1
|
Domingos SR, Tikhonov DS, Steber AL, Eschenbach P, Gruet S, Hrodmarsson HR, Martin K, Garcia GA, Nahon L, Neugebauer J, Avarvari N, Schnell M. Evolution of the ionisation energy with the stepwise growth of chiral clusters of [4]helicene. Nat Commun 2024; 15:4928. [PMID: 38858352 PMCID: PMC11164862 DOI: 10.1038/s41467-024-48778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely established as ubiquitous in the interstellar medium (ISM), but considering their prevalence in harsh vacuum environments, the role of ionisation in the formation of PAH clusters is poorly understood, particularly if a chirality-dependent aggregation route is considered. Here we report on photoelectron spectroscopy experiments on [4]helicene clusters performed with a vacuum ultraviolet synchrotron beamline. Aggregates (up to the heptamer) of [4]helicene, the smallest PAH with helical chirality, were produced and investigated with a combined experimental and theoretical approach using several state-of-the-art quantum-chemical methodologies. The ionisation onsets are extracted for each cluster size from the mass-selected photoelectron spectra and compared with calculations of vertical ionisation energies. We explore the complex aggregation topologies emerging from the multitude of isomers formed through clustering of P and M, the two enantiomers of [4]helicene. The very satisfactory benchmarking between experimental ionisation onsets vs. predicted ionisation energies allows the identification of theoretically predicted potential aggregation motifs and corresponding energetic ordering of chiral clusters. Our structural models suggest that a homochiral aggregation route is energetically favoured over heterochiral arrangements with increasing cluster size, hinting at potential symmetry breaking in PAH cluster formation at the scale of small grains.
Collapse
Affiliation(s)
- Sérgio R Domingos
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- CFisUC, Department of Physics, University of Coimbra, 3004-516, Coimbra, Portugal.
| | - Denis S Tikhonov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| | - Amanda L Steber
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- Department of Physical Chemistry, Faculty of Science, University of Valladolid, 47011, Valladolid, Spain.
| | - Patrick Eschenbach
- Organisch-Chemisches Institut, University of Münster, 48149, Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, 48149, Münster, Germany
| | - Sebastien Gruet
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Helgi R Hrodmarsson
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192, Gif sur Yvette, Cedex, France
- LISA UMR 7583 Université Paris-Est Créteil and Université de Paris, Institut Pierre et Simon Laplace, 61 Avenue du Général de Gaulle, 94010, Créteil, France
| | - Kévin Martin
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, 49000, Angers, France
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192, Gif sur Yvette, Cedex, France
| | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192, Gif sur Yvette, Cedex, France
| | - Johannes Neugebauer
- Organisch-Chemisches Institut, University of Münster, 48149, Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, 48149, Münster, Germany
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, 49000, Angers, France
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany.
| |
Collapse
|
2
|
Giovannini T, Scavino M, Koch H. Time-Dependent Multilevel Density Functional Theory. J Chem Theory Comput 2024; 20:3601-3612. [PMID: 38648031 DOI: 10.1021/acs.jctc.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We present a novel three-layer approach based on multilevel density functional theory (MLDFT) and polarizable molecular mechanics to simulate the electronic excitations of chemical systems embedded in an external environment within the time-dependent DFT formalism. In our method, the electronic structure of a target system, the chromophore, is determined in the field of an embedded inactive layer, which is treated as frozen. Long-range interactions are described by employing the polarizable fluctuating charge (FQ) force field. The resulting MLDFT/FQ thus accurately describes both electrostatics (and polarization) and non-electrostatic target-environment interactions. The robustness and reliability of the approach are demonstrated by comparing our results with experimental data reported for various organic molecules in solution.
Collapse
Affiliation(s)
| | - Marco Scavino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
3
|
Narita M, Kavungathodi MFM, Dheendayal M, Wagner P, Mori S, Mozer AJ. High Electronic Coupling between Cu Complexes and Oxidized Dyes Confirmed by Measurements of Driving Force Dependent Regeneration Kinetics in Minimal Electrolyte System. J Am Chem Soc 2024; 146:12310-12314. [PMID: 38668078 DOI: 10.1021/jacs.4c02237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
We confirm fast regeneration kinetics between copper complexes and oxidized organic dyes and the major contribution of electronic coupling (HDA). The highest efficiency of dye-sensitized TiO2 solar cells has been shown by employing Cu complex redox couples. Various groups have reported a fast regeneration rate of oxidized dyes by Cu complexes giving a low driving force attributed to low reorganization energy (λ), but the effect of HDA has not been evaluated. The values of HDA and λ can be derived from driving force dependent transient absorption (TA) measurements. However, analyzing TA decay using Cu complexes is not trivial because accelerated recombination by the presence of Cu2+ complexes and biphasic TA decay often complicates the analysis. Here we employ 16 Cu1+ and Co2+ complexes and two dyes. To simplify the system, i.e., making a minimal electrolyte system, Cu2+ and Co3+ complexes and a common additive of 4-tert-butylpyridine are not used. From the driving force dependent TA decays of oxidized dyes by both Cu1+ and Co2+ complexes, λ for the combination of the Cu complexes and dyes is found to be about 0.15 eV lower than that of Co complexes. Approximately 3 to 5 times higher HDA values of Cu complexes than those of Co complexes are obtained, which is the dominant factor for faster rates. The values vary with the structure of the molecules, showing the possibility of increasing the HDA values further. The higher HDA values of a Cu complex than that of a Co complex are also reproduced by quantum chemical calculations.
Collapse
Affiliation(s)
- Mitsuru Narita
- Division of Chemistry and Materials, Faculty of Textile Science, Shinshu University, Ueda, Nagano 386-8567, Japan
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Munavvar Fairoos Mele Kavungathodi
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Mantra Dheendayal
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Pawel Wagner
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Shogo Mori
- Division of Chemistry and Materials, Faculty of Textile Science, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Attila J Mozer
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
4
|
Lafiosca P, Rossi F, Egidi F, Giovannini T, Cappelli C. Multiscale Frozen Density Embedding/Molecular Mechanics Approach for Simulating Magnetic Response Properties of Solvated Systems. J Chem Theory Comput 2024; 20:266-279. [PMID: 38109486 PMCID: PMC10782454 DOI: 10.1021/acs.jctc.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
We present a three-layer hybrid quantum mechanical/quantum embedding/molecular mechanics approach for calculating nuclear magnetic resonance (NMR) shieldings and J-couplings of molecular systems in solution. The model is based on the frozen density embedding (FDE) and polarizable fluctuating charges (FQ) and fluctuating dipoles (FQFμ) force fields and permits the accurate ab initio description of short-range nonelectrostatic interactions by means of the FDE shell and cost-effective treatment of long-range electrostatic interactions through the polarizable force field FQ(Fμ). Our approach's accuracy and potential are demonstrated by studying NMR spectra of Brooker's merocyanine in aqueous and nonaqueous solutions.
Collapse
Affiliation(s)
- Piero Lafiosca
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Federico Rossi
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Franco Egidi
- Software
for Chemistry and Materials BV, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | - Chiara Cappelli
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
5
|
Mi W, Luo K, Trickey SB, Pavanello M. Orbital-Free Density Functional Theory: An Attractive Electronic Structure Method for Large-Scale First-Principles Simulations. Chem Rev 2023; 123:12039-12104. [PMID: 37870767 DOI: 10.1021/acs.chemrev.2c00758] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Kohn-Sham Density Functional Theory (KSDFT) is the most widely used electronic structure method in chemistry, physics, and materials science, with thousands of calculations cited annually. This ubiquity is rooted in the favorable accuracy vs cost balance of KSDFT. Nonetheless, the ambitions and expectations of researchers for use of KSDFT in predictive simulations of large, complicated molecular systems are confronted with an intrinsic computational cost-scaling challenge. Particularly evident in the context of first-principles molecular dynamics, the challenge is the high cost-scaling associated with the computation of the Kohn-Sham orbitals. Orbital-free DFT (OFDFT), as the name suggests, circumvents entirely the explicit use of those orbitals. Without them, the structural and algorithmic complexity of KSDFT simplifies dramatically and near-linear scaling with system size irrespective of system state is achievable. Thus, much larger system sizes and longer simulation time scales (compared to conventional KSDFT) become accessible; hence, new chemical phenomena and new materials can be explored. In this review, we introduce the historical contexts of OFDFT, its theoretical basis, and the challenge of realizing its promise via approximate kinetic energy density functionals (KEDFs). We review recent progress on that challenge for an array of KEDFs, such as one-point, two-point, and machine-learnt, as well as some less explored forms. We emphasize use of exact constraints and the inevitability of design choices. Then, we survey the associated numerical techniques and implemented algorithms specific to OFDFT. We conclude with an illustrative sample of applications to showcase the power of OFDFT in materials science, chemistry, and physics.
Collapse
Affiliation(s)
- Wenhui Mi
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, PR China
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, PR China
- International Center of Future Science, Jilin University, Changchun 130012, PR China
| | - Kai Luo
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - S B Trickey
- Quantum Theory Project, Department of Physics and Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Michele Pavanello
- Department of Physics and Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Kohn JT, Gildemeister N, Grimme S, Fazzi D, Hansen A. Efficient calculation of electronic coupling integrals with the dimer projection method via a density matrix tight-binding potential. J Chem Phys 2023; 159:144106. [PMID: 37818996 DOI: 10.1063/5.0167484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Designing organic semiconductors for practical applications in organic solar cells, organic field-effect transistors, and organic light-emitting diodes requires understanding charge transfer mechanisms across different length and time scales. The underlying electron transfer mechanisms can be efficiently explored using semiempirical quantum mechanical (SQM) methods. The dimer projection (DIPRO) method combined with the recently introduced non-self-consistent density matrix tight-binding potential (PTB) [Grimme et al., J. Chem. Phys. 158, 124111 (2023)] is used in this study to evaluate charge transfer integrals important for understanding charge transport mechanisms. PTB, parameterized for the entire Periodic Table up to Z = 86, incorporates approximate non-local exchange, allowing for efficient and accurate calculations for large hetero-organic compounds. Benchmarking against established databases, such as Blumberger's HAB sets, or our newly introduced JAB69 set and comparing with high-level reference data from ωB97X-D4 calculations confirm that DIPRO@PTB consistently performs well among the tested SQM approaches for calculating coupling integrals. DIPRO@PTB yields reasonably accurate results at low computational cost, making it suitable for screening purposes and applications to large systems, such as metal-organic frameworks and cyanine-based molecular aggregates further discussed in this work.
Collapse
Affiliation(s)
- J T Kohn
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - N Gildemeister
- Department of Chemistry, Greinstrasse 4-6, 50939 Köln, Germany
| | - S Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - D Fazzi
- Dipartimento di Chimica "Giacomo Ciamician," Via Selmi 2, 40126 Bologna, Italy
| | - A Hansen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| |
Collapse
|
7
|
Sen S, Visscher L. Towards the description of charge transfer states in solubilised LHCII using subsystem DFT. PHOTOSYNTHESIS RESEARCH 2023; 156:39-57. [PMID: 35988131 PMCID: PMC10070235 DOI: 10.1007/s11120-022-00950-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 05/05/2023]
Abstract
Light harvesting complex II (LHCII) in plants and green algae have been shown to adapt their absorption properties, depending on the concentration of sunlight, switching between a light harvesting and a non-harvesting or quenched state. In a recent work, combining classical molecular dynamics (MD) simulations with quantum chemical calculations (Liguori et al. in Sci Rep 5:15661, 2015) on LHCII, it was shown that the Chl611-Chl612 cluster of the terminal emitter domain can play an important role in modifying the spectral properties of the complex. In that work the importance of charge transfer (CT) effects was highlighted, in re-shaping the absorption intensity of the chlorophyll dimer. Here in this work, we investigate the combined effect of the local excited (LE) and CT states in shaping the energy landscape of the chlorophyll dimer. Using subsystem Density Functional Theory over the classical [Formula: see text]s MD trajectory we look explicitly into the excitation energies of the LE and the CT states of the dimer and their corresponding couplings. Upon doing so, we observe a drop in the excitation energies of the CT states, accompanied by an increase in the couplings between the LE/LE and the LE/CT states facilitated by a shorter interchromophoric distance upon equilibration. Both these changes in conjunction, effectively produces a red-shift of the low-lying mixed exciton/CT states of the supramolecular chromophore pair.
Collapse
Affiliation(s)
- Souloke Sen
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Lucas Visscher
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Giovannini T, Marrazzini G, Scavino M, Koch H, Cappelli C. Integrated Multiscale Multilevel Approach to Open Shell Molecular Systems. J Chem Theory Comput 2023; 19:1446-1456. [PMID: 36780359 PMCID: PMC10018740 DOI: 10.1021/acs.jctc.2c00805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
We present a novel multiscale approach to study the electronic structure of open shell molecular systems embedded in an external environment. The method is based on the coupling of multilevel Hartree-Fock (MLHF) and Density Functional Theory (MLDFT), suitably extended to the unrestricted formalism, to Molecular Mechanics (MM) force fields (FF). Within the ML region, the system is divided into active and inactive parts, thus describing the most relevant interactions (electrostatic, polarization, and Pauli repulsion) at the quantum level. The surrounding MM part, which is formulated in terms of nonpolarizable or polarizable FFs, permits a physically consistent treatment of long-range electrostatics and polarization effects. The approach is extended to the calculation of hyperfine coupling constants and applied to selected nitroxyl radicals in an aqueous solution.
Collapse
Affiliation(s)
| | - Gioia Marrazzini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Scavino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.,Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
9
|
Niemeyer N, Eschenbach P, Bensberg M, Tölle J, Hellmann L, Lampe L, Massolle A, Rikus A, Schnieders D, Unsleber JP, Neugebauer J. The subsystem quantum chemistry program
Serenity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Niklas Niemeyer
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Patrick Eschenbach
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Moritz Bensberg
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Johannes Tölle
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Lars Hellmann
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Lukas Lampe
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Anja Massolle
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Anton Rikus
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - David Schnieders
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| | - Jan P. Unsleber
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch‐Chemisches Institut and Center for Multiscale Theory and Computation Westfälische Wilhelms‐Universität Münster Münster Germany
| |
Collapse
|
10
|
Eschenbach P, Artiukhin DG, Neugebauer J. Reliable Isotropic Electron-Paramagnetic-Resonance Hyperfine Coupling Constants from the Frozen-Density Embedding Quasi-Diabatization Approach. J Phys Chem A 2022; 126:8358-8368. [DOI: 10.1021/acs.jpca.2c04959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Eschenbach
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Denis G. Artiukhin
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
11
|
Eschenbach P, Neugebauer J. Subsystem density-functional theory: A reliable tool for spin-density based properties. J Chem Phys 2022; 157:130902. [PMID: 36209003 DOI: 10.1063/5.0103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Subsystem density-functional theory compiles a set of features that allow for efficiently calculating properties of very large open-shell radical systems such as organic radical crystals, proteins, or deoxyribonucleic acid stacks. It is computationally less costly than correlated ab initio wave function approaches and can pragmatically avoid the overdelocalization problem of Kohn-Sham density-functional theory without employing hard constraints on the electron-density. Additionally, subsystem density-functional theory calculations commonly start from isolated fragment electron densities, pragmatically preserving a priori specified subsystem spin-patterns throughout the calculation. Methods based on subsystem density-functional theory have seen a rapid development over the past years and have become important tools for describing open-shell properties. In this Perspective, we address open questions and possible developments toward challenging future applications in connection with subsystem density-functional theory for spin-dependent properties.
Collapse
Affiliation(s)
- Patrick Eschenbach
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
12
|
Ziogos OG, Blumberger J. Ultrafast estimation of electronic couplings for electron transfer between pi-conjugated organic molecules. II. J Chem Phys 2021; 155:244110. [PMID: 34972358 DOI: 10.1063/5.0076555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The development of highly efficient methods for the calculation of electronic coupling matrix elements between the electron donor and acceptor is an important goal in theoretical organic semiconductor research. In Paper I [F. Gajdos, S. Valner, F. Hoffmann, J. Spencer, M. Breuer, A. Kubas, M. Dupuis, and J. Blumberger, J. Chem. Theory Comput. 10, 4653 (2014)], we introduced the analytic overlap method (AOM) for this purpose, which is an ultrafast electronic coupling estimator parameterized to and orders of magnitude faster than density functional theory (DFT) calculations at a reasonably small loss in accuracy. In this work, we reparameterize and extend the AOM to molecules containing nitrogen, oxygen, fluorine, and sulfur heteroatoms using 921 dimer configurations from the recently introduced HAB79 dataset. We find again a very good linear correlation between the frontier orbital overlap, calculated ultrafast in an optimized minimum Slater basis, and DFT reference electronic couplings. The new parameterization scheme is shown to be transferable to sulfur-containing polyaromatic hydrocarbons in experimentally resolved dimeric configurations. Our extension of the AOM enables high-throughput screening of very large databases of chemically diverse organic crystal structures and the application of computationally intense non-adiabatic molecular dynamics methods to charge transport in state-of-the-art organic semiconductors, e.g., non-fullerene acceptors.
Collapse
Affiliation(s)
- Orestis George Ziogos
- Department of Physics and Astronomy and Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Ziogos OG, Kubas A, Futera Z, Xie W, Elstner M, Blumberger J. HAB79: A new molecular dataset for benchmarking DFT and DFTB electronic couplings against high-level ab initio calculations. J Chem Phys 2021; 155:234115. [PMID: 34937363 DOI: 10.1063/5.0076010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A new molecular dataset called HAB79 is introduced to provide ab initio reference values for electronic couplings (transfer integrals) and to benchmark density functional theory (DFT) and density functional tight-binding (DFTB) calculations. The HAB79 dataset is composed of 79 planar heterocyclic polyaromatic hydrocarbon molecules frequently encountered in organic (opto)electronics, arranged to 921 structurally diverse dimer configurations. We show that CASSCF/NEVPT2 with a minimal active space provides a robust reference method that can be applied to the relatively large molecules of the dataset. Electronic couplings are largest for cofacial dimers, in particular, sulfur-containing polyaromatic hydrocarbons, with values in excess of 0.5 eV, followed by parallel displaced cofacial dimers. V-shaped dimer motifs, often encountered in the herringbone layers of organic crystals, exhibit medium-sized couplings, whereas T-shaped dimers have the lowest couplings. DFT values obtained from the projector operator-based diabatization (POD) method are initially benchmarked against the smaller databases HAB11 (HAB7-) and found to systematically improve when climbing Jacob's ladder, giving mean relative unsigned errors (MRUEs) of 27.7% (26.3%) for the generalized gradient approximation (GGA) functional BLYP, 20.7% (15.8%) for hybrid functional B3LYP, and 5.2% (7.5%) for the long-range corrected hybrid functional omega-B97X. Cost-effective POD in combination with a GGA functional and very efficient DFTB calculations on the dimers of the HAB79 database give a good linear correlation with the CASSCF/NEVPT2 reference data, which, after scaling with a multiplicative constant, gives reasonably small MRUEs of 17.9% and 40.1%, respectively, bearing in mind that couplings in HAB79 vary over 4 orders of magnitude. The ab initio reference data reported here are expected to be useful for benchmarking other DFT or semi-empirical approaches for electronic coupling calculations.
Collapse
Affiliation(s)
- Orestis George Ziogos
- Department of Physics and Astronomy and Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Zdenek Futera
- Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | - Weiwei Xie
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
14
|
Eschenbach P, Artiukhin DG, Neugebauer J. Multi-state formulation of the frozen-density embedding quasi-diabatization approach. J Chem Phys 2021; 155:174104. [PMID: 34749503 DOI: 10.1063/5.0070486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a multi-state implementation of the recently developed frozen-density embedding diabatization (FDE-diab) methodology [D. G. Artiukhin and J. Neugebauer, J. Chem. Phys. 148, 214104 (2018)] in the Serenity program. The new framework extends the original approach such that any number of charge-localized quasi-diabatic states can be coupled, giving an access to calculations of ground and excited state spin-density distributions as well as to excitation energies. We show that it is possible to obtain results similar to those from correlated wave function approaches such as the complete active space self-consistent field method at much lower computational effort. Additionally, we present a series of approximate computational schemes, which further decrease the overall computational cost and systematically converge to the full FDE-diab solution. The proposed methodology enables computational studies on spin-density distributions and related properties for large molecular systems of biochemical interest.
Collapse
Affiliation(s)
- Patrick Eschenbach
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Denis G Artiukhin
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
15
|
He L, Guo Y, Kloo L. The dynamics of light-induced interfacial charge transfer of different dyes in dye-sensitized solar cells studied by ab initio molecular dynamics. Phys Chem Chem Phys 2021; 23:27171-27184. [PMID: 34635889 DOI: 10.1039/d1cp02412d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The charge-transport dynamics at the dye-TiO2 interface plays a vital role for the resulting power conversion efficiency (PCE) of dye sensitized solar cells (DSSCs). In this work, we have investigated the charge-exchange dynamics for a series of organic dyes, of different complexity, and a small model of the semiconductor substrate TiO2. The dyes studied involve L1, D35 and LEG4, all well-known organic dyes commonly used in DSSCs. The computational studies have been based on ab initio molecular dynamics (aiMD) simulations, from which structural snapshots have been collected. Estimates of the charge-transfer rate constants of the central exchange processes in the systems have been computed. All dyes show similar properties, and differences are mainly of quantitative character. The processes studied were the electron injection from the photoexcited dye, the hole transfer from TiO2 to the dye and the recombination loss from TiO2 to the dye. It is notable that the electronic coupling/transfer rates differ significantly between the snapshot configurations harvested from the aiMD simulations. The differences are significant and indicate that a single geometrically optimized conformation normally obtained from static quantum-chemistry calculations may provide arbitrary results. Both protonated and deprotonated dye systems were studied. The differences mainly appear in the rate constant of recombination loss between the protonated and the deprotonated dyes, where recombination losses take place at significantly higher rates. The inclusion of lithium ions close to the deprotonated dye carboxylate anchoring group mitigates recombination in a similar way as when protons are retained at the carboxylate group. This may give insight into the performance-enchancing effects of added salts of polarizing cations to the DSSC electrolyte. In addition, solvent effects can retard charge recombination by about two orders of magnitude, which demonstrates that the presence of a solvent will increase the lifetime of injected electrons and thus contribute to a higher PCE of DSSCs. It is also notable that no simple correlation can be identified between high/low transfer rate constants and specific structural arrangements in terms of atom-atom distances, angles or dihedral arrangements of dye sub-units.
Collapse
Affiliation(s)
- Lanlan He
- Department of Chemistry, Applied Physical Chemistry, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.
| | - Yu Guo
- Department of Chemistry, Applied Physical Chemistry, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.
| | - Lars Kloo
- Department of Chemistry, Applied Physical Chemistry, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.
| |
Collapse
|
16
|
Egidi F, Angelico S, Lafiosca P, Giovannini T, Cappelli C. A polarizable three-layer frozen density embedding/molecular mechanics approach. J Chem Phys 2021; 154:164107. [PMID: 33940798 DOI: 10.1063/5.0045574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We present a novel multilayer polarizable embedding approach in which the system is divided into three portions, two of which are treated using density functional theory and their interaction is based on frozen density embedding (FDE) theory, and both also mutually interact with a polarizable classical layer described using an atomistic model based on fluctuating charges (FQ). The efficacy of the model is demonstrated by extending the formalism to linear response properties and applying it to the simulation of the excitation energies of organic molecules in aqueous solution, where the solute and the first solvation shell are treated using FDE, while the rest of the solvent is modeled using FQ charges.
Collapse
Affiliation(s)
- Franco Egidi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sara Angelico
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Piero Lafiosca
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
17
|
Artiukhin DG, Eschenbach P, Matysik J, Neugebauer J. Theoretical Assessment of Hinge-Type Models for Electron Donors in Reaction Centers of Photosystems I and II as well as of Purple Bacteria. J Phys Chem B 2021; 125:3066-3079. [PMID: 33749260 DOI: 10.1021/acs.jpcb.0c10656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hinge-type molecular models for electron donors in reaction centers of Photosystems I and II and purple bacteria were investigated using a two-state computational approach based on frozen-density embedding (FDE). This methodology, dubbed FDE-diab, is known to avoid consequences of the self-interaction error as far as intermolecular phenomena are concerned, which allows a prediction of qualitatively correct spin densities for large biomolecular systems. The calculated spin density distributions are in a good agreement with available experimental results and demonstrated a very high sensitivity to changes in the relative orientation of cofactors and amino acid protonation states. This allows a validation of the previously proposed hinge-type models providing hints on possible protonation states of axial histidine molecules.
Collapse
Affiliation(s)
- Denis G Artiukhin
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| | - Patrick Eschenbach
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
18
|
Marrazzini G, Giovannini T, Scavino M, Egidi F, Cappelli C, Koch H. Multilevel Density Functional Theory. J Chem Theory Comput 2021; 17:791-803. [PMID: 33449681 PMCID: PMC7880574 DOI: 10.1021/acs.jctc.0c00940] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
Following recent
developments in multilevel embedding methods,
we introduce a novel density matrix-based multilevel approach within
the framework of density functional theory (DFT). In this multilevel
DFT, the system is partitioned in an active and an inactive fragment,
and all interactions are retained between the two parts. The decomposition
of the total system is performed upon the density matrix. The orthogonality
between the two parts is maintained by solving the Kohn–Sham
equations in the MO basis for the active part only, while keeping
the inactive density matrix frozen. This results in the reduction
of computational cost. We outline the theory and implementation and
discuss the differences and similarities with state-of-the-art DFT
embedding methods. We present applications to aqueous solutions of
methyloxirane and glycidol.
Collapse
Affiliation(s)
- Gioia Marrazzini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marco Scavino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Franco Egidi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
19
|
Giovannini T, Koch H. Energy-Based Molecular Orbital Localization in a Specific Spatial Region. J Chem Theory Comput 2021; 17:139-150. [PMID: 33337150 DOI: 10.1021/acs.jctc.0c00737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present a novel energy-based localization procedure able to localize molecular orbitals into predefined spatial regions. The method is defined in a multiscale framework based on the multilevel Hartree-Fock approach. In particular, the system is partitioned into active and inactive fragments. The localized molecular orbitals are obtained maximizing the repulsion between the two fragments. The method is applied to several cases including both conjugated and non-conjugated systems. Our multiscale approach is compared with reference values for both ground-state properties, such as dipole moments, and local excitation energies. The proposed approach is useful to extend the application range of high-level electron correlation methods. In fact, the reduced number of molecular orbitals can lead to a large reduction in the computational cost of correlated calculations.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
20
|
Ramos P, Pavanello M. Nonadiabatic couplings from a variational excited state method based on constrained DFT. J Chem Phys 2021; 154:014110. [DOI: 10.1063/5.0028872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pablo Ramos
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| | - Michele Pavanello
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
- Department of Physics, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
21
|
Goletto L, Giovannini T, Folkestad SD, Koch H. Combining multilevel Hartree–Fock and multilevel coupled cluster approaches with molecular mechanics: a study of electronic excitations in solutions. Phys Chem Chem Phys 2021; 23:4413-4425. [DOI: 10.1039/d0cp06359b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the coupling of different quantum-embedding approaches with a third molecular-mechanics layer, which can be either polarizable or non-polarizable.
Collapse
Affiliation(s)
- Linda Goletto
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | - Tommaso Giovannini
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | - Sarai D. Folkestad
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | | |
Collapse
|
22
|
Mao Y, Montoya-Castillo A, Markland TE. Excited state diabatization on the cheap using DFT: Photoinduced electron and hole transfer. J Chem Phys 2020; 153:244111. [PMID: 33380087 DOI: 10.1063/5.0035593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Excited state electron and hole transfer underpin fundamental steps in processes such as exciton dissociation at photovoltaic heterojunctions, photoinduced charge transfer at electrodes, and electron transfer in photosynthetic reaction centers. Diabatic states corresponding to charge or excitation localized species, such as locally excited and charge transfer states, provide a physically intuitive framework to simulate and understand these processes. However, obtaining accurate diabatic states and their couplings from adiabatic electronic states generally leads to inaccurate results when combined with low-tier electronic structure methods, such as time-dependent density functional theory, and exorbitant computational cost when combined with high-level wavefunction-based methods. Here, we introduce a density functional theory (DFT)-based diabatization scheme that directly constructs the diabatic states using absolutely localized molecular orbitals (ALMOs), which we denote as Δ-ALMO(MSDFT2). We demonstrate that our method, which combines ALMO calculations with the ΔSCF technique to construct electronically excited diabatic states and obtains their couplings with charge-transfer states using our MSDFT2 scheme, gives accurate results for excited state electron and hole transfer in both charged and uncharged systems that underlie DNA repair, charge separation in donor-acceptor dyads, chromophore-to-solvent electron transfer, and singlet fission. This framework for the accurate and efficient construction of excited state diabats and evaluation of their couplings directly from DFT thus offers a route to simulate and elucidate photoinduced electron and hole transfer in large disordered systems, such as those encountered in the condensed phase.
Collapse
Affiliation(s)
- Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
23
|
Artiukhin DG, Eschenbach P, Neugebauer J. Computational Investigation of the Spin-Density Asymmetry in Photosynthetic Reaction Center Models from First Principles. J Phys Chem B 2020; 124:4873-4888. [DOI: 10.1021/acs.jpcb.0c02827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Patrick Eschenbach
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
24
|
Graham DS, Wen X, Chulhai DV, Goodpaster JD. Robust, Accurate, and Efficient: Quantum Embedding Using the Huzinaga Level-Shift Projection Operator for Complex Systems. J Chem Theory Comput 2020; 16:2284-2295. [DOI: 10.1021/acs.jctc.9b01185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel S. Graham
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Xuelan Wen
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Dhabih V. Chulhai
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Abstract
By invoking a divide-and-conquer strategy, subsystem DFT dramatically reduces the computational cost of large-scale, ab initio electronic structure simulations of molecules and materials. The central ingredient setting subsystem DFT apart from Kohn-Sham DFT is the nonadditive kinetic energy functional (NAKE). Currently employed NAKEs are at most semilocal (i.e., they only depend on the electron density and its gradient), and as a result of this approximation, so far large-scale simulations only included systems composed of weakly interacting subsystems. In this work, we advance the state-of-the-art by introducing fully nonlocal NAKEs in subsystem DFT simulations for the first time. A benchmark analysis based on the S22-5 test set shows that nonlocal NAKEs considerably improve the computed interaction energies and electron densities compared to commonly employed GGA NAKEs, especially when increasing intersubsystem electron density overlap is considered. Most importantly, we resolve the long-standing problem of too attractive interaction energy curves typically resulting from the use of GGA NAKEs.
Collapse
Affiliation(s)
- Wenhui Mi
- Department of Chemistry , Rutgers University , Newark , New Jersey 07102 , United States
- Department of Physics , Rutgers University , Newark , New Jersey 07102 , United States
| | - Michele Pavanello
- Department of Chemistry , Rutgers University , Newark , New Jersey 07102 , United States
- Department of Physics , Rutgers University , Newark , New Jersey 07102 , United States
| |
Collapse
|
26
|
Wen X, Graham DS, Chulhai DV, Goodpaster JD. Absolutely Localized Projection-Based Embedding for Excited States. J Chem Theory Comput 2019; 16:385-398. [DOI: 10.1021/acs.jctc.9b00959] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xuelan Wen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Daniel S. Graham
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Dhabih V. Chulhai
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Petras HR, Graham DS, Ramadugu SK, Goodpaster JD, Shepherd JJ. Fully Quantum Embedding with Density Functional Theory for Full Configuration Interaction Quantum Monte Carlo. J Chem Theory Comput 2019; 15:5332-5342. [DOI: 10.1021/acs.jctc.9b00571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hayley R. Petras
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- University of Iowa Informatics Initiative, University of Iowa, Iowa City, Iowa 52242, United States
| | - Daniel S. Graham
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sai Kumar Ramadugu
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- University of Iowa Informatics Initiative, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James J. Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- University of Iowa Informatics Initiative, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
28
|
Carof A, Giannini S, Blumberger J. Detailed balance, internal consistency, and energy conservation in fragment orbital-based surface hopping. J Chem Phys 2018; 147:214113. [PMID: 29221382 DOI: 10.1063/1.5003820] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have recently introduced an efficient semi-empirical non-adiabatic molecular dynamics method for the simulation of charge transfer/transport in molecules and molecular materials, denoted fragment orbital-based surface hopping (FOB-SH) [J. Spencer et al., J. Chem. Phys. 145, 064102 (2016)]. In this method, the charge carrier wavefunction is expanded in a set of charge localized, diabatic electronic states and propagated in the time-dependent potential due to classical nuclear motion. Here we derive and implement an exact expression for the non-adiabatic coupling vectors between the adiabatic electronic states in terms of nuclear gradients of the diabatic electronic states. With the non-adiabatic coupling vectors (NACVs) available, we investigate how different flavours of fewest switches surface hopping affect detailed balance, internal consistency, and total energy conservation for electron hole transfer in a molecular dimer with two electronic states. We find that FOB-SH satisfies detailed balance across a wide range of diabatic electronic coupling strengths provided that the velocities are adjusted along the direction of the NACV to satisfy total energy conservation upon a surface hop. This criterion produces the right fraction of energy-forbidden (frustrated) hops, which is essential for correct population of excited states, especially when diabatic couplings are on the order of the thermal energy or larger, as in organic semiconductors and DNA. Furthermore, we find that FOB-SH is internally consistent, that is, the electronic surface population matches the average quantum amplitudes, but only in the limit of small diabatic couplings. For large diabatic couplings, inconsistencies are observed as the decrease in excited state population due to frustrated hops is not matched by a corresponding decrease in quantum amplitudes. The derivation provided here for the NACV should be generally applicable to any electronic structure approach where the electronic Hamiltonian is constructed in a diabatic electronic state basis.
Collapse
Affiliation(s)
- Antoine Carof
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Samuele Giannini
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
29
|
Artiukhin DG, Neugebauer J. Frozen-density embedding as a quasi-diabatization tool: Charge-localized states for spin-density calculations. J Chem Phys 2018; 148:214104. [DOI: 10.1063/1.5023290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Denis G. Artiukhin
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
30
|
Affiliation(s)
- Pablo Ramos
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| | - Michele Pavanello
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
31
|
Biancardi A, Caricato M. A Benchmark Study of Electronic Couplings in Donor–Bridge–Acceptor Systems with the FMR-B Method. J Chem Theory Comput 2018. [DOI: 10.1021/acs.jctc.8b00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessandro Biancardi
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Marco Caricato
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
32
|
Unsleber JP, Dresselhaus T, Klahr K, Schnieders D, Böckers M, Barton D, Neugebauer J. Serenity: A subsystem quantum chemistry program. J Comput Chem 2018; 39:788-798. [DOI: 10.1002/jcc.25162] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/08/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Jan P. Unsleber
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40; Münster 48149 Germany
| | - Thomas Dresselhaus
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40; Münster 48149 Germany
| | - Kevin Klahr
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40; Münster 48149 Germany
| | - David Schnieders
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40; Münster 48149 Germany
| | - Michael Böckers
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40; Münster 48149 Germany
| | - Dennis Barton
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40; Münster 48149 Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40; Münster 48149 Germany
| |
Collapse
|
33
|
Koh KJ, Nguyen-Beck TS, Parkhill J. Accelerating Realtime TDDFT with Block-Orthogonalized Manby–Miller Embedding Theory. J Chem Theory Comput 2017; 13:4173-4178. [DOI: 10.1021/acs.jctc.7b00494] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kevin J. Koh
- Department of Chemistry and
Biochemistry, The University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Triet S. Nguyen-Beck
- Department of Chemistry and
Biochemistry, The University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - John Parkhill
- Department of Chemistry and
Biochemistry, The University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
34
|
Oberhofer H, Reuter K, Blumberger J. Charge Transport in Molecular Materials: An Assessment of Computational Methods. Chem Rev 2017. [PMID: 28644623 DOI: 10.1021/acs.chemrev.7b00086] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The booming field of molecular electronics has fostered a surge of computational research on electronic properties of organic molecular solids. In particular, with respect to a microscopic understanding of transport and loss mechanisms, theoretical studies assume an ever-increasing role. Owing to the tremendous diversity of organic molecular materials, a great number of computational methods have been put forward to suit every possible charge transport regime, material, and need for accuracy. With this review article we aim at providing a compendium of the available methods, their theoretical foundations, and their ranges of validity. We illustrate these through applications found in the literature. The focus is on methods available for organic molecular crystals, but mention is made wherever techniques are suitable for use in other related materials such as disordered or polymeric systems.
Collapse
Affiliation(s)
- Harald Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München , Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München , Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London , Gower Street, London WC1E 6BT, United Kingdom.,Institute for Advanced Study, Technische Universität München , Lichtenbergstrasse 2 a, D-85748 Garching, Germany
| |
Collapse
|
35
|
Śmiga S, Fabiano E, Constantin LA, Della Sala F. Laplacian-dependent models of the kinetic energy density: Applications in subsystem density functional theory with meta-generalized gradient approximation functionals. J Chem Phys 2017; 146:064105. [DOI: 10.1063/1.4975092] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
36
|
Genova A, Ceresoli D, Pavanello M. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical. J Chem Phys 2016; 144:234105. [DOI: 10.1063/1.4953363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alessandro Genova
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| | - Davide Ceresoli
- CNR-ISTM: Institute of Molecular Sciences and Technologies, Milano, Italy
| | - Michele Pavanello
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
37
|
Abstract
Constrained Subsystem Density Fucntional Theory (CSDFT) allows to compute diabatic states for charge transfer reactions using the machinery of the constrained DFT method, and at the same time is able to embed such diabatic states in a molecular environment via a subsystem DFT scheme.
Collapse
Affiliation(s)
- Pablo Ramos
- Department of Chemistry
- Rutgers University
- Newark
- USA
| | | |
Collapse
|
38
|
Hernández-Fernández F, Pavanello M, Visscher L. Effect of metallation, substituents and inter/intra-molecular polarization on electronic couplings for hole transport in stacked porphyrin dyads. Phys Chem Chem Phys 2016; 18:21122-32. [DOI: 10.1039/c6cp00516k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hole transport properties for stacked porphyrins are analyzed with density functional theory.
Collapse
Affiliation(s)
- F. Hernández-Fernández
- Theoretical Chemistry
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | - M. Pavanello
- Department of Chemistry
- Rutgers University
- Newark
- USA
| | - L. Visscher
- Theoretical Chemistry
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
39
|
Blumberger J. Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions. Chem Rev 2015; 115:11191-238. [DOI: 10.1021/acs.chemrev.5b00298] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jochen Blumberger
- Department of Physics and
Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
40
|
Śmiga S, Fabiano E, Laricchia S, Constantin LA, Della Sala F. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals. J Chem Phys 2015; 142:154121. [DOI: 10.1063/1.4917257] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Szymon Śmiga
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Eduardo Fabiano
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), Via per Arnesano 16, I-73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano, LE, Italy
| | - Savio Laricchia
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Lucian A. Constantin
- Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano, LE, Italy
| | - Fabio Della Sala
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), Via per Arnesano 16, I-73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano, LE, Italy
| |
Collapse
|