1
|
Srivastava P, Elles CG. A Single-Shot Technique for Measuring Broadband Two-Photon Absorption Spectra in Solution. Anal Chem 2024; 96:11121-11125. [PMID: 38949250 DOI: 10.1021/acs.analchem.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Applications involving two-photon activation, including two-photon fluorescence imaging, photodynamic therapy, and 3D data storage, require precise knowledge of the two-photon absorption (2PA) spectra of target chromophores. Broadband pump-probe spectroscopy using femtosecond laser pulses provides wavelength-dependent 2PA spectra with absolute cross sections, but the measurements are sometimes complicated by cross-phase modulation effects and dispersion of the broadband probe. Here, we introduce a single-shot approach that eliminates artifacts from cross-phase modulation and enables more rapid measurements by avoiding the need to scan the time delay between the pump and the probe pulses. The approach uses counterpropagating beams to automatically integrate over the full interaction between the two pulses as they cross. We demonstrate this single-shot approach for a common 2PA reference, coumarin 153 (C153), in three different solvents using the output from a Yb:KGW laser. This approach provides accurate 2PA cross sections that are more reliable and easier to obtain compared with scanning pump-probe methods using copropagating laser beams. The single-shot method for broadband two-photon absorption (BB-2PA) spectroscopy also has significant advantages compared with single-wavelength measurements, such as z-scan and two-photon fluorescence.
Collapse
Affiliation(s)
- Prasenjit Srivastava
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G Elles
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Srivastava P, Stierwalt DA, Elles CG. Broadband Two-Photon Absorption Spectroscopy with Stimulated Raman Scattering as an Internal Standard. Anal Chem 2023; 95:13227-13234. [PMID: 37603818 PMCID: PMC10484208 DOI: 10.1021/acs.analchem.3c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Two-photon absorption (2PA) spectroscopy provides valuable information about the nonlinear properties of molecules. In contrast with single-wavelength methods, broadband 2PA spectroscopy using a pump-probe approach gives a continuous 2PA spectrum across a wide range of transition energies without tuning the excitation laser. This contribution shows how stimulated Raman scattering from the solvent can be used as a convenient and robust internal standard for obtaining accurate absolute 2PA cross sections using the broadband approach. Stimulated Raman scattering has the same pump-probe overlap dependence as 2PA, thus eliminating the need to measure the intensity-dependent overlap of the pump and probe directly. Eliminating the overlap represents an important improvement because intensity profiles are typically the largest source of uncertainty in the measurement of absolute 2PA cross sections using any method. Raman scattering cross sections are a fundamental property of the solvent and therefore provide a universal standard that can be applied any time the 2PA and Raman signals are present within the same probe wavelength range. We demonstrate this approach using sample solutions of coumarin 153 in methanol, DMSO, and toluene, as well as fluorescein in water.
Collapse
Affiliation(s)
- Prasenjit Srivastava
- Department of Chemistry, University
of Kansas, Lawrence, Kansas 66045, United States
| | - David A. Stierwalt
- Department of Chemistry, University
of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G. Elles
- Department of Chemistry, University
of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
3
|
Ito H, Mutoh K, Abe J. Bridged-Imidazole Dimer Exhibiting Three-State Negative Photochromism with a Single Photochromic Unit. J Am Chem Soc 2023; 145:6498-6506. [PMID: 36888966 DOI: 10.1021/jacs.3c00476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Photochromic molecules that can exhibit multiple states of photochromism in a single photochromic unit are considered more attractive than traditional bistable photochromic molecules because they can offer more versatility and control in photoresponsive systems. We have synthesized a negative photochromic 1-(1-naphthyl)pyrenyl-bridged imidazole dimer (NPy-ImD) that has three different isomers: a colorless isomer, 6MR, a blue-colored isomer, 5MR-B, and a red-colored isomer, 5MR-R. NPy-ImD can interconvert between these isomers via a short-lived transient biradical, BR, upon photoirradiation. 5MR-R is the most stable isomer, and the energy levels of 6MR, 5MR-B, and BR are relatively close to each other. The colored isomers 5MR-R and 5MR-B are photochemically isomerized to 6MR via the short-lived BR upon irradiation with blue light and red light, respectively. The absorption bands of 5MR-R and 5MR-B are well separated by more than 150 nm, with a small overlap, which means they can be selectively excited with different light sources, visible light for 5MR-R and NIR light for 5MR-B. The colorless isomer 6MR is formed from the short-lived BR through a kinetically controlled reaction. 6MR and 5MR-B can then be converted to the more stable isomer 5MR-R through a thermodynamically controlled reaction, which is facilitated by the thermally accessible intermediate, BR. Notably, 5MR-R photoisomerizes to 6MR when irradiated with CW-UV light, whereas it photoisomerizes to 5MR-B by a two-photon process when irradiated with nanosecond UV laser pulses.
Collapse
Affiliation(s)
- Hiroki Ito
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Katsuya Mutoh
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| | - Jiro Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
4
|
Zhang D, Zhu H, Sheng X. Ultrafast optical limiting ability of trans-stilbene enhanced and broadened by a donor-π-acceptor structure. Phys Chem Chem Phys 2023; 25:7508-7518. [PMID: 36853650 DOI: 10.1039/d2cp05659c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
It has been shown that trans-stilbene (TSB) has great potential as an ultrafast optical limiting material through the process of three-photon absorption (3PA)-induced excited state absorption (ESA). The present paper shows that the main transitions in the absorption bands of TSB are mostly local excitation. In order to improve the optical limiting performance of TSB, a series of TSB derivatives with an electron donor-π-acceptor structure are designed. The analysis of π electron localized orbital locators (LOL-π) reveals that the distribution of π electrons in the derivatives of TSB is much more continuous compared to that in the original TSB. This results in the main transitions in the ground state absorption (GSA) and ESA of the TSB derivatives showing obvious charge transfer characteristics, and the GSA, ESA and 3PA bands are largely enhanced and broadened compared to those of the original TSB molecule. These observations are well supported by the enlarged transition dipole moments of the main transitions in GSA and ESA. With these results, it is clearly shown that the TSB derivatives are promising optical limiting materials. Our observations provide clues for the development of optical limiting materials based on TSB.
Collapse
Affiliation(s)
- Danyang Zhang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Hongjuan Zhu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Xiaowei Sheng
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| |
Collapse
|
5
|
Ramamurthy V, Sen P, Elles CG. Ultrafast Excited State Dynamics of Spatially Confined Organic Molecules. J Phys Chem A 2022; 126:4681-4699. [PMID: 35786917 DOI: 10.1021/acs.jpca.2c03276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This Feature Article highlights the role of spatial confinement in controlling the fundamental behavior of molecules. Select examples illustrate the value of using space as a tool to control and understand excited-state dynamics through a combination of ultrafast spectroscopy and conventional steady-state methods. Molecules of interest were confined within a closed molecular capsule, derived from a cavitand known as octa acid (OA), whose internal void space is sufficient to accommodate molecules as long as tetracene and as wide as pyrene. The free space, i.e., the space that is left following the occupation of the guest within the host, is shown to play a significant role in altering the behavior of guest molecules in the excited state. The results reported here suggest that in addition to weak interactions that are commonly emphasized in supramolecular chemistry, the extent of empty space (i.e., the remaining void space within the capsule) is important in controlling the excited-state behavior of confined molecules on ultrafast time scales. For example, the role of free space in controlling the excited-state dynamics of guest molecules is highlighted by probing the cis-trans isomerization of stilbenes and azobenzenes within the OA capsule. Isomerization of both types of molecule are slowed when they are confined within a small space, with encapsulated azobenzenes taking a different reaction pathway compared to that in solution upon excitation to S2. In addition to steric constraints, confinement of reactive molecules in a small space helps to override the need for diffusion to bring the reactants together, thus enabling the measurement of processes that occur faster than the time scale for diffusion. The advantages of reducing free space and confining reactive molecules are illustrated by recording unprecedented excimer emission from anthracene and by measuring ultrafast electron transfer rates across the organic molecular wall. By monitoring the translational motion of anthracene pairs in a restricted space, it has been possible to document the pathway undertaken by excited anthracene from inception to the formation of the excimer on the excited-state surface. Similarly, ultrafast electron transfer experiments pursued here have established that the process is not hindered by a molecular wall. Apparently, the electron can cross the OA capsule wall provided the donor and acceptor are in close proximity. Measurements on the ultrafast time scale provide crucial insights for each of the examples presented here, emphasizing the value of both "space" and "time" in controlling and understanding the dynamics of excited molecules.
Collapse
Affiliation(s)
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Christopher G Elles
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
6
|
Pang J, Deng Z, Sun S, Huang G, Zhang G, Islam A, Dang L, Phillips DL, Li MD. Unprecedentedly Ultrafast Dynamics of Excited States of C═C Photoswitching Molecules in Nanocrystals and Microcrystals. J Phys Chem Lett 2021; 12:41-48. [PMID: 33296591 DOI: 10.1021/acs.jpclett.0c03232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The C═C photoswitching molecules [1,2-di(4-pyridyl)ethylene (DPE), 4-styrylpyridine (SP), and trans-1,2-stilbene (TS)] show favorable photoisomerization characteristics. Although the solid states of photoswitching molecules are usually used in optical devices, their excited state's evolution has been little explored. Here, the excited state's relaxation of DPE, SP, and TS in nanocrystal/microcrystal suspensions as well as in solution phase was studied to uncover the early events of their excited states. The dynamics of nanocrystal/microcrystal suspensions was tremendously accelerated in comparison to the kinetics obtained in the solution for these molecules under excitation. DPE exhibits the slowest decay rate, while SP shows the fastest decay rate in nanocrystal suspensions or solution, suggesting SP may be the best candidate for the photoswitching device. The intermolecular interactions and space restriction of the crystal lead to the acceleration of the excited state's evolution for DPE, SP, and TS. This provides new insight into the design of optical materials.
Collapse
Affiliation(s)
- Junhong Pang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Ziqi Deng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shanshan Sun
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Guanheng Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Guohui Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Amjad Islam
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - David Lee Phillips
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| |
Collapse
|
7
|
van Galen C, Barnard DT, Stanley RJ. Stark Spectroscopy of Lumichrome: A Possible Candidate for Stand-Off Detection of Bacterial Quorum Sensing. J Phys Chem B 2020; 124:11835-11842. [PMID: 33325706 PMCID: PMC8714027 DOI: 10.1021/acs.jpcb.0c09498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lumichrome (7,8-dimethylalloxazine, LC) is a natural photodegradation product and catabolite of flavin coenzymes. Although not a coenzyme itself, LC is used for biosignaling in plants and single-celled organisms, including quorum sensing in the formation of biofilms. The noninvasive detection of in vivo lumichrome would be useful for monitoring this signaling event. For molecules that undergo significant charge redistribution upon light excitation (e.g., intramolecular charge transfer), there are optical detection methods (e.g., second-harmonic generation) that would be well suited to this task. Here, we have used Stark spectroscopy to measure the extent and direction of charge redistribution in photoexcited LC. Stark and low-temperature absorption spectra were obtained at 77 K on LC in ethanol glasses and analyzed using the Liptay analysis to obtain the difference dipole moments and polarizabilities. These data were complemented by a computational analysis of the excited states using density functional theory (DFT) at the TD-B3LYP/6-311+G(2d,p) level of theory.
Collapse
Affiliation(s)
- Cornelius van Galen
- Department of Chemistry, Temple University, 250B Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - David T Barnard
- Department of Chemistry, Temple University, 250B Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Robert J Stanley
- Department of Chemistry, Temple University, 250B Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
8
|
Otolski CJ, Raj AM, Ramamurthy V, Elles CG. Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes. Chem Sci 2020; 11:9513-9523. [PMID: 34094217 PMCID: PMC8162038 DOI: 10.1039/d0sc03955a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host-guest complex. Encapsulation increases the excited-state lifetimes and alters the yields of the trans → cis photoisomerization reaction compared with solution. Kinetic modeling of the transient spectra for unsubstituted t-Az following nπ* and ππ* excitation reveals steric trapping of excited-state species, as well as an adiabatic excited-state trans → cis isomerization pathway for confined molecules that is not observed in solution. Analysis of the transient spectra following ππ* excitation for a series of 4-alkyl and 4,4'-dialkyl substituted t-Az molecules suggests that additional crowding due to lengthening of the alkyl tails results in deeper trapping of the excited-state species, including distorted trans and cis structures. The variation of the dynamics due to crowding in the confined environment provides new evidence to explain the violation of Kasha's rule for nπ* and ππ* excitation of azobenzenes based on competition between in-plane inversion and out-of-plane rotation channels.
Collapse
Affiliation(s)
| | - A Mohan Raj
- Department of Chemistry, University of Miami Coral Gables Florida USA
| | | | | |
Collapse
|
9
|
Krohn OA, Quick M, Sudarkova SM, Ioffe IN, Richter C, Kovalenko SA. Photoisomerization dynamics of trans–trans, cis–trans, and cis–cis diphenylbutadiene from broadband transient absorption spectroscopy and calculations. J Chem Phys 2020; 152:224305. [DOI: 10.1063/5.0007241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- O. A. Krohn
- JILA and the Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - M. Quick
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - S. M. Sudarkova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - I. N. Ioffe
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - C. Richter
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - S. A. Kovalenko
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Otolski CJ, Mohan Raj A, Sharma G, Prabhakar R, Ramamurthy V, Elles CG. Ultrafast trans → cis Photoisomerization Dynamics of Alkyl-Substituted Stilbenes in a Supramolecular Capsule. J Phys Chem A 2019; 123:5061-5071. [PMID: 31140802 DOI: 10.1021/acs.jpca.9b03285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ultrafast spectroscopy reveals the effects of confinement on the excited-state photoisomerization dynamics for a series of alkyl-substituted trans-stilbenes encapsulated in the hydrophobic cavity of an aqueous supramolecular organic host-guest complex. Compared with the solvated compounds, encapsulated trans-stilbenes have broader excited-state absorption spectra, excited-state lifetimes that are 3-4 times longer, and photoisomerization quantum yields that are 1.7-6.5 times lower in the restricted environment. The organic capsule disrupts the equilibrium structure and restricts torsional rotation around the central C═C double bond in the excited state, which is an important motion for the relaxation of trans-stilbene from S1 to S0. The location and identity of alkyl substituents play a significant role in determining the excited-state dynamics and photoisomerization quantum yields by tuning the relative crowding inside the capsule. The results are discussed in terms of distortions of the ground- and excited-state potential energy surfaces, including the topology of the S1-S0 conical intersection.
Collapse
Affiliation(s)
- Christopher J Otolski
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - A Mohan Raj
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Gaurav Sharma
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Rajeev Prabhakar
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | | | - Christopher G Elles
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
11
|
Bhattacharyya D, Zhang Y, Elles CG, Bradforth SE. Electronic Structure of Liquid Methanol and Ethanol from Polarization-Dependent Two-Photon Absorption Spectroscopy. J Phys Chem A 2019; 123:5789-5804. [DOI: 10.1021/acs.jpca.9b04040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dhritiman Bhattacharyya
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Yuyuan Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Christopher G. Elles
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
12
|
Otolski CJ, Mohan Raj A, Ramamurthy V, Elles CG. Ultrafast Dynamics of Encapsulated Molecules Reveals New Insight on the Photoisomerization Mechanism for Azobenzenes. J Phys Chem Lett 2019; 10:121-127. [PMID: 30563336 DOI: 10.1021/acs.jpclett.8b03070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Spatial confinement can have a profound impact on the dynamics of chemical reactions, especially for isomerization reactions that involve large-amplitude structural rearrangement of a molecule. This work uses ultrafast spectroscopy to probe the effects of confinement on trans → cis photoisomerization following ππ* excitation of 4-propyl stilbene and 4-propyl azobenzene encapsulated in a supramolecular host-guest complex. Transient absorption spectroscopy of the encapsulated azobenzene derivative reveals the formation of two distinct excited-state species with spectral signatures resembling the cis and trans isomers. Formation of the cis species indicates a direct excited-state isomerization channel that is not observed in cyclohexane solution. Comparison with the stilbene analogue suggests that this "hot" excited-state isomerization pathway for encapsulated azobenzene involves primarily in-plane inversion, whereas a 10-fold increase of the excited-state lifetime for the trans isomer suggests that crowding in the capsule hinders isomerization from the relaxed S1 geometry of the trans isomer. This work provides new mechanistic insight on the relative roles of inversion and rotation in the ultrafast photoisomerization of azobenzene derivatives.
Collapse
Affiliation(s)
- Christopher J Otolski
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - A Mohan Raj
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | | | - Christopher G Elles
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
13
|
Solovyeva EV, Smirnov AN, Odintsova OV, Starova GL, Denisova AS. Vibrational spectroscopy and X-ray study of three stilbene dyes combined with DFT calculations. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.07.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Quincy TJ, Barclay MS, Caricato M, Elles CG. Probing Dynamics in Higher-Lying Electronic States with Resonance-Enhanced Femtosecond Stimulated Raman Spectroscopy. J Phys Chem A 2018; 122:8308-8319. [PMID: 30256101 DOI: 10.1021/acs.jpca.8b07855] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Femtosecond stimulated Raman scattering (FSRS) measurements typically probe the structural dynamics of a molecule in the first electronically excited state, S1. While these measurements often rely on an electronic resonance condition to increase signal strength or enhance species selectivity, the effects of the resonance condition are usually neglected. However, mode-specific enhancements of the vibrational transitions in an FSRS spectrum contain detailed information about the resonant (upper) electronic state. Analogous to ground-state resonance Raman spectroscopy, the relative intensities of the Raman bands reveal displacements of the upper potential energy surface due to changes in the bonding pattern upon S n ← S1 electronic excitation, and therefore provide a sensitive probe of the ultrafast dynamics in the higher-lying state, S n. Raman gain profiles from the wavelength-dependent FSRS spectrum of the model compound 2,5-diphenylthiophene (DPT) reveal several modes with large displacement in the upper potential energy surface, including strong enhancement of a delocalized C-S-C stretching and ring deformation mode. The experimental results provide a benchmark for comparison with calculated spectra using time-dependent density functional theory (TD-DFT) and equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD), where the calculations are based on the time-dependent formalism for resonance Raman spectroscopy. The simulated spectra are obtained from S1-S n transition strengths and the energy gradients of the upper (S n) potential energy surfaces along the S1 normal mode coordinates. The experimental results provide a stringent test of the computational approach, and indicate important limitations based on the level of theory and basis set. This work provides a foundation for making more accurate assignments of resonance-enhanced excited-state Raman spectra, as well as extracting novel information about higher-lying excited states in the transient absorption spectrum of a molecule.
Collapse
Affiliation(s)
- Timothy J Quincy
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Matthew S Barclay
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Marco Caricato
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Christopher G Elles
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
15
|
Matos LS, Amaral RC, Murakami Iha NY. Visible Photosensitization of trans-Styrylpyridine Coordinated to fac-[Re(CO)3(dcbH2)]+: New Insights. Inorg Chem 2018; 57:9316-9326. [DOI: 10.1021/acs.inorgchem.8b01304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lais S. Matos
- Laboratory of Photochemistry and Energy Conversion, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes 748, 05508-000 São Paulo, São Paulo, Brazil
| | - Ronaldo C. Amaral
- Laboratory of Photochemistry and Energy Conversion, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes 748, 05508-000 São Paulo, São Paulo, Brazil
| | - Neyde Y. Murakami Iha
- Laboratory of Photochemistry and Energy Conversion, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes 748, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
de Wergifosse M, Houk AL, Krylov AI, Elles CG. Two-photon absorption spectroscopy of trans-stilbene, cis-stilbene, and phenanthrene: Theory and experiment. J Chem Phys 2018; 146:144305. [PMID: 28411609 DOI: 10.1063/1.4979651] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Two-photon absorption (2PA) spectroscopy provides complementary, and sometimes more detailed, information about the electronic structure of a molecule relative to one-photon absorption (1PA) spectroscopy. However, our understanding of the 2PA processes is rather limited due to technical difficulties in measuring experimental 2PA spectra and theoretical challenges in computing higher-order molecular properties. This paper examines the 2PA spectroscopy of trans-stilbene, cis-stilbene, and phenanthrene by a combined experimental and theoretical approach. The broadband 2PA spectra of all three compounds are measured under identical conditions in order to facilitate a direct comparison of the absolute 2PA cross sections in the range 3.5-6.0 eV. For comparison, the theoretical 2PA cross sections are computed using the equation-of-motion coupled-cluster method with single and double substitutions. Simulated 2PA spectra based on the calculations reproduce the main features of the experimental spectra in solution, although the quantitative comparison is complicated by a number of uncertainties, including limitations of the theoretical model, vibronic structure, broadening of the experimental spectra, and solvent effects. The systematic comparison of experimental and theoretical spectra for this series of structurally similar compounds provides valuable insight into the nature of 2PA transitions in conjugated molecules. Notably, the orbital character and symmetry-based selection rules provide a foundation for interpreting the features of the experimental 2PA spectra in unprecedented detail.
Collapse
Affiliation(s)
- Marc de Wergifosse
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Amanda L Houk
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | | |
Collapse
|
17
|
de Wergifosse M, Elles CG, Krylov AI. Two-photon absorption spectroscopy of stilbene and phenanthrene: Excited-state analysis and comparison with ethylene and toluene. J Chem Phys 2017; 146:174102. [DOI: 10.1063/1.4982045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marc de Wergifosse
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | | | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
18
|
Lee S, Kim D. Symmetry-Dependent Intramolecular Charge Transfer Dynamics of Pyrene Derivatives Investigated by Two-Photon Excitation. J Phys Chem A 2016; 120:9217-9223. [DOI: 10.1021/acs.jpca.6b10819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sangsu Lee
- Department
of Chemistry and Spectroscopy Laboratory for Functional π-Electronic
Systems, Yonsei University, Seoul 03722, Korea
| | - Dongho Kim
- Department
of Chemistry and Spectroscopy Laboratory for Functional π-Electronic
Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
19
|
Houk AL, Givens RS, Elles CG. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP. J Phys Chem B 2016; 120:3178-86. [PMID: 26962676 DOI: 10.1021/acs.jpcb.5b12150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.
Collapse
Affiliation(s)
- Amanda L Houk
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - Richard S Givens
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - Christopher G Elles
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
20
|
Massuyeau F, Faulques E, Latouche C, Barone V. New insights into the vibrational and optical signatures of trans-stilbene via integrated experimental and quantum mechanical approaches. Phys Chem Chem Phys 2016; 18:19378-85. [DOI: 10.1039/c6cp02787c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure, spectroscopic parameters and optical properties of stilbene have been investigated by a computational protocol including suitable treatment of anharmonic contributions together with new experimental results.
Collapse
Affiliation(s)
- Florian Massuyeau
- Institut des Matériaux Jean Rouxel (IMN)
- Université de Nantes
- CNRS
- 44322 Nantes cedex 3
- France
| | - Eric Faulques
- Institut des Matériaux Jean Rouxel (IMN)
- Université de Nantes
- CNRS
- 44322 Nantes cedex 3
- France
| | - Camille Latouche
- Institut des Matériaux Jean Rouxel (IMN)
- Université de Nantes
- CNRS
- 44322 Nantes cedex 3
- France
| | | |
Collapse
|
21
|
Moreno J, Gerecke M, Dobryakov AL, Ioffe IN, Granovsky AA, Bléger D, Hecht S, Kovalenko SA. Two-Photon-Induced versus One-Photon-Induced Isomerization Dynamics of a Bistable Azobenzene Derivative in Solution. J Phys Chem B 2015; 119:12281-8. [DOI: 10.1021/acs.jpcb.5b07008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Moreno
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - M. Gerecke
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - A. L. Dobryakov
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - I. N. Ioffe
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - D. Bléger
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - S. Hecht
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - S. A. Kovalenko
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
22
|
Moreno J, Dobryakov AL, Ioffe IN, Granovsky AA, Hecht S, Kovalenko SA. Broadband transient absorption spectroscopy with 1- and 2-photon excitations: Relaxation paths and cross sections of a triphenylamine dye in solution. J Chem Phys 2015; 143:024311. [DOI: 10.1063/1.4926574] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- J. Moreno
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, 12489 Berlin, Germany
| | - A. L. Dobryakov
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, 12489 Berlin, Germany
| | - I. N. Ioffe
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - S. Hecht
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, 12489 Berlin, Germany
| | - S. A. Kovalenko
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, 12489 Berlin, Germany
| |
Collapse
|