1
|
Raghunathan S. Solvent accessible surface area-assessed molecular basis of osmolyte-induced protein stability. RSC Adv 2024; 14:25031-25041. [PMID: 39131493 PMCID: PMC11310836 DOI: 10.1039/d4ra02576h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
In solvent-modulated protein folding, under certain physiological conditions, an equilibrium exists between the unfolded and folded states of the protein without any need to break or make a covalent bond. In this process, interactions between various protein groups (peptides) and solvent molecules are known to play a major role in determining the directionality of the chemical reaction. However, an understanding of the mechanism of action of the co(solvent) by a generic theoretical underpinning is lacking. In this study, a generic solvation model is developed based on statistical mechanics and the thermodynamic transfer free energy model by considering the microenvironment polarity of the interacting co(solvent)-protein system. According to this model, polarity and the fractional solvent-accessible surface areas contribute to the interaction energies. The present model includes various orientations of participating interactant solvent surfaces of suitable areas. As model systems, besides the backbone we consider naturally occurring amino acid residues solvated in ten different osmolytes, small organic compounds known to modulate protein stability. The present model is able to predict the correct trend of the osmolyte-peptide interactions ranging from stabilizing to destabilizing not only for the backbone but also for side chains. Our model predicts Asn, Gln, Asp, Glu, Arg and Pro to be highly stable in most of the protecting osmolytes while Ala, Val, Ile, Leu, Thr, Met, Lys, Phe, Trp and Tyr are predicted to be moderately stable, and Ser, Cys and Histidine are predicted to be least stable. However, in denaturing solvents, both backbone and side chain models show similar stabilities in urea and guanidine. One of the important aspects of this model is that it is essentially parameter-free and consistent with the electrostatics of the interaction partners that make this model suitable for estimating any solute-solvent interaction energies.
Collapse
Affiliation(s)
- Shampa Raghunathan
- École Centrale School of Engineering, Mahindra University Hyderabad 500043 India
| |
Collapse
|
2
|
Shimizu S, Matubayasi N. Synergistic Solvation as the Enhancement of Local Mixing. J Phys Chem B 2024; 128:5713-5726. [PMID: 38829987 PMCID: PMC11182234 DOI: 10.1021/acs.jpcb.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Mixing two solvents can sometimes make a much better solvent than expected from their weighted mean. This phenomenon, called synergistic solvation, has commonly been explained via the Hildebrand and Hansen solubility parameters, yet their inability in other solubilization phenomena, most notably hydrotropy, necessitates an alternative route to elucidating solubilization. While, recently, the universal theory of solubilization was founded on the statistical thermodynamic fluctuation theory (as a generalization of the Kirkwood-Buff theory), its demand for experimental data processing has been a hindrance for its wider application. This can be overcome by the solubility isotherm theory, which is founded on the fluctuation theory yet reduces experimental data processing significantly to the level of isotherm analysis in sorption. The isotherm analysis identifies the driving force of synergistic solvation as the enhancement of solvent mixing around the solute, opposite in behavior to hydrotropy (characterized by the enhancement of demixing or self-association around the solute). Thus, the fluctuation theory, including its solubility isotherms, provides a universal language for solubilization across the historic subcategorization of solubilizers, for which different (and often contradictory) mechanistic models have been proposed.
Collapse
Affiliation(s)
- Seishi Shimizu
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Nobuyuki Matubayasi
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
3
|
Chialvo AA. Preferential Solvation Phenomena as Solute-Induced Structure-Making/Breaking Processes: Linking Thermodynamic Preferential Interaction Parameters to Fundamental Structure Making/Breaking Functions. J Phys Chem B 2024; 128:5228-5245. [PMID: 38754065 DOI: 10.1021/acs.jpcb.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In this work, we identify the explicit macroscopic-to-microscopic rigorous links between existing thermodynamic preferential interaction parameters Γ Q α Q β ( χ i ) and microstructural descriptors based on total correlation function integrals, leading to their unambiguous characterization in terms of fundamental structure making/breaking functions S α β . First, we provide the statistics mechanical framework to identify a universal molecular-based signature for the preferential solvation P S phenomenon involving solutes at infinite dilution in mixed-solvent environments and discuss its fundamental properties. Then, we characterize the S α β functions relevant to the P S process, identify the microscopic markers for the existing preferential interaction parameters Γ Q α Q β ( χ i ) in terms of the S α β functions, and test their compliance with a pair of essential microstructural constraints linked to the properties of the universal P S signature. Moreover, we illustrate the analysis by probing the behavior of a representative ternary system comprising the solubility of methane in aqueous 1,4-dioxane mixed-solvent environments under ambient conditions. Finally, we discuss some relevant issues surrounding the statistical mechanical (microstructural) interpretation of the thermodynamic (macroscopic) preferential interaction parameters, review some pitfalls in their evaluation from molecular simulation, and provide an outlook.
Collapse
Affiliation(s)
- Ariel A Chialvo
- Retired Scientist, Knoxville, Tennessee 37922-3108, United States
| |
Collapse
|
4
|
Malik R, Chandra A. Counteracting Effects of Trimethylamine N-Oxide against Urea in Aqueous Solutions: Insights from Theoretical Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2023; 127:7372-7383. [PMID: 37566900 DOI: 10.1021/acs.jpcb.3c03864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
The study of small osmolytes in their aqueous solutions has gained significant attention because of their relevance to structure and thermodynamics of proteins in aqueous media. Special attention has been given to the binary and ternary aqueous solutions of urea and trimethylamine N-oxide (TMAO). Urea is a well-known protein denaturant, while TMAO protects proteins in their native states. Interestingly, TMAO counteracts urea's ability to denature proteins when present in solutions with approximately half of the concentration of urea. Vibrational spectroscopy can improve our understanding of the molecular origin of this counteracting effect because of its sensitivity to local structure and dynamics. We present results of theoretical linear vibrational and two-dimensional infrared (2DIR) spectroscopy of water in the binary and ternary aqueous solutions of TMAO and urea. The 2DIR spectra are calculated using the electronic structure/molecular dynamics approach. The non-Condon effects in spectral transitions are incorporated in the theoretical calculations of 2DIR spectra. It is found that TMAO disrupts the local structure of water, while urea leaves it essentially unaffected. The 2DIR results show that both TMAO and urea slow down the dynamics of spectral diffusion of water. The extent of slowing down is found to be particularly significant for both hydration and bulk water in the presence of TMAO which can be attributed to strong hydrogen bonds between the water and TMAO molecules. The water molecules present in the hydration layer of the solutes in the ternary solutions are found to relax at even slower rates compared to that in their binary solutions in water. The hydrogen bonds between TMAO and urea are found to be not stable. Thus, the counteracting effect of TMAO against urea is seen to take place mainly through water-mediated interactions. Such TMAO-induced effects giving rise to more structured and slower hydrogen-bonded network are successfully captured through 2DIR spectroscopic calculations.
Collapse
Affiliation(s)
- Ravi Malik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
5
|
Shumilin I, Tanbuz A, Harries D. Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin. Pharmaceutics 2023; 15:pharmaceutics15051462. [PMID: 37242704 DOI: 10.3390/pharmaceutics15051462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Deep eutectic solvents (DESs) show promise in pharmaceutical applications, most prominently as excellent solubilizers. Yet, because DES are complex multi-component mixtures, it is challenging to dissect the contribution of each component to solvation. Moreover, deviations from the eutectic concentration lead to phase separation of the DES, making it impractical to vary the ratios of components to potentially improve solvation. Water addition alleviates this limitation as it significantly decreases the melting temperature and stabilizes the DES single-phase region. Here, we follow the solubility of β-cyclodextrin (β-CD) in DES formed by the eutectic 2:1 mole ratio of urea and choline chloride (CC). Upon water addition to DES, we find that at almost all hydration levels, the highest β-CD solubility is achieved at DES compositions that are shifted from the 2:1 ratio. At higher urea to CC ratios, due to the limited solubility of urea, the optimum composition allowing the highest β-CD solubility is reached at the DES solubility limit. For mixtures with higher CC concentration, the composition allowing optimal solvation varies with hydration. For example, β-CD solubility at 40 wt% water is enhanced by a factor of 1.5 for a 1:2 urea to CC mole ratio compared with the 2:1 eutectic ratio. We further develop a methodology allowing us to link the preferential accumulation of urea and CC in the vicinity of β-CD to its increased solubility. The methodology we present here allows a dissection of solute interactions with DES components that is crucial for rationally developing improved drug and excipient formulations.
Collapse
Affiliation(s)
- Ilan Shumilin
- Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| | - Ahmad Tanbuz
- Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| | - Daniel Harries
- Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
6
|
Shumilin I, Harries D. Enhanced solubilization in multi-component mixtures: mechanism of synergistic amplification of cyclodextrin solubility by urea and inorganic salts. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Urea counteracts trimethylamine N-oxide (TMAO) compaction of lipid membranes by modifying van der Waals interactions. J Colloid Interface Sci 2023; 629:165-172. [DOI: 10.1016/j.jcis.2022.08.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
|
8
|
Meena P, Kishore N. Synergistic effects of osmolytes on solvent exclusion and resulting protein stabilization: Studies with sucrose, taurine and sorbitol individually and in combination. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Mandalaparthy V, Noid WG. A simple theory for interfacial properties of dilute solutions. J Chem Phys 2022; 157:034703. [DOI: 10.1063/5.0098579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent studies suggest that cosolute mixtures may exert significant non-additive effects upon protein stability. The corresponding liquid–vapor interfaces may provide useful insight into these non-additive effects. Accordingly, in this work, we relate the interfacial properties of dilute multicomponent solutions to the interactions between solutes. We first derive a simple model for the surface excess of solutes in terms of thermodynamic observables. We then develop a lattice-based statistical mechanical perturbation theory to derive these observables from microscopic interactions. Rather than adopting a random mixing approximation, this dilute solution theory (DST) exactly treats solute–solute interactions to lowest order in perturbation theory. Although it cannot treat concentrated solutions, Monte Carlo (MC) simulations demonstrate that DST describes the interactions in dilute solutions with much greater accuracy than regular solution theory. Importantly, DST emphasizes a fundamental distinction between the “intrinsic” and “effective” preferences of solutes for interfaces. DST predicts that three classes of solutes can be distinguished by their intrinsic preference for interfaces. While the surface preference of strong depletants is relatively insensitive to interactions, the surface preference of strong surfactants can be modulated by interactions at the interface. Moreover, DST predicts that the surface preference of weak depletants and weak surfactants can be qualitatively inverted by interactions in the bulk. We also demonstrate that DST can be extended to treat surface polarization effects and to model experimental data. MC simulations validate the accuracy of DST predictions for lattice systems that correspond to molar concentrations.
Collapse
Affiliation(s)
- Varun Mandalaparthy
- Department of Chemistry, Penn State University, University Park, State College, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, Penn State University, University Park, State College, Pennsylvania 16802, USA
| |
Collapse
|
10
|
Meena P, Kishore N. Ionic strength modulated interactions of sorbitol with lysozyme and amino acids: Quantitative understanding in protein stabilizing effects. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Shinde RA, Ghosh R, Prasanthan P, Kishore N. Unraveling thermodynamic and conformational correlations in action of osmolytes on hen egg white lysozyme. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Ganguly P, Polák J, van der Vegt NFA, Heyda J, Shea JE. Protein Stability in TMAO and Mixed Urea–TMAO Solutions. J Phys Chem B 2020; 124:6181-6197. [DOI: 10.1021/acs.jpcb.0c04357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pritam Ganguly
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Jakub Polák
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, Darmstadt 64287, Germany
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
13
|
Molecular and macromolecular crowding-induced stabilization of proteins: Effect of dextran and its building block alone and their mixtures on stability and structure of lysozyme. Int J Biol Macromol 2020; 150:1238-1248. [DOI: 10.1016/j.ijbiomac.2019.10.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 11/22/2022]
|
14
|
Holehouse AS, Sukenik S. Controlling Structural Bias in Intrinsically Disordered Proteins Using Solution Space Scanning. J Chem Theory Comput 2020; 16:1794-1805. [DOI: 10.1021/acs.jctc.9b00604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Shahar Sukenik
- Department of Chemistry and Chemical Biology, UC Merced, Merced, California 95340, United States
| |
Collapse
|
15
|
Harton K, Shimizu S. Statistical thermodynamics of casein aggregation: Effects of salts and water. Biophys Chem 2019; 247:34-42. [DOI: 10.1016/j.bpc.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 11/30/2022]
|
16
|
Prasanthan P, Kishore N. Combined effect of equimolal osmolytes trehalose and glycine on stability of hen egg-white lysozyme: Quantitative mechanistic aspects. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Wang H, Fang L, Hu S, Pei Y, Ma W. A green and facile method to prepare graphitic carbon nitride nanosheets with outstanding photocatalytic H2O2 production ability via NaClO hydrothermal treatment. NEW J CHEM 2018. [DOI: 10.1039/c8nj03044h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transportation and transformation of photogenerated carriers during the photocatalytic process of graphitic carbon nitride (g-C3N4) are restricted by the low surface area and insufficient charge separation efficiency.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun 113001
- China
| | - Lei Fang
- Daqing Chemical Research Center of Petrochemical Research Institute
- PetroChina
- Daqing
- China
| | - Shaozheng Hu
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun 113001
- China
| | - Yanbo Pei
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun 113001
- China
| | - Wentao Ma
- College of Chemistry
- Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun 113001
- China
| |
Collapse
|
18
|
Ganguly P, Boserman P, van der Vegt NFA, Shea JE. Trimethylamine N-oxide Counteracts Urea Denaturation by Inhibiting Protein–Urea Preferential Interaction. J Am Chem Soc 2017; 140:483-492. [DOI: 10.1021/jacs.7b11695] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pritam Ganguly
- Department
of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Pablo Boserman
- Department
of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie, Center of Smart
Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße
10, Darmstadt 64287, Germany
| | - Joan-Emma Shea
- Department
of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
19
|
Rösgen J, Auton M. Comment on "Osmolyte Effects on Monoclonal Antibody Stability and Concentration-Dependent Protein Interactions with Water and Common Osmolytes". J Phys Chem B 2016; 120:11331-11332. [PMID: 27715051 DOI: 10.1021/acs.jpcb.6b05602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jörg Rösgen
- College of Medicine, Penn State University , Hershey, Pennsylvania 17033, United States
| | - Matthew Auton
- Mayo Clinic , Rochester, Minnesota 55905, United States
| |
Collapse
|
20
|
Pollock K, Yu G, Moller-Trane R, Koran M, Dosa PI, McKenna DH, Hubel A. Combinations of Osmolytes, Including Monosaccharides, Disaccharides, and Sugar Alcohols Act in Concert During Cryopreservation to Improve Mesenchymal Stromal Cell Survival. Tissue Eng Part C Methods 2016; 22:999-1008. [PMID: 27758133 DOI: 10.1089/ten.tec.2016.0284] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is demand for non-dimethyl sulfoxide (DMSO) cryoprotective agents that maintain cell viability without causing poor postthaw function or systemic toxicity. The focus of this investigation involves expanding our understanding of multicomponent osmolyte solutions and their ability to preserve cell viability during freezing. Controlled cooling rate freezing, Raman microscopy, and differential scanning calorimetry (DSC) were utilized to evaluate the differences in recovery and ice crystal formation behavior for solutions containing multiple cryoprotectants, including sugars, sugar alcohols, and small molecule additives. Postthaw recovery of mesenchymal stem cells (MSCs) in solutions containing multiple osmolytes have been shown to be comparable or better than that of MSCs frozen in 10% DMSO at 1°C/min when the solution composition is optimized. Maximum postthaw recovery was observed in these multiple osmolyte solutions with incubation times of up to 2 h before freezing. Raman images demonstrate large ice crystal formation in cryopreserved cells incubated for shorter periods of time (∼30 min), suggesting that longer permeation times are needed for these solutions. Recovery was dependent upon the concentration of each component in solution, and was not strongly correlated with osmolarity. It is noteworthy that the postthaw recovery varied significantly with the composition of solutions containing the same three components and this variation exhibited an inverted U-shape behavior, indicating that there may be a "sweet spot" for different combinations of osmolytes. Raman images of freezing behavior in different solution compositions were consistent with the observed postthaw recovery. Phase change behavior (solidification patterns and glass-forming tendency) did not differ for solutions with similar osmolarity, but differences in postthaw recovery suggest that biological, not physical, methods of protection are at play. Lastly, molecular substitution of glucose (a monosaccharide) for sucrose (a disaccharide) resulted in a significant drop in recovery. Taken together, the information from these studies increases our understanding of non-DMSO multicomponent cryoprotective solutions and the manner by which they enhance postthaw recovery.
Collapse
Affiliation(s)
- Kathryn Pollock
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Guanglin Yu
- 2 Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Ralph Moller-Trane
- 3 Department of Ophthalmology, University of Wisconsin , Madison, Wisconsin
| | - Marissa Koran
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Peter I Dosa
- 4 Institute for Therapeutics Discovery and Development, University of Minnesota , Minneapolis, Minnesota
| | - David H McKenna
- 5 Department of Laboratory Medicine and Pathology, University of Minnesota , Minneapolis, Minnesota
| | - Allison Hubel
- 2 Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
21
|
Vergara A. Use of Kirkwood-Buff Integrals for Extracting Distinct Diffusion Coefficients in Macromolecule-Solvent Mixtures. MACROMOL THEOR SIMUL 2016. [DOI: 10.1002/mats.201600040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandro Vergara
- Department of Chemical Sciences; University of Napoli “Federico II,”; Via Cinthia; Complesso di Monte S. Angelo; 80126 Napoli Italy
| |
Collapse
|
22
|
Zeng CX, Qi SJ, Xin RP, Yang B, Wang YH. Synergistic behavior of betaine–urea mixture: Formation of deep eutectic solvent. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.02.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Fonin AV, Uversky VN, Kuznetsova IM, Turoverov KK. Protein folding and stability in the presence of osmolytes. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916020056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|