1
|
Bin Mohd Yusof MS, Song H, Debnath T, Lowe B, Yang M, Loh ZH. Ultrafast proton transfer of the aqueous phenol radical cation. Phys Chem Chem Phys 2022; 24:12236-12248. [PMID: 35579397 DOI: 10.1039/d2cp00505k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton transfer (PT) reactions are fundamental to numerous chemical and biological processes. While sub-picosecond PT involving electronically excited states has been extensively studied, little is known about ultrafast PT triggered by photoionization. Here, we employ femtosecond optical pump-probe spectroscopy and quantum dynamics calculations to investigate the ultrafast proton transfer dynamics of the aqueous phenol radical cation (PhOH˙+). Analysis of the vibrational wave packet dynamics reveals unusually short dephasing times of 0.18 ± 0.02 ps and 0.16 ± 0.02 ps for the PhOH˙+ O-H wag and bend frequencies, respectively, suggestive of ultrafast PT occurring on the ∼0.1 ps timescale. The reduced potential energy surface obtained from ab initio calculations shows that PT is barrierless when it is coupled to the intermolecular hindered translation between PhOH˙+ and the proton-acceptor water molecule. Quantum dynamics calculations yield a lifetime of 193 fs for PhOH˙+, in good agreement with the experimental results and consistent with the PT reaction being mediated by the intermolecular O⋯O stretch. These results suggest that photoionization can be harnessed to produce photoacids that undergo ultrafast PT. In addition, they also show that PT can serve as an ultrafast deactivation channel for limiting the oxidative damage potential of radical cations.
Collapse
Affiliation(s)
- Muhammad Shafiq Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Hongwei Song
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tushar Debnath
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Bethany Lowe
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Minghui Yang
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
2
|
González-Collado CM, Plésiat E, Decleva P, Palacios A, Martín F. Vibrationally resolved photoelectron angular distributions of ammonia. Phys Chem Chem Phys 2022; 24:7700-7712. [PMID: 35293411 DOI: 10.1039/d2cp00627h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a theoretical study of vibrationally resolved photoelectron angular distributions for ammonia in both laboratory and molecular frames, in the photon energy range up to 70 eV, where only valence and inner-valence ionization is possible. We focus on the band resulting from ionization of the 3a1 HOMO orbital leading to NH3+ in the electronic ground state, , for which the dominant vibrational progression corresponds to the activation of the umbrella inversion mode. We show that, at room temperature, the photoelectron angular distributions for randomly oriented molecules or molecules whose principal C3 symmetry axis is aligned along the light polarization direction are perfectly symmetric with respect to the plane that contains the intermediate D3h conformation connecting the pyramidal structures associated with the double-well potential of the umbrella inversion mode. These distributions exhibit symmetric, nearly perfect two-lobe shapes in the whole range of investigated photon energies. In contrast, for molecules where the initial vibrational state is localized in one of the two wells, a situation that can experimentally be achieved by introducing an external electric field, the molecular-frame photoelectron angular distributions (MFPADs) are in general asymmetric, but the degree of asymmetry of the two lobes dramatically changes and oscillates with photoelectron energy. We also show that, at ultracold temperatures, where all aligned molecules initially lie in the delocalized ground vibrational state, the photoelectron angular distributions are perfectly symmetric, but the two-lobe shape is only observed when the final vibrational state of the resulting NH3+ cation has even parity. When the latter vibrational state has odd parity, the angular distributions are much more involved and, at photoelectron energies of ∼10 eV, they directly reflect the bi-pyramidal geometry of the molecule in its ground vibrational state. These results suggest that, in order to obtain structural information from MFPADs in ammonia and likely in other molecules containing a similar double-well potential, one could preferably work at ultracold temperatures, which is not the case for most molecules.
Collapse
Affiliation(s)
| | - Etienne Plésiat
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain
| | - Piero Decleva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste and CNR-IOM, 34127 Trieste, Italy
| | - Alicia Palacios
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,Institute of Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Travnikova O, Patanen M, Söderström J, Lindblad A, Kas JJ, Vila FD, Céolin D, Marchenko T, Goldsztejn G, Guillemin R, Journel L, Carroll TX, Børve KJ, Decleva P, Rehr JJ, Mårtensson N, Simon M, Svensson S, Sæthre LJ. Energy-Dependent Relative Cross Sections in Carbon 1s Photoionization: Separation of Direct Shake and Inelastic Scattering Effects in Single Molecules. J Phys Chem A 2019; 123:7619-7636. [PMID: 31386367 DOI: 10.1021/acs.jpca.9b05063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate that the possibility of monitoring relative photoionization cross sections over a large photon energy range allows us to study and disentangle shake processes and intramolecular inelastic scattering effects. In this gas-phase study, relative intensities of the carbon 1s photoelectron lines from chemically inequivalent carbon atoms in the same molecule have been measured as a function of the incident photon energy in the range of 300-6000 eV. We present relative cross sections for the chemically shifted carbon 1s lines in the photoelectron spectra of ethyl trifluoroacetate (the "ESCA" molecule). The results are compared with those of methyl trifluoroacetate and S-ethyl trifluorothioacetate as well as a series of chloro-substituted ethanes and 2-butyne. In the soft X-ray energy range, the cross sections show an extended X-ray absorption fine structure type of wiggles, as was previously observed for a series of chloroethanes. The oscillations are damped in the hard X-ray energy range, but deviations of cross-section ratios from stoichiometry persist, even at high energies. The current findings are supported by theoretical calculations based on a multiple scattering model. The use of soft and tender X-rays provides a more complete picture of the dominant processes accompanying photoionization. Such processes reduce the main photoelectron line intensities by 20-60%. Using both energy ranges enabled us to discern the process of intramolecular inelastic scattering of the outgoing electron, whose significance is otherwise difficult to assess for isolated molecules. This effect relates to the notion of the inelastic mean free path commonly used in photoemission studies of clusters and condensed matter.
Collapse
Affiliation(s)
- Oksana Travnikova
- LCPMR, CNRS, Sorbonne Université, UMR7614 Paris, France.,Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette, France
| | - Minna Patanen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Johan Söderström
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala, Sweden
| | | | - Joshua J Kas
- Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195-1560, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195-1560, United States
| | - Denis Céolin
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette, France
| | - Tatiana Marchenko
- LCPMR, CNRS, Sorbonne Université, UMR7614 Paris, France.,Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette, France
| | | | - Renaud Guillemin
- LCPMR, CNRS, Sorbonne Université, UMR7614 Paris, France.,Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette, France
| | - Loïc Journel
- LCPMR, CNRS, Sorbonne Université, UMR7614 Paris, France.,Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette, France
| | - Thomas X Carroll
- Division of Natural Sciences, Keuka College, Keuka Park, New York 14478, United States
| | - Knut J Børve
- Department of Chemistry, University of Bergen, Allégaten 41, NO-5007 Bergen, Norway
| | - Piero Decleva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM-CNR, 34127 Trieste, Italy
| | - John J Rehr
- Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195-1560, United States
| | - Nils Mårtensson
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala, Sweden
| | - Marc Simon
- LCPMR, CNRS, Sorbonne Université, UMR7614 Paris, France.,Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette, France
| | - Svante Svensson
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala, Sweden
| | - Leif J Sæthre
- Department of Chemistry, University of Bergen, Allégaten 41, NO-5007 Bergen, Norway
| |
Collapse
|
4
|
Engin S, González-Vázquez J, Maliyar GG, Milosavljević AR, Ono T, Nandi S, Iablonskyi D, Kooser K, Bozek JD, Decleva P, Kukk E, Ueda K, Martín F. Full-dimensional theoretical description of vibrationally resolved valence-shell photoionization of H 2O. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:054101. [PMID: 31531387 PMCID: PMC6739208 DOI: 10.1063/1.5106431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
We have performed a full-dimensional theoretical study of vibrationally resolved photoelectron emission from the valence shell of the water molecule by using an extension of the static-exchange density functional theory that accounts for ionization as well as for vibrational motion in the symmetric stretching, antisymmetric stretching, and bending modes. At variance with previous studies performed in centrosymmetric molecules, where vibrationally resolved spectra are mostly dominated by the symmetric stretching mode, in the present case, all three modes contribute to the calculated spectra, including intermode couplings. We have found that diffraction of the ejected electron by the various atomic centers is barely visible in the ratios between vibrationally resolved photoelectron spectra corresponding to different vibrational states of the remaining H2O+ cation (the so-called v-ratios), in contrast to the prominent oscillations observed in K-shell ionization of centrosymmetric molecules, including those that only contain hydrogen atoms around the central atoms, e.g., CH4. To validate the conclusions of our work, we have carried out synchrotron radiation experiments at the SOLEIL synchrotron and determined photoelectron spectra and v-ratios for H2O in a wide range of photon energies, from threshold up to 150 eV. The agreement with the theoretical predictions is good.
Collapse
Affiliation(s)
- Selma Engin
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Gianluigi Grimaldi Maliyar
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | | - Taishi Ono
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Saikat Nandi
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Denys Iablonskyi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | | - John D Bozek
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Piero Decleva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM-CNR, 34127 Trieste, Italy
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | |
Collapse
|
5
|
Nisoli M, Decleva P, Calegari F, Palacios A, Martín F. Attosecond Electron Dynamics in Molecules. Chem Rev 2017; 117:10760-10825. [DOI: 10.1021/acs.chemrev.6b00453] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mauro Nisoli
- Department
of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM- CNR, 34127 Trieste, Italy
| | - Francesca Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Alicia Palacios
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
Corral I, González-Vázquez J, Martín F. Potential Energy Surfaces of Core-Hole and Shake-Up States for Dissociative Ionization Studies. J Chem Theory Comput 2017; 13:1723-1736. [DOI: 10.1021/acs.jctc.6b01214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Inés Corral
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IADCHEM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jesús González-Vázquez
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IADCHEM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Campus de Cantoblanco, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
7
|
Nandi S, Plésiat E, Patanen M, Miron C, Bozek JD, Martín F, Toffoli D, Decleva P. Photoelectron diffraction in methane probed via vibrationally resolved inner-valence photoionization cross-section ratios. Phys Chem Chem Phys 2016; 18:3214-22. [PMID: 26744172 DOI: 10.1039/c5cp07017a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vibrationally resolved photoionization of the 2a1 orbital in methane has been studied both experimentally and theoretically, over a wide range of photon energies (40-475 eV). A vibrational progression associated with the symmetric stretch mode of the 2a1(-1) single-hole state was observed in the experimental photoelectron spectra. Individual vibrational sub-states of the spectra were found to be best modeled by asymmetric line-shapes with linewidths gradually increasing with the vibrational quantum number. This indicates the occurrence of a pre-dissociation process for the involved ionic state, discussed here in detail. Finally, diffraction patterns were observed in the vibrational branching ratios for the first three vibrational sub-states ("v-ratios") of the experimental photoelectron spectra. They are found to be in excellent qualitative agreement with those obtained from ab initio models. Compared with previous studies of the 1a1(-1) core-shell photoionization of methane, the period of oscillation of the v-ratios is found to be very different and the phases are of opposite signs. This suggests a strong interplay between the electron diffraction and interference effects inside the molecular potential.
Collapse
Affiliation(s)
- Saikat Nandi
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France.
| | - Etienne Plésiat
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
| | - Minna Patanen
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France.
| | - Catalin Miron
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France. and Extreme Light Infrastructure - Nuclear Physics (ELI-NP), 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov, Romania
| | - John D Bozek
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France.
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain and Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Cantoblanco, 28049 Madrid, Spain
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universita di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.
| | - Piero Decleva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universita di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
8
|
Lara-Astiaso M, Ayuso D, Tavernelli I, Decleva P, Palacios A, Martín F. Decoherence, control and attosecond probing of XUV-induced charge migration in biomolecules. A theoretical outlook. Faraday Discuss 2016; 194:41-59. [DOI: 10.1039/c6fd00074f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sudden ionization of a molecule by an attosecond pulse is followed by charge redistribution on a time scale from a few femtoseconds down to hundreds of attoseconds. This ultrafast redistribution is the result of the coherent superposition of electronic continua associated with the ionization thresholds that are reached by the broadband attosecond pulse. Thus, a correct theoretical description of the time evolution of the ensuing wave packet requires the knowledge of the actual ionization amplitudes associated with all open ionization channels, a real challenge for large and medium-size molecules. Recently, the first calculation of this kind has come to light, allowing for interpretation of ultrafast electron dynamics observed in attosecond pump–probe experiments performed on the amino acid phenylalanine [Calegari et al., Science 2014, 346, 336]. However, as in most previous theoretical works, the interpretation was based on various simplifying assumptions, namely, the ionized electron was not included in the description of the cation dynamics, the nuclei were fixed at their initial position during the hole migration process, and the effect of the IR probe pulse was ignored. Here we go a step further and discuss the consequences of including these effects in the photoionization of the glycine molecule. We show that (i) the ionized electron does not affect hole dynamics beyond the first femtosecond, and (ii) nuclear dynamics has only a significant effect after approximately 8 fs, but does not destroy the coherent motion of the electronic wave packet during at least few additional tens of fs. As a first step towards understanding the role of the probe pulse, we have considered an XUV probe pulse, instead of a strong IR one, and show that such an XUV probe does not introduce significant distortions in the pump-induced dynamics, suggesting that pump–probe strategies are suitable for imaging and manipulating charge migration in complex molecules. Furthermore, we show that hole dynamics can be changed by shaping the attosecond pump pulse, thus opening the door to the control of charge dynamics in biomolecules.
Collapse
Affiliation(s)
- Manuel Lara-Astiaso
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - David Ayuso
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Ivano Tavernelli
- IBM Research GmbH
- Zurich Research Laboratory
- 8803 Rueschlikon
- Switzerland
| | - Piero Decleva
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università di Trieste and CNR-Istituto Officina dei Materiali
- 34127 Trieste
- Italy
| | - Alicia Palacios
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Fernando Martín
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|