1
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Farré-Gil D, Arcon JP, Laughton CA, Orozco M. CGeNArate: a sequence-dependent coarse-grained model of DNA for accurate atomistic MD simulations of kb-long duplexes. Nucleic Acids Res 2024; 52:6791-6801. [PMID: 38813824 PMCID: PMC11229373 DOI: 10.1093/nar/gkae444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
We present CGeNArate, a new model for molecular dynamics simulations of very long segments of B-DNA in the context of biotechnological or chromatin studies. The developed method uses a coarse-grained Hamiltonian with trajectories that are back-mapped to the atomistic resolution level with extreme accuracy by means of Machine Learning Approaches. The method is sequence-dependent and reproduces very well not only local, but also global physical properties of DNA. The efficiency of the method allows us to recover with a reduced computational effort high-quality atomic-resolution ensembles of segments containing many kilobases of DNA, entering into the gene range or even the entire DNA of certain cellular organelles.
Collapse
Affiliation(s)
- David Farré-Gil
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, E-08028 Barcelona, Spain
| | - Juan Pablo Arcon
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, E-08028 Barcelona, Spain
| | - Charles A Laughton
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, E-08028 Barcelona, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
3
|
Mu ZC, Tan YL, Liu J, Zhang BG, Shi YZ. Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding. Molecules 2023; 28:4833. [PMID: 37375388 DOI: 10.3390/molecules28124833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences.
Collapse
Affiliation(s)
- Zi-Chun Mu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
4
|
Lu W, Onuchic JN, Di Pierro M. An associative memory Hamiltonian model for DNA and nucleosomes. PLoS Comput Biol 2023; 19:e1011013. [PMID: 36972316 PMCID: PMC10079229 DOI: 10.1371/journal.pcbi.1011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/06/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
A model for DNA and nucleosomes is introduced with the goal of studying chromosomes from a single base level all the way to higher-order chromatin structures. This model, dubbed the Widely Editable Chromatin Model (WEChroM), reproduces the complex mechanics of the double helix including its bending persistence length and twisting persistence length, and their respective temperature dependence. The WEChroM Hamiltonian is composed of chain connectivity, steric interactions, and associative memory terms representing all remaining interactions leading to the structure, dynamics, and mechanical characteristics of the B-DNA. Several applications of this model are discussed to demonstrate its applicability. WEChroM is used to investigate the behavior of circular DNA in the presence of positive and negative supercoiling. We show that it recapitulates the formation of plectonemes and of structural defects that relax mechanical stress. The model spontaneously manifests an asymmetric behavior with respect to positive or negative supercoiling, similar to what was previously observed in experiments. Additionally, we show that the associative memory Hamiltonian is also capable of reproducing the free energy of partial DNA unwrapping from nucleosomes. WEChroM is designed to emulate the continuously variable mechanical properties of the 10nm fiber and, by virtue of its simplicity, is ready to be scaled up to molecular systems large enough to investigate the structural ensembles of genes. WEChroM is implemented in the OpenMM simulation toolkits and is freely available for public use.
Collapse
Affiliation(s)
- Weiqi Lu
- Center for Theoretical Biological Physics, & Department of Physics and Astronomy, Rice University, Houston, Texas, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological Physics, & Department of Physics and Astronomy, Rice University, Houston, Texas, United States of America
- Department of Chemistry, & Department of Biosciences, Rice University, Houston, Texas, United States of America
- * E-mail: (JNO); (MDP)
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail: (JNO); (MDP)
| |
Collapse
|
5
|
Phan TTM, Phan TM, Schmit JD. Beneficial and detrimental effects of non-specific binding during DNA hybridization. Biophys J 2023; 122:835-848. [PMID: 36721368 PMCID: PMC10027450 DOI: 10.1016/j.bpj.2023.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/09/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
DNA strands have to sample numerous states to find the alignment that maximizes Watson-Crick-Franklin base pairing. This process depends strongly on sequence, which affects the stability of the native duplex as well as the prevalence of non-native inter- and intramolecular helices. We present a theory that describes DNA hybridization as a three-stage process: diffusion, registry search, and zipping. We find that non-specific binding affects each of these stages in different ways. Mis-registered intermolecular binding in the registry search stage helps DNA strands sample different alignments and accelerates the hybridization rate. Non-native intramolecular structure affects all three stages by rendering portions of the molecule inert to intermolecular association, limiting mis-registered alignments to be sampled, and impeding the zipping process. Once in-register base pairs are formed, the stability of the native structure is important to hold the molecules together long enough for non-native contacts to break.
Collapse
Affiliation(s)
- Tam T M Phan
- Department of Physics, Kansas State University, Manhattan, Kansas
| | - Tien M Phan
- Department of Physics, Kansas State University, Manhattan, Kansas
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, Kansas.
| |
Collapse
|
6
|
Jones M, Ashwood B, Tokmakoff A, Ferguson AL. Determining Sequence-Dependent DNA Oligonucleotide Hybridization and Dehybridization Mechanisms Using Coarse-Grained Molecular Simulation, Markov State Models, and Infrared Spectroscopy. J Am Chem Soc 2021; 143:17395-17411. [PMID: 34644072 PMCID: PMC8554761 DOI: 10.1021/jacs.1c05219] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/29/2022]
Abstract
A robust understanding of the sequence-dependent thermodynamics of DNA hybridization has enabled rapid advances in DNA nanotechnology. A fundamental understanding of the sequence-dependent kinetics and mechanisms of hybridization and dehybridization remains comparatively underdeveloped. In this work, we establish new understanding of the sequence-dependent hybridization/dehybridization kinetics and mechanism within a family of self-complementary pairs of 10-mer DNA oligomers by integrating coarse-grained molecular simulation, machine learning of the slow dynamical modes, data-driven inference of long-time kinetic models, and experimental temperature-jump infrared spectroscopy. For a repetitive ATATATATAT sequence, we resolve a rugged dynamical landscape comprising multiple metastable states, numerous competing hybridization/dehybridization pathways, and a spectrum of dynamical relaxations. Introduction of a G:C pair at the terminus (GATATATATC) or center (ATATGCATAT) of the sequence reduces the ruggedness of the dynamics landscape by eliminating a number of metastable states and reducing the number of competing dynamical pathways. Only by introducing a G:C pair midway between the terminus and the center to maximally disrupt the repetitive nature of the sequence (ATGATATCAT) do we recover a canonical "all-or-nothing" two-state model of hybridization/dehybridization with no intermediate metastable states. Our results establish new understanding of the dynamical richness of sequence-dependent kinetics and mechanisms of DNA hybridization/dehybridization by furnishing quantitative and predictive kinetic models of the dynamical transition network between metastable states, present a molecular basis with which to understand experimental temperature jump data, and furnish foundational design rules by which to rationally engineer the kinetics and pathways of DNA association and dissociation for DNA nanotechnology applications.
Collapse
Affiliation(s)
- Michael
S. Jones
- Pritzker
School of Molecular Engineering, The University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
| | - Brennan Ashwood
- Department
of Chemistry, Institute for Biophysical Dynamics, and James Franck
Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department
of Chemistry, Institute for Biophysical Dynamics, and James Franck
Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andrew L. Ferguson
- Pritzker
School of Molecular Engineering, The University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
| |
Collapse
|
7
|
Wong KL, Liu J. Factors and methods to modulate DNA hybridization kinetics. Biotechnol J 2021; 16:e2000338. [PMID: 34411451 DOI: 10.1002/biot.202000338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
DNA oligonucleotides are widely used in a diverse range of research fields from analytical chemistry, molecular biology, nanotechnology to drug delivery. In these applications, DNA hybridization is often the most important enabling reaction. Achieving control over hybridization kinetics and a high yield of hybridized products is needed to ensure high-quality and reproducible results. Since DNA strands are highly negatively charged and can also fold upon itself to form various intramolecular structures, DNA hybridization needs to overcome these barriers. Nucleation and diffusion are two main kinetic limiting steps although their relative importance differs in different conditions. The effects of length and sequence, temperature, pH, salt concentration, cationic polymers, organic solvents, freezing and crowding agents are summarized in the context of overcoming these barriers. This article will help researchers in the biotechnology-related fields to better understand and control DNA hybridization, as well as provide a landscape for future work in simulation and experiment to optimize DNA hybridization systems.
Collapse
Affiliation(s)
- Kingsley L Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
8
|
Pal A, Levy Y. Structure, stability and specificity of the binding of ssDNA and ssRNA with proteins. PLoS Comput Biol 2019; 15:e1006768. [PMID: 30933978 PMCID: PMC6467422 DOI: 10.1371/journal.pcbi.1006768] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/16/2019] [Accepted: 01/01/2019] [Indexed: 02/06/2023] Open
Abstract
Recognition of single-stranded DNA (ssDNA) or single-stranded RNA (ssRNA) is important for many fundamental cellular functions. A variety of single-stranded DNA-binding proteins (ssDBPs) and single-stranded RNA-binding proteins (ssRBPs) have evolved that bind ssDNA and ssRNA, respectively, with varying degree of affinities and specificities to form complexes. Structural studies of these complexes provide key insights into their recognition mechanism. However, computational modeling of the specific recognition process and to predict the structure of the complex is challenging, primarily due to the heterogeneity of their binding energy landscape and the greater flexibility of ssDNA or ssRNA compared with double-stranded nucleic acids. Consequently, considerably fewer computational studies have explored interactions between proteins and single-stranded nucleic acids compared with protein interactions with double-stranded nucleic acids. Here, we report a newly developed energy-based coarse-grained model to predict the structure of ssDNA–ssDBP and ssRNA–ssRBP complexes and to assess their sequence-specific interactions and stabilities. We tuned two factors that can modulate specific recognition: base–aromatic stacking strength and the flexibility of the single-stranded nucleic acid. The model was successfully applied to predict the binding conformations of 12 distinct ssDBP and ssRBP structures with their cognate ssDNA and ssRNA partners having various sequences. Estimated binding energies agreed well with the corresponding experimental binding affinities. Bound conformations from the simulation showed a funnel-shaped binding energy distribution where the native-like conformations corresponded to the energy minima. The various ssDNA–protein and ssRNA–protein complexes differed in the balance of electrostatic and aromatic energies. The lower affinity of the ssRNA–ssRBP complexes compared with the ssDNA–ssDBP complexes stems from lower flexibility of ssRNA compared to ssDNA, which results in higher rate constants for the dissociation of the complex (koff) for complexes involving the former. Quantifying bimolecular self-assembly is pivotal to understanding cellular function. In recent years, a large progress has been made in understanding the structure and biophysics of protein-protein interactions. Particularly, various computational tools are available for predicting these structures and to estimate their stability and the driving forces of their formation. The understating of the interactions between proteins and nucleic acids, however, is still limited, presumably due to the involvement of non-specific interactions as well as the high conformational plasticity that may demand an induced-fit mechanism. In particular, the interactions between proteins and single-stranded nucleic acids (i.e., single-stranded DNA and RNA) is very challenging due to their high flexibility. Furthermore, the interface between proteins and single-stranded nucleic acids is often chemically more heterogeneous than the interface between proteins and double-stranded DNA. In this study, we developed a coarse-grained computational model to predict the structure of complexes between proteins and single-stranded nucleic acids. The model was applied to estimate binding affinities and the estimated binding energies agreed well with the corresponding experimental binding affinities. The kinetics of association as well as the specificity of the complexes between proteins and ssDNA are different than those with ssRNA, mostly due to differences in their conformational flexibility.
Collapse
Affiliation(s)
- Arumay Pal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
9
|
Chakraborty D, Hori N, Thirumalai D. Sequence-Dependent Three Interaction Site Model for Single- and Double-Stranded DNA. J Chem Theory Comput 2018; 14:3763-3779. [PMID: 29870236 PMCID: PMC6423546 DOI: 10.1021/acs.jctc.8b00091] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We develop a robust coarse-grained model for single- and double-stranded DNA by representing each nucleotide by three interaction sites (TIS) located at the centers of mass of sugar, phosphate, and base. The resulting TIS model includes base-stacking, hydrogen bond, and electrostatic interactions as well as bond-stretching and bond angle potentials that account for the polymeric nature of DNA. The choices of force constants for stretching and the bending potentials were guided by a Boltzmann inversion procedure using a large representative set of DNA structures extracted from the Protein Data Bank. Some of the parameters in the stacking interactions were calculated using a learning procedure, which ensured that the experimentally measured melting temperatures of dimers are faithfully reproduced. Without any further adjustments, the calculations based on the TIS model reproduce the experimentally measured salt and sequence-dependence of the size of single-stranded DNA (ssDNA), as well as the persistence lengths of poly(dA) and poly(dT) chains. Interestingly, upon application of mechanical force, the extension of poly(dA) exhibits a plateau, which we trace to the formation of stacked helical domains. In contrast, the force-extension curve (FEC) of poly(dT) is entropic in origin and could be described by a standard polymer model. We also show that the persistence length of double-stranded DNA, formed from two complementary ssDNAs, is consistent with the prediction based on the worm-like chain. The persistence length, which decreases with increasing salt concentration, is in accord with the Odijk-Skolnick-Fixman theory intended for stiff polyelectrolyte chains near the rod limit. Our model predicts the melting temperatures of DNA hairpins with excellent accuracy, and we are able to recover the experimentally known sequence-specific trends. The range of applications, which did not require adjusting any parameter after the initial construction based solely on PDB structures and melting profiles of dimers, attests to the transferability and robustness of the TIS model for ssDNA and dsDNA.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Naoto Hori
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - D. Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Henrich O, Gutiérrez Fosado YA, Curk T, Ouldridge TE. Coarse-grained simulation of DNA using LAMMPS : An implementation of the oxDNA model and its applications. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:57. [PMID: 29748779 DOI: 10.1140/epje/i2018-11669-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/19/2018] [Indexed: 05/25/2023]
Abstract
During the last decade coarse-grained nucleotide models have emerged that allow us to study DNA and RNA on unprecedented time and length scales. Among them is oxDNA, a coarse-grained, sequence-specific model that captures the hybridisation transition of DNA and many structural properties of single- and double-stranded DNA. oxDNA was previously only available as standalone software, but has now been implemented into the popular LAMMPS molecular dynamics code. This article describes the new implementation and analyses its parallel performance. Practical applications are presented that focus on single-stranded DNA, an area of research which has been so far under-investigated. The LAMMPS implementation of oxDNA lowers the entry barrier for using the oxDNA model significantly, facilitates future code development and interfacing with existing LAMMPS functionality as well as other coarse-grained and atomistic DNA models.
Collapse
Affiliation(s)
- Oliver Henrich
- Department of Physics, SUPA, University of Strathclyde, G4 0NG, Glasgow, Scotland, UK.
| | | | - Tine Curk
- CAS Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Thomas E Ouldridge
- Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
- Centre of Synthetic Biology, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
11
|
Sharma R, Schreck JS, Romano F, Louis AA, Doye JPK. Characterizing the Motion of Jointed DNA Nanostructures Using a Coarse-Grained Model. ACS NANO 2017; 11:12426-12435. [PMID: 29083876 DOI: 10.1021/acsnano.7b06470] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As detailed structural characterizations of large complex DNA nanostructures are hard to obtain experimentally, particularly if they have substantial flexibility, coarse-grained modeling can potentially provide an important complementary role. Such modeling can provide a detailed view of both the average structure and the structural fluctuations, as well as providing insight into how the nanostructure's design determines its structural properties. Here, we present a case study of jointed DNA nanostructures using the oxDNA model. In particular, we consider archetypal hinge and sliding joints, as well as more complex structures involving a number of such coupled joints. Our results highlight how the nature of the motion in these structures can sensitively depend on the precise details of the joints. Furthermore, the generally good agreement with experiments illustrates the power of this approach and suggests the use of such modeling to prescreen the properties of putative designs.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee , Roorkee, 247667, India
| | - John S Schreck
- Department of Chemical Engineering, Columbia University , New York, New York 10027, United States
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi, Universitá Ca' Foscari Venezia , I-30123 Venezia, Italy
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford , 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
12
|
Yagyu H, Lee JY, Kim DN, Tabata O. Coarse-Grained Molecular Dynamics Model of Double-Stranded DNA for DNA Nanostructure Design. J Phys Chem B 2017; 121:5033-5039. [DOI: 10.1021/acs.jpcb.7b03931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiromasa Yagyu
- Department
of Mechanical Engineering, Kanto Gakuin University, 1-50-1 Mutsuura-higashi, Kanazawa-ku, Yokohama 236-8501, Japan
| | - Jae-Young Lee
- Department
of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Daehak-dong, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Do-Nyun Kim
- Department
of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Daehak-dong, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Osamu Tabata
- Department
of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura C3, Nishikyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
13
|
Kameda T, Isami S, Togashi Y, Nishimori H, Sakamoto N, Awazu A. The 1-Particle-per-k-Nucleotides (1PkN) Elastic Network Model of DNA Dynamics with Sequence-Dependent Geometry. Front Physiol 2017; 8:103. [PMID: 28382002 PMCID: PMC5361685 DOI: 10.3389/fphys.2017.00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/07/2017] [Indexed: 11/18/2022] Open
Abstract
Coarse-grained models of DNA have made important contributions to the determination of the physical properties of genomic DNA, working as a molecular machine for gene regulation. In this study, to analyze the global dynamics of long DNA sequences with consideration of sequence-dependent geometry, we propose elastic network models of DNA where each particle represents k nucleotides (1-particle-per-k-nucleotides, 1PkN). The models were adjusted according to profiles of the anisotropic fluctuations obtained from our previous 1-particle-per-1-nucleotide (1P1N) model, which was proven to reproduce such profiles of all-atom models. We confirmed that the 1P3N and 1P4N models are suitable for the analysis of detailed dynamics such as local twisting motion. The models are intended for the analysis of large structures, e.g., 10-nm fibers in the nucleus, and nucleoids of mitochondrial or phage DNA at low computational costs. As an example, we surveyed the physical characteristics of the whole mitochondrial human and Plasmodium falciparum genomes.
Collapse
Affiliation(s)
- Takeru Kameda
- Department of Mathematical and Life Sciences, Hiroshima University Hiroshima, Japan
| | - Shuhei Isami
- Department of Mathematical and Life Sciences, Hiroshima University Hiroshima, Japan
| | - Yuichi Togashi
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University Hiroshima, Japan
| | - Hiraku Nishimori
- Department of Mathematical and Life Sciences, Hiroshima UniversityHiroshima, Japan; Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima UniversityHiroshima, Japan
| | - Naoaki Sakamoto
- Department of Mathematical and Life Sciences, Hiroshima UniversityHiroshima, Japan; Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima UniversityHiroshima, Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences, Hiroshima UniversityHiroshima, Japan; Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima UniversityHiroshima, Japan
| |
Collapse
|
14
|
Abstract
More than 20 coarse-grained (CG) DNA models have been developed for simulating the behavior of this molecule under various conditions, including those required for nanotechnology. However, none of these models reproduces the DNA polymorphism associated with conformational changes in the ribose rings of the DNA backbone. These changes make an essential contribution to the DNA local deformability and provide the possibility of the transition of the DNA double helix from the B-form to the A-form during interactions with biological molecules. We propose a CG representation of the ribose conformational flexibility. We substantiate the choice of the CG sites (six per nucleotide) needed for the "sugar" GC DNA model, and obtain the potentials of the CG interactions between the sites by the "bottom-up" approach using the all-atom AMBER force field. We show that the representation of the ribose flexibility requires one non-harmonic and one three-particle potential, the forms of both the potentials being different from the ones generally used. The model also includes (i) explicit representation of ions (in an implicit solvent) and (ii) sequence dependence. With these features, the sugar CG DNA model reproduces (with the same parameters) both the B- and A- stable forms under corresponding conditions and demonstrates both the A to B and the B to A phase transitions. Graphical Abstract The proposed coarse-grained DNA model allows to reproduce both the B- and A- DNA forms and the transitions between them under corresponding conditions.
Collapse
|
15
|
Stadlbauer P, Mazzanti L, Cragnolini T, Wales DJ, Derreumaux P, Pasquali S, Šponer J. Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes. J Chem Theory Comput 2016; 12:6077-6097. [DOI: 10.1021/acs.jctc.6b00667] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Petr Stadlbauer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Departments of Physical
Chemistry, Faculty of Science, Palacký University, 17. listopadu
1192/12, 771 46 Olomouc, Czech Republic
| | - Liuba Mazzanti
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Tristan Cragnolini
- Department
of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - David J. Wales
- Department
of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Philippe Derreumaux
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Samuela Pasquali
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| |
Collapse
|
16
|
Markegard CB, Gallivan CP, Cheng DD, Nguyen HD. Effects of Concentration and Temperature on DNA Hybridization by Two Closely Related Sequences via Large-Scale Coarse-Grained Simulations. J Phys Chem B 2016; 120:7795-806. [PMID: 27447850 DOI: 10.1021/acs.jpcb.6b03937] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A newly developed coarse-grained model called BioModi is utilized to elucidate the effects of temperature and concentration on DNA hybridization in self-assembly. Large-scale simulations demonstrate that complementary strands of either the tetrablock sequence or randomized sequence with equivalent number of cytosine or guanine nucleotides can form completely hybridized double helices. Even though the end states are the same for the two sequences, there exist multiple kinetic pathways that are populated with a wider range of transient aggregates of different sizes in the system of random sequences compared to that of the tetrablock sequence. The ability of these aggregates to undergo the strand displacement mechanism to form only double helices depends upon the temperature and DNA concentration. On one hand, low temperatures and high concentrations drive the formation and enhance stability of large aggregating species. On the other hand, high temperatures destabilize base-pair interactions and large aggregates. There exists an optimal range of moderate temperatures and low concentrations that allow minimization of large aggregate formation and maximization of fully hybridized dimers. Such investigation on structural dynamics of aggregating species by two closely related sequences during the self-assembly process demonstrates the importance of sequence design in avoiding the formation of metastable species. Finally, from kinetic modeling of self-assembly dynamics, the activation energy for the formation of double helices was found to be in agreement with experimental results. The framework developed in this work can be applied to the future design of DNA nanostructures in both fields of structural DNA nanotechnology and dynamic DNA nanotechnology wherein equilibrium end states and nonequilibrium dynamics are equally important requiring investigation in cooperation.
Collapse
Affiliation(s)
- Cade B Markegard
- Department of Chemical Engineering and Materials Science, University of California, Irvine , Irvine, California 92697, United States
| | - Cameron P Gallivan
- Department of Chemical Engineering and Materials Science, University of California, Irvine , Irvine, California 92697, United States
| | - Darrell D Cheng
- Department of Chemical Engineering and Materials Science, University of California, Irvine , Irvine, California 92697, United States
| | - Hung D Nguyen
- Department of Chemical Engineering and Materials Science, University of California, Irvine , Irvine, California 92697, United States
| |
Collapse
|
17
|
Dans PD, Walther J, Gómez H, Orozco M. Multiscale simulation of DNA. Curr Opin Struct Biol 2016; 37:29-45. [DOI: 10.1016/j.sbi.2015.11.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/05/2023]
|
18
|
Abstract
For two-component assemblies, an inherent structure diagram (ISD) is the relationship between set inter-subunit energies and the types of kinetic traps (inherent structures) one may obtain from those energies. It has recently been shown that two-component ISDs are apportioned into regions or plateaux within which inherent structures display uniform features (e.g., stoichometries and morphologies). Interestingly, structures from one of the plateaux were also found to be robust outcomes of one type of non-equilibrium growth, which indicates the usefulness of the two-component ISD in predicting outcomes of some types of far-from-equilibrium growth. However, little is known as to how the ISD is apportioned into distinct plateaux. Also, while each plateau displays classes of structures that are morphologically distinct, little is known about the source of these distinct morphologies. This article outlines an analytic treatment of the two-component ISD and shows that the manner in which any ISD is apportioned arises from a single unitless order parameter. Additionally, the analytical framework allows for the characterization of local properties of the trapped structures within each ISD plateau. This work may prove to be useful in the design of novel classes of robust nonequilibrium assemblies.
Collapse
Affiliation(s)
- Ranjan V Mannige
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|