concentration of CxEOy increased. On the other hand, in the gemini amphiphilic ionic liquids, the surface tensions of CxEOy were lower than those of the monomeric ionic liquids. Consequently, both gemini amphiphilic ionic liquids and CxEOy adsorbed efficiently at the interface and oriented themselves because of a synergistic effect. Furthermore, for ionic liquids with short alkyl chains, an orderly bulk nanostructure was not observed at low concentrations in CxEOy, while a layer structure formed at higher concentrations; in contrast, ionic liquids with long alkyl chains formed a layer structure. The alkyl chains, which were interlocked in the bilayer structure, resulted in a densely packed layer structure.
Collapse
Affiliation(s)
- Risa Kawai
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Shiho Yada
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Tomokazu Yoshimura
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| |
Collapse
|
10
|
Gawali SL, Barick KC, Aswal VK, Basu M, Hassan PA. Altering the X-ray Scattering Contrast of Triton X-100 Micelles and Its Trapping in a Supercooled Solvent. J Phys Chem B 2020; 124:3418-3427. [PMID: 32239938 DOI: 10.1021/acs.jpcb.9b11952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of core-shell micelles formed by nonionic surfactant Triton X-100 (TX-100) in a supercooled glucose-urea melt is investigated by contrast variation small-angle X-ray scattering (SAXS), small angle neutron scattering (SANS), and HR-TEM. Cooling a molten mixture of glucose-urea (weight ratio of 3:2) to room temperature yields a supercooled solvent without crystallization that can be used for trapping micelles of TX-100. By use of a combination of water and glucose-urea mixture at different proportions as solvent for micellization, the scattering length density (SLD) of the solvent can be tuned to match the shell contrast of the micelles. A systematic analysis of SAXS and SANS data with different SLD of solvent permits a quantitative evaluation of electron density profile of micelles in different matrices. The core of TX-100 micelles shows significant swelling in glucose-urea melt, as compared to that in water. The dimension and morphology of micelles were evaluated by scattering techniques and HR-TEM. Dynamic light scattering (DLS) studies suggest that, unlike micelles in water, the diffusion of micelles in supercooled glucose-urea melt decreased by several orders of magnitude.
Collapse
Affiliation(s)
- Santosh L Gawali
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.,Training School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Kanhu C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.,Training School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Vinod K Aswal
- Training School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.,Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - M Basu
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.,Training School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Puthusserickal A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.,Training School Complex, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
11
|
Warr GG, Atkin R. Solvophobicity and amphiphilic self-assembly in neoteric and nanostructured solvents. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Yalcin D, Christofferson AJ, Drummond CJ, Greaves TL. Solvation properties of protic ionic liquid–molecular solvent mixtures. Phys Chem Chem Phys 2020; 22:10995-11011. [DOI: 10.1039/d0cp00201a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, we have investigated the solvation properties of binary mixtures of PILs with molecular solvents. The selected binary solvent systems are the PILs ethylammonium nitrate (EAN) and propylammonium nitrate (PAN) combined with either water, methanol, acetonitrile or DMSO.
Collapse
Affiliation(s)
- Dilek Yalcin
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne
| | | | - Calum J. Drummond
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne
| | - Tamar L. Greaves
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne
| |
Collapse
|
13
|
DTAB micelle formation in ionic liquid/water mixtures is determined by ionic liquid cation structure. J Colloid Interface Sci 2019; 552:597-603. [DOI: 10.1016/j.jcis.2019.05.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 11/21/2022]
|
14
|
Catanionic and chain-packing effects on surfactant self-assembly in the ionic liquid ethylammonium nitrate. J Colloid Interface Sci 2019; 540:515-523. [DOI: 10.1016/j.jcis.2019.01.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/19/2022]
|
15
|
Zhu H, Vijayaraghavan R, MacFarlane DR, Forsyth M. Self-assembled structure and dynamics of imidazolium-based protic salts in water solution. Phys Chem Chem Phys 2019; 21:2691-2696. [PMID: 30657496 DOI: 10.1039/c8cp07254j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protic ionic liquids containing cations with long alkyl chains can form self-assembled micelles, vesicles, microemulsions, and lyotropic liquid crystal structures in water, acid water or tetrahydrofuran, etc. As a result of this unique property, they are regarded as a novel category of amphiphiles, and are gaining importance in the field of colloid and interface chemistry. The critical micelle concentration (CMC) of protic salts, e.g., alkyl-ammonium nitrates in water, was found to increase with decreasing chain length. It is generally believed that a long alkyl chain length is essential for the formation of self-assembled structures. So far, no self-assembled structure has been reported for protic ionic liquids with an alkyl chain length of n < 4. This paper reports on the structure and dynamics of two imidazolium based protic organic salts with no alkyl chain or a methyl group (n = 1) attached to the cation in water solution, determined through a detailed analysis of NMR spectra and pulsed-field gradient NMR data. We demonstrate that these imidazolium cations with no or a short alkyl chain (n = 1) can form a self-assembled clustering structure in water solution, which has a strong influence on the diffusion behavior of imidazolium molecular ions. It is speculated that this self-assembled structure is likely to be present in other similar solutions of ionic liquids with short alkyl chains.
Collapse
Affiliation(s)
- Haijin Zhu
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Geelong, Victoria 3216, Australia.
| | | | | | | |
Collapse
|
16
|
Huang X, Zhang M, Wang M, Li W, Wang C, Hou X, Luan S, Wang Q. Gold/Periodic Mesoporous Organosilicas with Controllable Mesostructure by Using Compressed CO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3642-3653. [PMID: 29478318 DOI: 10.1021/acs.langmuir.7b04020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles confined into the walls of periodic mesoporous organosilicas (PMOs) with controllable morphology have been successfully fabricated through a one-pot method by using different CO2 pressures. The synthesis can be easily conducted in a mixed aqueous solution by using HAuCl4 as gold source and bis[3-(triethoxysilyl)propyl] tetrasulfide and tetramethoxysilane as the organosilica precursor. P123 and compressed CO2 served as the template and catalytic/regulative agent, respectively. Transmission electron microscopy, N2 adsorption, and X-ray diffraction were employed to characterize the structure of the obtained composite materials. To further investigate the formation mechanism, a series of ordered PMOs with one-dimensional nanotube, two-dimensional hexagonal, vesicle-like, and cellular foam structures were obtained by using different CO2 pressures without the gold source. The mechanism for mesostructure evolution of PMOs with different CO2 pressures was proposed and discussed in detail. The catalytic performance of Au-based PMOs was evaluated for the reduction of 4-nitrophenol (4-NP). These obtained composites with different mesostructures not only exhibit excellent catalytic activity, high conversion rate, and remarkable thermal stability, but they also exhibit morphology-dependent reaction properties in the reduction of 4-NP. The possible reaction pathway of the reactants to embedded Au active sites was proposed and schemed.
Collapse
Affiliation(s)
- Xin Huang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Mengnan Zhang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Meijin Wang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Wei Li
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Cheng Wang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Xiaojian Hou
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Sen Luan
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Qian Wang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| |
Collapse
|
17
|
Wang Z, Gao F, Ji P, Cheng JP. Unexpected solvation-stabilisation of ions in a protic ionic liquid: insights disclosed by a bond energetic study. Chem Sci 2018; 9:3538-3543. [PMID: 29780485 PMCID: PMC5934747 DOI: 10.1039/c7sc05227h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/05/2018] [Indexed: 11/21/2022] Open
Abstract
Equilibrium acidities (pKas) of 42 organic acids were precisely determined in protic ionic liquid (PIL) [DBUH][OTf]. Surprisingly, the often seen homoassociation complication during the pKa measurement of O-H acids in DMSO was not detected in [DBUH][OTf], implying that the incipient oxanion should be better solvation-stabilized by the PIL, although its "apparent" dielectric constant is much lower than that of the conventional molecular solvent DMSO. Evidence showing that the solute ions in the PIL are also free from other specific ion associations like ion-pairing is further demonstrated by the identical pKas of protic amine salts bearing largely different counter-anions. Correlations between the RO-H, N-H, N+-H and RCOO-H bond acidities in [DBUH][OTf] and in water revealed different slopes and intercepts for each individual series, suggesting far superior properties of the DBUH+-based PIL for differentiating the solvation effect of various species in structural analysis to the well applied EAN that is known for leveling out differential solvation.
Collapse
Affiliation(s)
- Zhen Wang
- Centre of Basic Molecular Science (CBMS) , Department of Chemistry , Tsinghua University , Beijing , 100084 , China . ; .,School of Chemical and Environmental Engineering , Anyang Institute of Technology , Anyang 455000 , China
| | - Feixiang Gao
- Centre of Basic Molecular Science (CBMS) , Department of Chemistry , Tsinghua University , Beijing , 100084 , China . ;
| | - Pengju Ji
- Centre of Basic Molecular Science (CBMS) , Department of Chemistry , Tsinghua University , Beijing , 100084 , China . ;
| | - Jin-Pei Cheng
- Centre of Basic Molecular Science (CBMS) , Department of Chemistry , Tsinghua University , Beijing , 100084 , China . ; .,State Key Laboratory of Elemento-Organic Chemistry , Collaborative Innovation Centre of Chemical Science and Engineering , Nankai University , Tianjin , 300071 , China
| |
Collapse
|
18
|
Xie R, López-Barrón CR, Greene DG, Wagner NJ. Comicellization of Binary PEO–PPO–PEO Triblock Copolymer Mixtures in Ethylammonium Nitrate. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ru Xie
- Center
for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Carlos R. López-Barrón
- Baytown
Technology and Engineering Complex, ExxonMobil Chemical Company, Baytown, Texas 77520, United States
| | - Daniel G. Greene
- Center
for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Norman J. Wagner
- Center
for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
19
|
He Z, Alexandridis P. Micellization Thermodynamics of Pluronic P123 (EO 20PO 70EO 20) Amphiphilic Block Copolymer in Aqueous Ethylammonium Nitrate (EAN) Solutions. Polymers (Basel) 2017; 10:E32. [PMID: 30966066 PMCID: PMC6414995 DOI: 10.3390/polym10010032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 01/14/2023] Open
Abstract
Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (commercially available as Pluronics or Poloxamers) can self-assemble into various nanostructures in water and its mixtures with polar organic solvents. Ethylammonium nitrate (EAN) is a well-known protic ionic liquid that is expected to affect amphiphile self-assembly due to its ionic nature and hydrogen bonding ability. By proper design of isothermal titration calorimetry (ITC) experiments, we determined the enthalpy and other thermodynamic parameters of Pluronic P123 (EO20PO70EO20) micellization in aqueous solution at varied EAN concentration. Addition of EAN promoted micellization in a manner similar to increasing temperature, e.g., the addition of 1.75 M EAN lowered the critical micelle concentration (CMC) to the same extent as a temperature increase from 20 to 24 °C. The presence of EAN disrupts the water solvation around the PEO-PPO-PEO molecules through electrostatic interactions and hydrogen bonding, which dehydrate PEO and promote micellization. At EAN concentrations lower than 1 M, the PEO-PPO-PEO micellization enthalpy and entropy increase with EAN concentration, while both decrease above 1 M EAN. Such a change can be attributed to the formation by EAN of semi-ordered nano-domains with water at higher EAN concentrations. Pyrene fluorescence suggests that the polarity of the mixed solvent decreased linearly with EAN addition, whereas the polarity of the micelle core remained unaltered. This work contributes to assessing intermolecular interactions in ionic liquid + polymer solutions, which are relevant to a number of applications, e.g., drug delivery, membrane separations, polymer electrolytes, biomass processing and nanomaterial synthesis.
Collapse
Affiliation(s)
- Zhiqi He
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| |
Collapse
|
20
|
Hara S, Wada H, Shimojima A, Kuroda K. Formation of Nanogrooves with Sub-5 nm Periodicity Using Local Silicification at the Interspace between a Si Substrate and Lyotropic Liquid Crystals. ACS NANO 2017; 11:5160-5166. [PMID: 28481508 DOI: 10.1021/acsnano.7b02357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bottom-up fabrication of nanopatterns with single nanometer-scale periodicity is quite challenging. In this study, we have focused on the use of the outermost convex surfaces of lyotropic liquid crystals (LLCs) as a template. Periodically arrayed single nanometer-scale nanogrooves consisting of silica are successfully formed on a Si substrate covered with LLCs composed of cylindrical micelles of cetyltrimethylammonium chloride. Soluble silicate species are generated from the Si substrate by a treatment with an NH3-water vapor mixture, infilling the interspaces between the Si substrate and the LLCs. The cross section of the nanogrooves has a symmetrical sawtooth-like profile with a periodicity of 4.7 nm, and the depth of each nanogroove is around 2 nm. Uniaxial alignment of the nanogrooves can be achieved using micrometer-scale grooves fabricated by a focused ion beam technique. Although formed nanogrooves contain defects, such as bends and discontinuities, this successful concept provides a novel fabrication method of arrayed concave patterns with sub-5 nm periodicity on the surfaces of Si substrates.
Collapse
Affiliation(s)
- Shintaro Hara
- Department of Advanced Science and Engineering, Faculty of Science and Engineering, Waseda University , 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiroaki Wada
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University , 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Atsushi Shimojima
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University , 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University , 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University , 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|
21
|
Schroer W, Triolo A, Russina O. Nature of Mesoscopic Organization in Protic Ionic Liquid–Alcohol Mixtures. J Phys Chem B 2016; 120:2638-43. [DOI: 10.1021/acs.jpcb.6b01422] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wolffram Schroer
- Fachbereich
2 Biologie-Chemie, Universität Bremen, Bremen, Germany
| | - Alessandro Triolo
- Laboratorio
Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Olga Russina
- Dipartimento
di Chimica, Università di Roma Sapienza, Rome, Italy
| |
Collapse
|
22
|
Murphy T, Hayes R, Imberti S, Warr GG, Atkin R. Ionic liquid nanostructure enables alcohol self assembly. Phys Chem Chem Phys 2016; 18:12797-809. [DOI: 10.1039/c6cp01739h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Weakly structured solutions are formed from mixtures of one or more amphiphiles and a polar solvent (usually water), and often contain additional organic components.
Collapse
Affiliation(s)
- Thomas Murphy
- Priority Research Centre for Advanced Fluids and Interfaces
- Newcastle Institute for Energy & Resources
- University of Newcastle
- Callaghan
- Australia
| | - Robert Hayes
- Priority Research Centre for Advanced Fluids and Interfaces
- Newcastle Institute for Energy & Resources
- University of Newcastle
- Callaghan
- Australia
| | | | | | - Rob Atkin
- Priority Research Centre for Advanced Fluids and Interfaces
- Newcastle Institute for Energy & Resources
- University of Newcastle
- Callaghan
- Australia
| |
Collapse
|
23
|
Dolan A, Atkin R, Warr GG. The origin of surfactant amphiphilicity and self-assembly in protic ionic liquids. Chem Sci 2015; 6:6189-6198. [PMID: 30090234 PMCID: PMC6054141 DOI: 10.1039/c5sc01202c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022] Open
Abstract
The nature of amphiphilic self-assembly in alkylammonium protic ionic liquids (PILs) is examined by systematically varying the ionic structure and composition, H-bonding capacity, and nanostructure of both the PIL and micelle-forming cationic surfactant, and contrasted with self-assembly in water. Using small-angle neutron scattering, micelle structure and concentrations are determined for primary - quaternary dodecylammonium salts in nitrate and thiocyanate PILs. While the solvophobic driving force depends only on the average polarity of the PIL, surprisingly strong, specific interactions of the head group and counterion with the PIL H-bond network are found. This suggests the importance of developing designer amphiphiles for assembling soft matter structures in PILs.
Collapse
Affiliation(s)
- Andrew Dolan
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia .
| | - Rob Atkin
- Centre for Advanced Particle Processing and Transport , Chemistry Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Gregory G Warr
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia .
| |
Collapse
|
24
|
|
25
|
Affiliation(s)
- Robert Hayes
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| | - Gregory G. Warr
- School
of Chemistry, The University of Sydney, NSW 2006, Sydney, Australia
| | - Rob Atkin
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| |
Collapse
|
26
|
Chen Z, FitzGerald PA, Warr GG, Atkin R. Conformation of poly(ethylene oxide) dissolved in the solvate ionic liquid [Li(G4)]TFSI. Phys Chem Chem Phys 2015; 17:14872-8. [DOI: 10.1039/c5cp02033f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PEO dissolves in [Li(G4)]TFSI via coordination with Li+.
Collapse
Affiliation(s)
- Zhengfei Chen
- Newcastle Institute for Energy and Resources
- The University of Newcastle
- Callaghan
- Australia
| | | | | | - Rob Atkin
- Newcastle Institute for Energy and Resources
- The University of Newcastle
- Callaghan
- Australia
| |
Collapse
|