1
|
Wang F, Chen Z, Zhou Q, Sun Q, Zheng N, Chen Z, Lin J, Li B, Li L. Implications of liquid-liquid phase separation and ferroptosis in Alzheimer's disease. Neuropharmacology 2024; 259:110083. [PMID: 39043267 DOI: 10.1016/j.neuropharm.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Neuronal cell demise represents a prevalent occurrence throughout the advancement of Alzheimer's disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Its potential mechanisms include aggregation of soluble amyloid-beta (Aβ) to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFTs), neuroinflammation, ferroptosis, oxidative stress, liquid-liquid phase separation (LLPS) and metal ion disorders. Among them, ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. The sensitivity to ferroptosis is tightly linked to numerous biological processes. Moreover, emerging evidences indicate that LLPS has great impacts on regulating human health and diseases, especially AD. Soluble Aβ can undergo LLPS to form liquid-like droplets, which can lead to the formation of insoluble amyloid plaques. Meanwhile, tau has a high propensity to condensate via the mechanism of LLPS, which can lead to the formation of NFTs. In this review, we summarize the most recent advancements pertaining to LLPS and ferroptosis in AD. Our primary focus is on expounding the influence of Aβ, tau protein, iron ions, and lipid oxidation on the intricate mechanisms underlying ferroptosis and LLPS within the domain of AD pathology. Additionally, we delve into the intricate cross-interactions that occur between LLPS and ferroptosis in the context of AD. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for AD.
Collapse
Affiliation(s)
- Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
2
|
Nair AG, Anjukandi P. Insights into the Role of Side-Chain Team Work in nDsbD Ox/Red Proteins: Mechanism of Substrate Binding. J Phys Chem B 2024; 128:10541-10552. [PMID: 39230983 DOI: 10.1021/acs.jpcb.4c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
N-terminal disulfide bond oxidoreductase (nDsbDOx/Red) proteins display divergent substrate binding mechanisms depending on the conformational changes to the Phe70 cap, which is also dependent on the disulfide redox state. In nDsbDOx, the cap dynamics is complex (shows both open/closed Phe70 cap conformations), resulting in an active site that is highly flexible. So the system's active site is conformationally selective (the active site adapts before substrate binding) toward its substrate. In nDsbDRed, the cap is generally closed, resulting in induced fit-type binding (adapts after substrate approach). Recent studies predict Tyr40 and Tyr42 residues to act as internal nucleophiles (Tyr40/42O-) for disulfide association/dissociation in nDsbDOx/Red, supplementing the electron transfer channel. From this perspective, we investigate the cap dynamics and the subsequent substrate binding modes in these proteins. Our molecular dynamics simulations show that the cap opening eliminates Tyr42O- electrostatic interactions irrespective of the disulfide redox state. The active site becomes highly flexible, and the conformational selection mechanism governs. However, Tyr40O- formation does not alter the chemical environment; the cap remains mostly closed and plausibly follows the induced fit mechanism. Thus, it is apparent that mostly Tyr42O- facilitates the internal nucleophile-mediated self-preparation of nDsbDOx/Red proteins for binding.
Collapse
Affiliation(s)
- Aparna G Nair
- Department of Chemistry, Indian Institute of Technology, Palakkad, 678557 Kerala, India
| | - Padmesh Anjukandi
- Department of Chemistry, Indian Institute of Technology, Palakkad, 678557 Kerala, India
| |
Collapse
|
3
|
Hatch HW, Bergonzo C, Blanco MA, Yuan G, Grudinin S, Lund M, Curtis JE, Grishaev AV, Liu Y, Shen VK. Anisotropic coarse-grain Monte Carlo simulations of lysozyme, lactoferrin, and NISTmAb by precomputing atomistic models. J Chem Phys 2024; 161:094113. [PMID: 39234967 DOI: 10.1063/5.0224809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
We develop a multiscale coarse-grain model of the NIST Monoclonal Antibody Reference Material 8671 (NISTmAb) to enable systematic computational investigations of high-concentration physical instabilities such as phase separation, clustering, and aggregation. Our multiscale coarse-graining strategy captures atomic-resolution interactions with a computational approach that is orders of magnitude more efficient than atomistic models, assuming the biomolecule can be decomposed into one or more rigid bodies with known, fixed structures. This method reduces interactions between tens of thousands of atoms to a single anisotropic interaction site. The anisotropic interaction between unique pairs of rigid bodies is precomputed over a discrete set of relative orientations and stored, allowing interactions between arbitrarily oriented rigid bodies to be interpolated from the precomputed table during coarse-grained Monte Carlo simulations. We present this approach for lysozyme and lactoferrin as a single rigid body and for the NISTmAb as three rigid bodies bound by a flexible hinge with an implicit solvent model. This coarse-graining strategy predicts experimentally measured radius of gyration and second osmotic virial coefficient data, enabling routine Monte Carlo simulation of medically relevant concentrations of interacting proteins while retaining atomistic detail. All methodologies used in this work are available in the open-source software Free Energy and Advanced Sampling Simulation Toolkit.
Collapse
Affiliation(s)
- Harold W Hatch
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Biomolecular Structure and Function Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Marco A Blanco
- Discovery Pharmaceutical Sciences, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, USA
| | - Guangcui Yuan
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Sergei Grudinin
- CNRS, Grenoble INP, LJK, Université Grenoble Alpes, 38000 Grenoble, France
| | - Mikael Lund
- Division of Computational Chemistry, Lund University, Lund, Sweden
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Alexander V Grishaev
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Biomolecular Structure and Function Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, USA
| | - Vincent K Shen
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| |
Collapse
|
4
|
Mukherjee S, Poudyal M, Dave K, Kadu P, Maji SK. Protein misfolding and amyloid nucleation through liquid-liquid phase separation. Chem Soc Rev 2024; 53:4976-5013. [PMID: 38597222 DOI: 10.1039/d3cs01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Kritika Dave
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
D'Atri V, Imiołek M, Quinn C, Finny A, Lauber M, Fekete S, Guillarme D. Size exclusion chromatography of biopharmaceutical products: From current practices for proteins to emerging trends for viral vectors, nucleic acids and lipid nanoparticles. J Chromatogr A 2024; 1722:464862. [PMID: 38581978 DOI: 10.1016/j.chroma.2024.464862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
The 21st century has been particularly productive for the biopharmaceutical industry, with the introduction of several classes of innovative therapeutics, such as monoclonal antibodies and related compounds, gene therapy products, and RNA-based modalities. All these new molecules are susceptible to aggregation and fragmentation, which necessitates a size variant analysis for their comprehensive characterization. Size exclusion chromatography (SEC) is one of the reference techniques that can be applied. The analytical techniques for mAbs are now well established and some of them are now emerging for the newer modalities. In this context, the objective of this review article is: i) to provide a short historical background on SEC, ii) to suggest some clear guidelines on the selection of packing material and mobile phase for successful method development in modern SEC; and iii) to highlight recent advances in SEC, such as the use of narrow-bore and micro-bore columns, ultra-wide pore columns, and low-adsorption column hardware. Some important innovations, such as recycling SEC, the coupling of SEC with mass spectrometry, and the use of alternative detectors such as charge detection mass spectrometry and mass photometry are also described. In addition, this review discusses the use of SEC in multidimensional setups and shows some of the most recent advances at the preparative scale. In the third part of the article, the possibility of SEC for the characterization of new modalities is also reviewed. The final objective of this review is to provide a clear summary of opportunities and limitations of SEC for the analysis of different biopharmaceutical products.
Collapse
Affiliation(s)
- Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland
| | | | | | - Abraham Finny
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | - Matthew Lauber
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | | | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland.
| |
Collapse
|
6
|
Forder JK, Palakollu V, Adhikari S, Blanco MA, Derebe MG, Ferguson HM, Luthra SA, Munsell EV, Roberts CJ. Electrostatically Mediated Attractive Self-Interactions and Reversible Self-Association of Fc-Fusion Proteins. Mol Pharm 2024; 21:1321-1333. [PMID: 38334418 DOI: 10.1021/acs.molpharmaceut.3c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Attractive self-interactions and reversible self-association are implicated in many problematic solution behaviors for therapeutic proteins, such as irreversible aggregation, elevated viscosity, phase separation, and opalescence. Protein self-interactions and reversible oligomerization of two Fc-fusion proteins (monovalent and bivalent) and the corresponding fusion partner protein were characterized experimentally with static and dynamic light scattering as a function of pH (5 and 6.5) and ionic strength (10 mM to at least 300 mM). The fusion partner protein and monovalent Fc-fusion each displayed net attractive electrostatic self-interactions at pH 6.5 and net repulsive electrostatic self-interactions at pH 5. Solutions of the bivalent Fc-fusion contained higher molecular weight species that prevented quantification of typical interaction parameters (B22 and kD). All three of the proteins displayed reversible self-association at pH 6.5, where oligomers dissociated with increased ionic strength. Coarse-grained molecular simulations were used to model the self-interactions measured experimentally, assess net self-interactions for the bivalent Fc-fusion, and probe the specific electrostatic interactions between charged amino acids that were involved in attractive electrostatic self-interactions. Mayer-weighted pairwise electrostatic energies from the simulations suggested that attractive electrostatic self-interactions at pH 6.5 for the two Fc-fusion proteins were due to cross-domain interactions between the fusion partner domain(s) and the Fc domain.
Collapse
Affiliation(s)
- James K Forder
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Veerabhadraiah Palakollu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Sudeep Adhikari
- Analytical R&D, Digital & NMR Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marco A Blanco
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Mehabaw Getahun Derebe
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Heidi M Ferguson
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Suman A Luthra
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Erik V Munsell
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19713, United States
| |
Collapse
|
7
|
Poudyal M, Patel K, Gadhe L, Sawner AS, Kadu P, Datta D, Mukherjee S, Ray S, Navalkar A, Maiti S, Chatterjee D, Devi J, Bera R, Gahlot N, Joseph J, Padinhateeri R, Maji SK. Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu. Nat Commun 2023; 14:6199. [PMID: 37794023 PMCID: PMC10550955 DOI: 10.1038/s41467-023-41864-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a crucial biological phenomenon underlying the sequestration of macromolecules (such as proteins and nucleic acids) into membraneless organelles in cells. Unstructured and intrinsically disordered domains are known to facilitate multivalent interactions driving protein LLPS. We hypothesized that LLPS could be an intrinsic property of proteins/polypeptides but with distinct phase regimes irrespective of their sequence and structure. To examine this, we studied many (a total of 23) proteins/polypeptides with different structures and sequences for LLPS study in the presence and absence of molecular crowder, polyethylene glycol (PEG-8000). We showed that all proteins and even highly charged polypeptides (under study) can undergo liquid condensate formation, however with different phase regimes and intermolecular interactions. We further demonstrated that electrostatic, hydrophobic, and H-bonding or a combination of such intermolecular interactions plays a crucial role in individual protein/peptide LLPS.
Collapse
Affiliation(s)
- Manisha Poudyal
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai, 400076, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ajay Singh Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Soumik Ray
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Siddhartha Maiti
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
- Department of Bioengineering, VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh, 466114, India
| | - Debdeep Chatterjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Jyoti Devi
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Riya Bera
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Jennifer Joseph
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
8
|
Zuev YF, Kusova AM, Sitnitsky AE. Protein translational diffusion as a way to detect intermolecular interactions. Biophys Rev 2023; 15:1111-1125. [PMID: 37975004 PMCID: PMC10643801 DOI: 10.1007/s12551-023-01108-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/26/2023] [Indexed: 11/19/2023] Open
Abstract
In this work, we analyze the information on the protein intermolecular interactions obtained from macromolecular diffusion. We have shown that the most hopeful results are given by our approach based on analysis of protein translational self-diffusion and collective diffusion obtained by dynamic light scattering and pulsed-field gradient NMR (PFG NMR) spectroscopy with the help of Vink's approach to analyze diffusion motion of particles by frictional formalism of non-equilibrium thermodynamics and the usage of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloid particles interactions in electrolyte solutions. Early we have shown that integration of Vink's theory with DLVO provides a reliable basis for uniform interpreting of PFG NMR and DLS experiments on concentration dependence of diffusion coefficients. Basic details of theoretical and mathematical procedures and a broad analysis of experimental attestation of proposed conception on proteins of various structural form, size, and shape are presented. In the present review, the main capabilities of our approach obtain the details of intermolecular interactions of proteins with different shapes, internal structures, and mass. The universality of Vink's approach is experimentally shown, which gives the appropriate description of experimental results for proteins of complicated structure and shape.
Collapse
Affiliation(s)
- Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
| | - Aleksandra M. Kusova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
| | - Aleksandr E. Sitnitsky
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
| |
Collapse
|
9
|
Orr AA, Tao A, Guvench O, MacKerell AD. Site Identification by Ligand Competitive Saturation-Biologics Approach for Structure-Based Protein Charge Prediction. Mol Pharm 2023; 20:2600-2611. [PMID: 37017675 PMCID: PMC10159941 DOI: 10.1021/acs.molpharmaceut.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Protein-based therapeutics typically require high concentrations of the active protein, which can lead to protein aggregation and high solution viscosity. Such solution behaviors can limit the stability, bioavailability, and manufacturability of protein-based therapeutics and are directly influenced by the charge of a protein. Protein charge is a system property affected by its environment, including the buffer composition, pH, and temperature. Thus, the charge calculated by summing the charges of each residue in a protein, as is commonly done in computational methods, may significantly differ from the effective charge of the protein as these calculations do not account for contributions from bound ions. Here, we present an extension of the structure-based approach termed site identification by ligand competitive saturation-biologics (SILCS-Biologics) to predict the effective charge of proteins. The SILCS-Biologics approach was applied on a range of protein targets in different salt environments for which membrane-confined electrophoresis-determined charges were previously reported. SILCS-Biologics maps the 3D distribution and predicted occupancy of ions, buffer molecules, and excipient molecules bound to the protein surface in a given salt environment. Using this information, the effective charge of the protein is predicted such that the concentrations of the ions and the presence of excipients or buffers are accounted for. Additionally, SILCS-Biologics also produces 3D structures of the binding sites of ions on the proteins, which enable further analyses such as the characterization of protein surface charge distribution and dipole moments in different environments. Notable is the capability of the method to account for competition between salts, excipients, and buffers on the calculated electrostatic properties in different protein formulations. Our study demonstrates the ability of the SILCS-Biologics approach to predict the effective charge of proteins and its applicability in uncovering protein-ion interactions and their contributions to protein solubility and function.
Collapse
Affiliation(s)
- Asuka A. Orr
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| | - Aoxiang Tao
- SilcsBio LLC, 1100 Wicomico Street, Suite 323, Baltimore, MD, USA
| | - Olgun Guvench
- SilcsBio LLC, 1100 Wicomico Street, Suite 323, Baltimore, MD, USA
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
10
|
Sirison J, Ishii T, Matsumiya K, Higashino Y, Nambu Y, Samoto M, Sugiyama M, Matsumura Y. Tuning of rheological behavior of soybean lipophilic protein-stabilized emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Begam N, Timmermann S, Ragulskaya A, Girelli A, Senft MD, Retzbach S, Anthuparambil ND, Akhundzadeh MS, Kowalski M, Reiser M, Westermeier F, Sprung M, Zhang F, Gutt C, Schreiber F. Effects of temperature and ionic strength on the microscopic structure and dynamics of egg white gels. J Chem Phys 2023; 158:074903. [PMID: 36813727 DOI: 10.1063/5.0130758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We investigate the thermal gelation of egg white proteins at different temperatures with varying salt concentrations using x-ray photon correlation spectroscopy in the geometry of ultra-small angle x-ray scattering. Temperature-dependent structural investigation suggests a faster network formation with increasing temperature, and the gel adopts a more compact network, which is inconsistent with the conventional understanding of thermal aggregation. The resulting gel network shows a fractal dimension δ, ranging from 1.5 to 2.2. The values of δ display a non-monotonic behavior with increasing amount of salt. The corresponding dynamics in the q range of 0.002-0.1 nm-1 is observable after major change of the gel structure. The extracted relaxation time exhibits a two-step power law growth in dynamics as a function of waiting time. In the first regime, the dynamics is associated with structural growth, whereas the second regime is associated with the aging of the gel, which is directly linked with its compactness, as quantified by the fractal dimension. The gel dynamics is characterized by a compressed exponential relaxation with a ballistic-type of motion. The addition of salt gradually makes the early stage dynamics faster. Both gelation kinetics and microscopic dynamics show that the activation energy barrier in the system systematically decreases with increasing salt concentration.
Collapse
Affiliation(s)
- Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Maximilian D Senft
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | - Marvin Kowalski
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Sanchez-Fernandez A, Basic M, Xiang J, Prevost S, Jackson AJ, Dicko C. Hydration in Deep Eutectic Solvents Induces Non-monotonic Changes in the Conformation and Stability of Proteins. J Am Chem Soc 2022; 144:23657-23667. [PMID: 36524921 PMCID: PMC9801427 DOI: 10.1021/jacs.2c11190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 12/23/2022]
Abstract
The preservation of labile biomolecules presents a major challenge in chemistry, and deep eutectic solvents (DESs) have emerged as suitable environments for this purpose. However, how the hydration of DESs impacts the behavior of proteins is often neglected. Here, we demonstrate that the amino acid environment and secondary structure of two proteins (bovine serum albumin and lysozyme) and an antibody (immunoglobulin G) in 1:2 choline chloride:glycerol and 1:2 choline chloride:urea follow a re-entrant behavior with solvent hydration. A dome-shaped transition is observed with a folded or partially folded structure at very low (<10 wt % H2O) and high (>40 wt % H2O) DES hydration, while protein unfolding increases between those regimes. Hydration also affects protein conformation and stability, as demonstrated for bovine serum albumin in hydrated 1:2 choline chloride:glycerol. In the neat DES, bovine serum albumin remains partially folded and unexpectedly undergoes unfolding and oligomerization at low water content. At intermediate hydration, the protein begins to refold and gradually retrieves the native monomer-dimer equilibrium. However, ca. 36 wt % H2O is required to recover the native folding fully. The half-denaturation temperature of the protein increases with decreasing hydration, but even the dilute DESs significantly enhance the thermal stability of bovine serum albumin. Also, protein unfolding can be reversed by rehydrating the sample to the high hydration regime, also recovering protein function. This correlation provides a new perspective to understanding protein behavior in hydrated DESs, where quantifying the DES hydration becomes imperative to identifying the folding and stability of proteins.
Collapse
Affiliation(s)
- Adrian Sanchez-Fernandez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade
de Santiago de Compostela, Rúa de Jenaro de la Fuente, s/n, Santiago de Compostela 15705, Spain
- Food
Technology, Engineering and Nutrition, Lund
University, Box 124, Lund 221 00, Sweden
| | - Medina Basic
- Food
Technology, Engineering and Nutrition, Lund
University, Box 124, Lund 221 00, Sweden
| | - Jenny Xiang
- Food
Technology, Engineering and Nutrition, Lund
University, Box 124, Lund 221 00, Sweden
| | - Sylvain Prevost
- Institut
Laue-Langevin, DS / LSS,
71 Avenue des Martyrs, Grenoble 38000, France
| | - Andrew J. Jackson
- European
Spallation Source, Box
176, Lund 221 00, Sweden
- Department
of Physical Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Cedric Dicko
- Pure
and
Applied Biochemistry, Department of Chemistry, Lund University, Box
124, Lund SE-221 00, Sweden
- Lund
Institute of Advanced Neutron and X-ray Science, SE-223 70 Lund, Sweden
| |
Collapse
|
13
|
Nyande BW, Thomas KM, Takarianto AA, Lakerveld R. Control of crystal size distribution in batch protein crystallization by integrating a gapped Kenics static mixer to flexibly produce seed crystals. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Kamaruding NA, Muhammad Daud NA, Ismail N, Shaharuddin S. Effect of Different Solubilization pH Values on the Functional Properties of Protein Spirulina platensis Isolated Through Acidic Precipitation. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2131495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- N. A. Kamaruding
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - N. A. Muhammad Daud
- Section of Food Engineering Technology, Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Melaka, Malaysia
| | | | - S. Shaharuddin
- Universiti Kuala Lumpur Branch Campus Malaysian Institute of Industrial Technology, Persiaran Sinaran Ilmu, Johor Bahru, Malaysia
| |
Collapse
|
15
|
Magi Meconi G, Sasselli IR, Bianco V, Onuchic JN, Coluzza I. Key aspects of the past 30 years of protein design. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086601. [PMID: 35704983 DOI: 10.1088/1361-6633/ac78ef] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Proteins are the workhorse of life. They are the building infrastructure of living systems; they are the most efficient molecular machines known, and their enzymatic activity is still unmatched in versatility by any artificial system. Perhaps proteins' most remarkable feature is their modularity. The large amount of information required to specify each protein's function is analogically encoded with an alphabet of just ∼20 letters. The protein folding problem is how to encode all such information in a sequence of 20 letters. In this review, we go through the last 30 years of research to summarize the state of the art and highlight some applications related to fundamental problems of protein evolution.
Collapse
Affiliation(s)
- Giulia Magi Meconi
- Computational Biophysics Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San Sebastián, Spain
| | - Ivan R Sasselli
- Computational Biophysics Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San Sebastián, Spain
| | | | - Jose N Onuchic
- Center for Theoretical Biological Physics, Department of Physics & Astronomy, Department of Chemistry, Department of Biosciences, Rice University, Houston, TX 77251, United States of America
| | - Ivan Coluzza
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Bld. Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, 48940 Leioa, Spain
- Basque Foundation for Science, Ikerbasque, 48009, Bilbao, Spain
| |
Collapse
|
16
|
Hartl J, Friesen S, Johannsmann D, Buchner R, Hinderberger D, Blech M, Garidel P. Dipolar Interactions and Protein Hydration in Highly Concentrated Antibody Formulations. Mol Pharm 2022; 19:494-507. [PMID: 35073097 DOI: 10.1021/acs.molpharmaceut.1c00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular interaction mechanisms in high-concentrated protein systems are of fundamental importance for the rational development of biopharmaceuticals such as monoclonal antibody (mAb) formulations. In such high-concentrated protein systems, the intermolecular distances between mAb molecules are reduced to the size of the protein diameter (approx. 10 nm). Thus, protein-protein interactions are more pronounced at high concentrations; so a direct extrapolation of physicochemical properties obtained from measurements at a low protein concentration of the corresponding properties at a high protein concentration is highly questionable. Besides the charge-charge interaction, the effects of molecular crowding, dipolar interaction, changes in protein hydration, and self-assembling tendency become more relevant. Here, protein hydration, protein dipole moment, and protein-protein interactions were studied in protein concentrations up to 200 mg/mL (= 1.3 mM) in different formulations for selected mAbs using dielectric relaxation spectroscopy (DRS). These data are correlated with the second virial coefficient, A2, the diffusion interaction parameter, kD, the elastic shear modulus, G', and the dynamic viscosity, η. When large contributions of dipolar protein-protein interactions were observed, the tendency of self-assembling and an increase in solution viscosity were detected. These effects were examined using specific buffer conditions. Furthermore, different types of protein-water interactions were identified via DRS, whereby the effect of high protein concentration on protein hydration was investigated for different high-concentrated liquid formulations (HCLFs).
Collapse
Affiliation(s)
- Josef Hartl
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Sergej Friesen
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Diethelm Johannsmann
- Institute of Physical Chemistry, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Richard Buchner
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, 88397 Biberach an der Riss, Germany
| |
Collapse
|
17
|
Mahapatra S, Polimeni M, Gentiluomo L, Roessner D, Frieß W, Peters GHJ, Streicher WW, Lund M, Harris P. Self-Interactions of Two Monoclonal Antibodies: Small-Angle X-ray Scattering, Light Scattering, and Coarse-Grained Modeling. Mol Pharm 2021; 19:508-519. [PMID: 34939811 DOI: 10.1021/acs.molpharmaceut.1c00627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using light scattering (LS), small-angle X-ray scattering (SAXS), and coarse-grained Monte Carlo (MC) simulations, we studied the self-interactions of two monoclonal antibodies (mAbs), PPI03 and PPI13. With LS measurements, we obtained the osmotic second virial coefficient, B22, and the molecular weight, Mw, of the two mAbs, while with SAXS measurements, we studied the mAbs' self-interaction behavior in the high protein concentration regime up to 125 g/L. Through SAXS-derived coarse-grained representations of the mAbs, we performed MC simulations with either a one-protein or a two-protein model to predict B22. By comparing simulation and experimental results, we validated our models and obtained insights into the mAbs' self-interaction properties, highlighting the role of both ion binding and charged patches on the mAb surfaces. Our models provide useful information about mAbs' self-interaction properties and can assist the screening of conditions driving to colloidal stability.
Collapse
Affiliation(s)
- Sujata Mahapatra
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark.,Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| | - Marco Polimeni
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Naturvetarvägen 14, 223 62 Lund, Sweden
| | - Lorenzo Gentiluomo
- Wyatt Technology Europe GmbH, Hochstrasse 12a, 56307 Dernbach, Germany.,Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany
| | - Dierk Roessner
- Wyatt Technology Europe GmbH, Hochstrasse 12a, 56307 Dernbach, Germany
| | - Wolfgang Frieß
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| | | | - Mikael Lund
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Naturvetarvägen 14, 223 62 Lund, Sweden.,Advanced X-ray and Neutron Science (LINXS), Lund University, Scheelevägen 19, 22370 Lund, Sweden
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
18
|
Posey N, Ma Y, Lueckheide M, Danischewski J, Fagan JA, Prabhu VM. Tuning Net Charge in Aliphatic Polycarbonates Alters Solubility and Protein Complexation Behavior. ACS OMEGA 2021; 6:22589-22602. [PMID: 34514231 PMCID: PMC8427630 DOI: 10.1021/acsomega.1c02523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
A synthetic strategy yielded polyelectrolytes and polyampholytes with tunable net charge for complexation and protein binding. Organocatalytic ring-opening polymerizations yielded aliphatic polycarbonates that were functionalized with both carboxylate and ammonium side chains in a post-polymerization, radical-mediated thiol-ene reaction. Incorporating net charge into the polymer architecture altered the chain dimensions in phosphate buffered solution in a manner consistent with self-complexation and complexation behavior with model proteins. A net cationic polyampholyte with 5% of carboxylate side chains formed large clusters rather than small complexes with bovine serum albumin, while 50% carboxylate polyampholyte was insoluble. Overall, the aliphatic polycarbonates with varying net charge exhibited different macrophase solution behaviors when mixed with protein, where self-complexation appears to compete with protein binding and larger-scale complexation.
Collapse
Affiliation(s)
| | - Yuanchi Ma
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Michael Lueckheide
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Julia Danischewski
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jeffrey A. Fagan
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
19
|
Kusova AM, Sitnitsky AE, Zuev YF. The Role of pH and Ionic Strength in the Attraction-Repulsion Balance of Fibrinogen Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10394-10401. [PMID: 34403253 DOI: 10.1021/acs.langmuir.1c01803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fibrinogen (Fg) self-assembly is sensitive to the physicochemical properties of an environment like pH and ionic strength. These parameters tune the direction and strength of noncovalent physical driving forces determining protein intermolecular interactions. The attraction-repulsion balance in intermolecular interactions of the multidomain protein Fg at pH values 3.5, 7.4, and 9.5 and varying ionic strengths of the water medium has been analyzed by the complex diffusive approach, proposed by us previously. The concentration dependence of protein collective diffusion was analyzed within the phenomenological approach, based on the frictional formalism of nonequilibrium thermodynamics proposed by H. Vink. The analysis of protein diffusion data has shown the fundamental difference in the physical nature and direction of interaction forces between protein molecules at different conditions. The paired interaction potential of protein molecules was characterized in terms of second virial coefficients and Hamaker constants within the Deryaguin-Landau-Verwey-Overbeek theory and the "porous" colloid particle model. Our results indicated the maximum Hamaker constant and dominance of the van der Waals attraction between Fg molecules at pH 7.4. The increase in pH up to 9.5 results in the zero values of the second virial coefficient and Hamaker constant, corresponding to the full reciprocal compensation for electrostatic repulsion and van der Waals attraction. In the acidic medium (pH 3.5), the strong electrostatic repulsion substantially exceeds the van der Waals attraction. A high ionic strength is characterized by a significant decrease of all intermolecular interactions, which is expressed in almost zero values of virial coefficients and the Hamaker constant. Thus, it is experimentally shown that the physiological conditions of the Fg environment (pH 7.4 and slight ionic strength) provide a high probability for peak physical attraction between fibrinogen molecules, which is used in nature to facilitate blood clotting.
Collapse
Affiliation(s)
- Aleksandra M Kusova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan 420111, Russian Federation
| | - Aleksandr E Sitnitsky
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan 420111, Russian Federation
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan 420111, Russian Federation
| |
Collapse
|
20
|
Shahfar H, Forder JK, Roberts CJ. Toward a Suite of Coarse-Grained Models for Molecular Simulation of Monoclonal Antibodies and Therapeutic Proteins. J Phys Chem B 2021; 125:3574-3588. [PMID: 33821645 DOI: 10.1021/acs.jpcb.1c01903] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of coarse-grained models for molecular simulation of proteins are considered, with emphasis on the application of predicting protein-protein self-interactions for monoclonal antibodies (MAbs). As an illustrative example and for quantitative comparison, the models are used to predict osmotic virial coefficients over a broad range of attractive and repulsive self-interactions and solution conditions for a series of MAbs where the second osmotic virial coefficient has been experimentally determined in prior work. The models are compared based on how well they can predict experimental behavior, their computational burdens, and scalability. An intermediate-resolution model is also introduced that can capture specific electrostatic interactions with improved efficiency and similar or improved accuracy when compared to the previously published models. Guidance is included for the selection of coarse-grained models more generally for capturing a balance of electrostatic, steric, and short-ranged nonelectrostatic interactions for proteins from low to high concentrations.
Collapse
Affiliation(s)
- Hassan Shahfar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - James K Forder
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
21
|
Combinational effects of acid and salt addition on colloidal, interfacial, and emulsifying properties of purified soybean oil bodies. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Tian Z, Qian F. Adenosine Triphosphate-Induced Rapid Liquid-Liquid Phase Separation of a Model IgG1 mAb. Mol Pharm 2020; 18:267-274. [PMID: 33307701 DOI: 10.1021/acs.molpharmaceut.0c00905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adenosine triphosphate (ATP) is amphiphilic in nature and has the characteristics of a hydrotrope because of the charged triphosphate moiety and the large aromatic ring located on each end of its structure. Previous studies revealed that ATP can effectively maintain the solubility and prevent liquid-liquid phase separation (LLPS) of some biological proteins. In this study, we assessed the impact of ATP on the stability of a model therapeutic IgG1 antibody (MA1) to evaluate its potential application in protein formulation design. In our system, ATP promotes rapid LLPS of MA1 and we demonstrate that the ATP-MA1 static interaction drives phase separation of MA1. The attractive protein-protein interaction increased exclusively in the presence of ATP but not in the presence of other ATP analogues, such as adenosine diphosphate, adenosine monophosphate, and adenine. Through an intrinsic fluorescence quenching study, we revealed that ATP bound to MA1 electrostatically and formed static interactions; furthermore, such static ATP-MA1 interactions significantly altered the surface property of the protein and the protein-protein interactions and subsequently induced LLPS of MA1. This ATP-induced LLPS could be effectively eliminated by Mg2+, which chelated with ATP and thus negated ATP-MA1 static interaction. Our results revealed the unique molecular mechanism of ATP-induced rapid LLPS of MA1.
Collapse
Affiliation(s)
- Zhou Tian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
23
|
Zhan F, Yan X, Sheng F, Li B. Facile in situ synthesis of silver nanoparticles on tannic acid/zein electrospun membranes and their antibacterial, catalytic and antioxidant activities. Food Chem 2020; 330:127172. [PMID: 32531634 DOI: 10.1016/j.foodchem.2020.127172] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/19/2020] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
Abstract
This study demonstrates the development of biocompatible Ag nanoparticles/Tannic acid/Zein electrospun membranes with synergistic antibacterial, catalytic and antioxidant activity. The optimal spinning concentration of zein was 32 wt%. The prepared zein electrospun membranes were immersed into tannic acid (TA) solution to investigate the effects of TA concentrations, pH, temperature and time on the loading amount of TA. Then, the TA/Zein electrospun membranes were immersed into a silver nitrate solution to reduce the AgNPs in situ. The morphology of the electrospun membranes was characterized by scanning electron microscopy (SEM). UV-visible spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were used to carry out the loading amount of TA and Ag nanoparticles (AgNPs). Finally, the antioxidant, antibacterial and catalytic activity of TA/Zein and AgNPs/TA/Zein electrospun membranes were studied. It was found that the AgNPs/TA/Zein electrospun membranes with different TA concentrations have certain antibacterial, antioxidation and catalytic ability, which may be of interest for the development of active packaging that could extend the shelf life of perishable foods.
Collapse
Affiliation(s)
- Fuchao Zhan
- State Key Laboratory of Biocatalysis & Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangxing Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Sheng
- State Key Laboratory of Biocatalysis & Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
24
|
Garaizar A, Sanchez-Burgos I, Collepardo-Guevara R, Espinosa JR. Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid-Liquid Phase Separation. Molecules 2020; 25:E4705. [PMID: 33076213 PMCID: PMC7587599 DOI: 10.3390/molecules25204705] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
Proteins containing intrinsically disordered regions (IDRs) are ubiquitous within biomolecular condensates, which are liquid-like compartments within cells formed through liquid-liquid phase separation (LLPS). The sequence of amino acids of a protein encodes its phase behaviour, not only by establishing the patterning and chemical nature (e.g., hydrophobic, polar, charged) of the various binding sites that facilitate multivalent interactions, but also by dictating the protein conformational dynamics. Besides behaving as random coils, IDRs can exhibit a wide-range of structural behaviours, including conformational switching, where they transition between alternate conformational ensembles. Using Molecular Dynamics simulations of a minimal coarse-grained model for IDRs, we show that the role of protein conformation has a non-trivial effect in the liquid-liquid phase behaviour of IDRs. When an IDR transitions to a conformational ensemble enriched in disordered extended states, LLPS is enhanced. In contrast, IDRs that switch to ensembles that preferentially sample more compact and structured states show inhibited LLPS. This occurs because extended and disordered protein conformations facilitate LLPS-stabilising multivalent protein-protein interactions by reducing steric hindrance; thereby, such conformations maximize the molecular connectivity of the condensed liquid network. Extended protein configurations promote phase separation regardless of whether LLPS is driven by homotypic and/or heterotypic protein-protein interactions. This study sheds light on the link between the dynamic conformational plasticity of IDRs and their liquid-liquid phase behaviour.
Collapse
Affiliation(s)
- Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK; (A.G.); (I.S.-B.); (R.C.-G.)
| | - Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK; (A.G.); (I.S.-B.); (R.C.-G.)
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK; (A.G.); (I.S.-B.); (R.C.-G.)
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EJ, UK
| | - Jorge R. Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK; (A.G.); (I.S.-B.); (R.C.-G.)
| |
Collapse
|
25
|
Anomalous Salt Dependence Reveals an Interplay of Attractive and Repulsive Electrostatic Interactions in α-synuclein Fibril Formation. QRB DISCOVERY 2020. [PMID: 37528959 PMCID: PMC10392692 DOI: 10.1017/qrd.2020.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstractα-Synuclein (α-syn) is an intrinsically disordered protein with a highly asymmetric charge distribution, whose aggregation is linked to Parkinson’s disease. The effect of ionic strength was investigated at mildly acidic pH (5.5) in the presence of catalytic surfaces in the form of α-syn seeds or anionic lipid vesicles using thioflavin T fluorescence measurements. Similar trends were observed with both surfaces: increasing ionic strength reduced the rate of α-syn aggregation although the surfaces as well as α-syn have a net negative charge at pH 5.5. This anomalous salt dependence implies that short-range attractive electrostatic interactions are critical for secondary nucleation as well as heterogeneous primary nucleation. Such interactions were confirmed in Monte Carlo simulations of α-syn monomers interacting with surface-grafted C-terminal tails, and found to be weakened in the presence of salt. Thus, nucleation of α-syn aggregation depends critically on an attractive electrostatic component that is screened by salt to the extent that it outweighs the screening of the long-range repulsion between negatively charged monomers and negative surfaces. Interactions between the positively charged N-termini of α-syn monomers on the one hand, and the negatively C-termini of α-syn on fibrils or vesicles surfaces on the other hand, are thus critical for nucleation.
Collapse
|
26
|
Ravnik M, Everts JC. Topological-Defect-Induced Surface Charge Heterogeneities in Nematic Electrolytes. PHYSICAL REVIEW LETTERS 2020; 125:037801. [PMID: 32745396 DOI: 10.1103/physrevlett.125.037801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
We show that topological defects in an ion-doped nematic liquid crystal can be used to manipulate the surface charge distribution on chemically homogeneous, charge-regulating external surfaces, using a minimal theoretical model. In particular, the location and type of the defect encodes the precise distribution of surface charges and the effect is enhanced when the liquid crystal is flexoelectric. We demonstrate the principle for patterned surfaces and charged colloidal spheres. More generally, our results indicate an interesting approach to control surface charges on external surfaces without changing the surface chemistry.
Collapse
Affiliation(s)
- Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Department of Condensed Matter Physics, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Jeffrey C Everts
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
Khatun S, Singh A, Maji S, Maiti TK, Pawar N, Gupta AN. Fractal self-assembly and aggregation of human amylin. SOFT MATTER 2020; 16:3143-3153. [PMID: 32159545 DOI: 10.1039/c9sm02463h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Human amylin is an intrinsically disordered protein believed to have a central role in Type-II diabetes mellitus (T2DM). The formation of intermediate oligomers is a seminal event in the eventual self-assembled fibril structures of amylin. However, the recent experimental investigations have shown the presence of different self-assembled (oligomers, protofilaments, and fibrils) and aggregated structures (amorphous aggregates) of amylin formed during its aggregation. Here, we show that amylin under diffusion-limited conditions leads to fractal self-assembly. The pH and solvent sensitive fractal self-assemblies of amylin were observed using an optical microscope. Confocal microscopy and scanning electron microscopy (SEM) with energy dispersion X-ray analysis (EDAX) were used to confirm the fractal self-assembly of amylin in water and PBS buffer, respectively. The fractal characteristics of the self-assemblies and the aggregates formed during the aggregation of amylin under different pH conditions were investigated using laser light scattering. The hydropathy and the docking study indicated the interactions between the anisotropically distributed hydrophobic residues and polar/ionic residues on the solvent-accessible surface of the protein as the crucial interaction hot-spots for driving the self-assembly and aggregation of human amylin. The simultaneous presence of various self-assemblies of human amylin was observed through different microscopy techniques. The present study may help in designing different fractal-like nanomaterials with potential applications in drug delivery, sensing, and tissue engineering.
Collapse
Affiliation(s)
- Suparna Khatun
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur-721302, India.
| | | | | | | | | | | |
Collapse
|
28
|
Srivastava R, Chattopadhyaya M, Bandyopadhyay P. Calculation of salt-dependent free energy of binding of β-lactoglobulin homodimer formation and mechanism of dimer formation using molecular dynamics simulation and three-dimensional reference interaction site model (3D-RISM): diffuse salt ions and non-polar interactions between the monomers favor the dimer formation. Phys Chem Chem Phys 2020; 22:2142-2156. [PMID: 31912070 DOI: 10.1039/c9cp05578a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There are several important phenomena in chemistry, biology, and physics where molecules (or parts of a molecule) having charges of the same sign come closer together and become stable. DNA condensation, RNA folding, colloid-colloid interactions are some of the examples of this kind. In the current work, we have investigated how β-lactoglobulin, a protein found in milk, in spite of carrying +13 charge, favors the homodimer formation in the presence of salt. We have focussed on calculating the protein-protein binding free energy in the presence of salt and identifying the thermodynamic and microscopic mechanism of the process. Estimation of binding free energy of this salt-dependent process is done by combining molecular dynamics simulation with statistical mechanical theory of three-dimensional reference interaction site model (3D-RISM). Binding free energy is evaluated from the chemical potential of the solutes as opposed to potential of mean force calculation, which gives only a constrained free energy. Our calculated values semi-quantitatively match with the experimental results. By examining the different components of binding free energy, we have found that the role of salt ions (especially of Cl-) is to shift the equilibrium towards the dimer. Non-polar (Lennard-Jones) interactions between the monomers is also favorable to the binding free energy. However, water slightly disfavors the dimer formation. For the microscopic mechanism, heterogeneous of both Na+ and Cl- near the charged residues at the binding interface and change of this charge distribution on dimer formation contribute to the stability. A fine-tuning of enthalpic and entropic effects of salt ions is found to operate at different salt concentrations. Both thermodynamic and microscopic mechanism of dimer formation gives detailed insight into the complex electrostatics of charged protein-protein binding.
Collapse
Affiliation(s)
- Rakesh Srivastava
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| | | | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
29
|
Influence of low-molecular-weight aggregates on aggregate growth kinetics and physical properties of solid-state proteins during storage. Eur J Pharm Biopharm 2020; 146:10-18. [DOI: 10.1016/j.ejpb.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 01/11/2023]
|
30
|
Singh P, Roche A, van der Walle CF, Uddin S, Du J, Warwicker J, Pluen A, Curtis R. Determination of Protein-Protein Interactions in a Mixture of Two Monoclonal Antibodies. Mol Pharm 2019; 16:4775-4786. [PMID: 31613625 DOI: 10.1021/acs.molpharmaceut.9b00430] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coformulation of monoclonal antibody (mAb) mixtures provides an attractive route to achieving therapeutic efficacy where the targeting of multiple epitopes is necessary. Controlling and predicting the behavior of such mixtures requires elucidating the molecular basis for the self- and cross-protein-protein interactions and how they depend on solution variables. While self-interactions are now beginning to be well understood, systematic studies of cross-interactions between mAbs in solution do not exist. Here, we have used static light scattering to measure the set of self- and cross-osmotic second virial coefficients in a solution containing a mixture of two mAbs, mAbA and mAbB, as a function of ionic strength and pH. mAbB exhibits strong association at a low ionic strength, which is attributed to an electrostatic attraction that is enhanced by the presence of a strong short-ranged attraction of nonelectrostatic origin. Under all solution conditions, the measured cross-interactions are intermediate self-interactions and follow similar patterns of behavior. There is a strong electrostatic attraction at higher pH values, reflecting the behavior of mAbB. Protein-protein interactions become more attractive with an increasing pH due to reducing the overall protein net charges, an effect that is attenuated with an increasing ionic strength due to the screening of electrostatic interactions. Under moderate ionic strength conditions, the reduced cross-virial coefficient, which reflects only the energetic contribution to protein-protein interactions, is given by a geometric average of the corresponding self-coefficients. We show the relationship can be rationalized using a patchy sphere model, where the interaction energy between sites i and j is given by the arithmetic mean of the i-i and j-j interactions. The geometric mean does not necessarily apply to all mAb mixtures and is expected to break down at a lower ionic strength due to the nonadditivity of electrostatic interactions.
Collapse
Affiliation(s)
- Priyanka Singh
- Manchester Pharmacy School , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Aisling Roche
- School of Chemical Engineering and Analytical Science , University of Manchester , Manchester M1 7DN , United Kingdom
| | - Christopher F van der Walle
- School of Chemical Engineering and Analytical Science , University of Manchester , Manchester M1 7DN , United Kingdom.,Dosage Form Design & Development , AstraZeneca , Granta Park , Cambridge CB21 6GH , United Kingdom
| | - Shahid Uddin
- Formulation Sciences CMC , Immunocore , Milton Park , Abingdon OX14 4RW , United Kingdom
| | - Jiali Du
- Dosage Form Design & Development , AstraZeneca , Gaithersburg MD20878 , United States
| | - Jim Warwicker
- School of Chemistry , University of Manchester , Manchester M1 7DN , United Kingdom
| | - Alain Pluen
- Manchester Pharmacy School , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Robin Curtis
- School of Chemical Engineering and Analytical Science , University of Manchester , Manchester M1 7DN , United Kingdom
| |
Collapse
|
31
|
Sahli L, Renard D, Solé-Jamault V, Giuliani A, Boire A. Role of protein conformation and weak interactions on γ-gliadin liquid-liquid phase separation. Sci Rep 2019; 9:13391. [PMID: 31527735 PMCID: PMC6746847 DOI: 10.1038/s41598-019-49745-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/29/2019] [Indexed: 02/02/2023] Open
Abstract
Wheat storage proteins, gliadins, were found to form in vitro condensates in 55% ethanol/water mixture by decreasing temperature. The possible role of this liquid-liquid phase separation (LLPS) process on the in vivo gliadins storage is elusive and remains to be explored. Here we use γ-gliadin as a model of wheat proteins to probe gliadins behavior in conditions near physiological conditions. Bioinformatic analyses suggest that γ-gliadin is a hybrid protein with N-terminal domain predicted to be disordered and C-terminal domain predicted to be ordered. Spectroscopic data highlight the disordered nature of γ-gliadin. We developed an in vitro approach consisting to first solubilize γ-gliadin in 55% ethanol (v/v) and to progressively decrease ethanol ratio in favor of increased aqueous solution. Our results show the ability of γ-gliadin to self-assemble into dynamic droplets through LLPS, with saturation concentrations ranging from 25.9 µM ± 0.85 µM (35% ethanol (v/v)) to 3.8 µM ± 0.1 µM (0% ethanol (v/v)). We demonstrate the importance of the predicted ordered C-terminal domain of γ-gliadin in the LLPS by highlighting the protein condensates transition from a liquid to a solid state under reducing conditions. We demonstrate by increasing ionic strength the role displayed by electrostatic interactions in the phase separation. We also show the importance of hydrogen bonds in this process. Finally, we discuss the importance of gliadins condensates in their accumulation and storage in the wheat seed.
Collapse
Affiliation(s)
- Line Sahli
- INRA, UR1268 Biopolymers Interactions Assemblies, 44300, Nantes, France.
| | - Denis Renard
- INRA, UR1268 Biopolymers Interactions Assemblies, 44300, Nantes, France
| | | | - Alexandre Giuliani
- DISCO beamline, Synchrotron Soleil, l'Orme des Merisiers, 91192, Gif sur Yvette, France
- UAR 1008, CEPIA, INRA, BP 71627, F-44316, Nantes, France
| | - Adeline Boire
- INRA, UR1268 Biopolymers Interactions Assemblies, 44300, Nantes, France
| |
Collapse
|
32
|
Skar-Gislinge N, Ronti M, Garting T, Rischel C, Schurtenberger P, Zaccarelli E, Stradner A. A Colloid Approach to Self-Assembling Antibodies. Mol Pharm 2019; 16:2394-2404. [PMID: 31059276 DOI: 10.1021/acs.molpharmaceut.9b00019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Concentrated solutions of monoclonal antibodies have attracted considerable attention due to their importance in pharmaceutical formulations; yet, their tendency to aggregate and the resulting high viscosity pose considerable problems. Here we tackle this problem by a soft condensed matter physics approach, which combines a variety of experimental measurements with a patchy colloid model, amenable of analytical solution. We thus report results of structural antibodies and dynamic properties obtained through scattering methods and microrheological experiments. We model the data using a colloid-inspired approach, explicitly taking into account both the anisotropic shape of the molecule and its charge distribution. Our simple patchy model is able to disentangle self-assembly and intermolecular interactions and to quantitatively describe the concentration-dependence of the osmotic compressibility, collective diffusion coefficient, and zero shear viscosity. Our results offer new insights on the key problem of antibody formulations, providing a theoretical and experimental framework for a quantitative assessment of the effects of additional excipients or chemical modifications and a prediction of the resulting viscosity.
Collapse
Affiliation(s)
- Nicholas Skar-Gislinge
- Physical Chemistry, Department of Chemistry , Lund University , SE-221 00 Lund , Sweden.,Novo Nordisk A/S , DK-2760 Malov , Denmark
| | - Michela Ronti
- Department of Physics , Sapienza Università di Roma , Piazzale Aldo Moro 2 , 00185 Rome , Italy
| | - Tommy Garting
- Physical Chemistry, Department of Chemistry , Lund University , SE-221 00 Lund , Sweden
| | | | - Peter Schurtenberger
- Physical Chemistry, Department of Chemistry , Lund University , SE-221 00 Lund , Sweden.,LINXS - Lund Institute of Advanced Neutron and X-ray Science , Scheelevägen 19 , SE-223 70 Lund , Sweden
| | - Emanuela Zaccarelli
- Institute for Complex Systems, National Research Council (ISC-CNR), Uos Sapienza and Department of Physics , Sapienza Università di Roma , Piazzale Aldo Moro 5 , 00185 Rome , Italy
| | - Anna Stradner
- Physical Chemistry, Department of Chemistry , Lund University , SE-221 00 Lund , Sweden.,LINXS - Lund Institute of Advanced Neutron and X-ray Science , Scheelevägen 19 , SE-223 70 Lund , Sweden
| |
Collapse
|
33
|
Ohara Y, Nakai K, Ahmed S, Matsumura K, Ishihara K, Yusa SI. pH-Responsive Polyion Complex Vesicle with Polyphosphobetaine Shells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1249-1256. [PMID: 29940726 DOI: 10.1021/acs.langmuir.8b00632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
When a bioactive molecule is taken into cells by endocytosis, it is sometimes unable to escape from the lysosomes, resulting in inefficient drug release. We prepared pH-responsive polyion complex (PIC) vesicles that collapse under acidic conditions such as those inside a lysosome. Furthermore, under acidic conditions, cationic polymer was released from the PIC vesicles to break the lysosome membranes. Diblock copolymers (P20M167 and P20A190) consisting of water-soluble zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) block and cationic or anionic blocks were synthesized via reversible addition-fragmentation chain transfer (RAFT) radical polymerization. Poly(3-(methacrylamidopropyl) trimethylammonium chloride) (PMAPTAC) and poly(sodium 6-acrylamidohexanoate) (PAaH) were used as the cationic and anionic blocks, respectively. The pendant hexanoate groups in the PAaH block are ionized in basic water and in phosphate buffered saline (PBS), while the hexanoate groups are protonated in acidic water. In basic water, PIC vesicles were formed from a charge neutralized mixture of oppositely charged diblock copolymers. At the interface of PIC vesicle and water exists biocompatible PMPC shells. Under acidic conditions, the PIC vesicles collapsed, because the charge balance shifted due to protonation of the PAaH block. After collapse of the PIC vesicles, P20A190 formed micelles composed of protonated PAaH core and PMPC shells, while P20M167 was released as unimers. PIC vesicles can encapsulate hydrophilic nonionic guest molecules into their hollow core. Under acidic conditions, the PIC vesicles can release the guest molecules and P20M167. The cationic P20M167 can break the lysosome membrane to efficiently release the guest molecules from the lysosomes to the cytoplasm.
Collapse
Affiliation(s)
- Yuki Ohara
- Department of Applied Chemistry, Graduate School of Engineering , University of Hyogo , 2167 Shosha , Himeji , Hyogo 671-2280 , Japan
| | - Keita Nakai
- Department of Applied Chemistry, Graduate School of Engineering , University of Hyogo , 2167 Shosha , Himeji , Hyogo 671-2280 , Japan
| | - Sana Ahmed
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Kazuaki Matsumura
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering , University of Hyogo , 2167 Shosha , Himeji , Hyogo 671-2280 , Japan
| |
Collapse
|
34
|
Abstract
The ability of polyvalent anions to influence protein-protein interactions and protein net charge was investigated through solubility and turbidity experiments, determination of osmotic second virial coefficients ( B22), and ζ-potential values for lysozyme solutions. B22 values showed that all anions reduce protein-protein repulsion between positively charged lysozyme molecules, and those anions with higher net valencies are more effective. The polyvalent anions pyrophosphate and tripolyphosphate were observed to induce protein reentrant condensation, which has been previously observed with negatively charged proteins in the presence of trivalent cations. Reentrant condensation is a phenomenon in which low concentrations of polyvalent ions induce protein precipitation, but further increasing polyvalent ion concentration causes the protein precipitate to resolubilize. Interestingly, citrate does not induce lysozyme reentrant condensation despite having a similar charge, size, and shape to pyrophosphate. We observe qualitative differences in protein behavior when compared against negatively charged proteins in solutions of trivalent cations. The polyphosphate ions induce a much stronger protein-protein attraction, which correlates with the occurrence of a liquid-gel transition that replaces the liquid-liquid transition observed with trivalent cations. The results indicate that solutions of polyphosphate ions provide a model system for exploring the link between the protein-phase diagram and model interaction potentials and also highlight the importance that ion-specific effects can have on protein solubility.
Collapse
Affiliation(s)
- Jordan W Bye
- School of Chemical Engineering and Analytical Science , The University of Manchester , Sackville Street , Manchester M13 9PL , U.K
| | - Robin A Curtis
- School of Chemical Engineering and Analytical Science , The University of Manchester , Sackville Street , Manchester M13 9PL , U.K
| |
Collapse
|
35
|
Corbett D, Bye JW, Curtis RA. Measuring Nonspecific Protein-Protein Interactions by Dynamic Light Scattering. Methods Mol Biol 2019; 2039:3-21. [PMID: 31342415 DOI: 10.1007/978-1-4939-9678-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamic light scattering has become a method of choice for measuring and quantifying weak, nonspecific protein-protein interactions due to its ease of use, minimal sample consumption, and amenability to high-throughput screening via plate readers. A procedure is given on how to prepare protein samples, carry out measurements by commonly used experimental setups including flow through systems, plate readers, and cuvettes, and analyze the correlation functions to obtain diffusion coefficient data. The chapter concludes by a theoretical section that derives and rationalizes the correlation between diffusion coefficient measurements and protein-protein interactions.
Collapse
Affiliation(s)
- Daniel Corbett
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Jordan W Bye
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Robin A Curtis
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK.
| |
Collapse
|
36
|
Ferreira GM, Calero-Rubio C, Sathish HA, Remmele RL, Roberts CJ. Electrostatically Mediated Protein-Protein Interactions for Monoclonal Antibodies: A Combined Experimental and Coarse-Grained Molecular Modeling Approach. J Pharm Sci 2019; 108:120-132. [DOI: 10.1016/j.xphs.2018.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023]
|
37
|
Sønderby P, Bukrinski JT, Hebditch M, Peters GHJ, Curtis RA, Harris P. Self-Interaction of Human Serum Albumin: A Formulation Perspective. ACS OMEGA 2018; 3:16105-16117. [PMID: 30556026 PMCID: PMC6288999 DOI: 10.1021/acsomega.8b02245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/13/2018] [Indexed: 05/12/2023]
Abstract
In the present study, small-angle X-ray scattering (SAXS) and static light scattering (SLS) have been used to study the solution properties and self-interaction of recombinant human serum albumin (rHSA) molecules in three pharmaceutically relevant buffer systems. Measurements are carried out up to high protein concentrations and as a function of ionic strength by adding sodium chloride to probe the role of electrostatic interactions. The effective structure factors (S eff) as a function of the scattering vector magnitude q have been extracted from the scattering profiles and fit to the solution of the Ornstein-Zernike equation using a screened Yukawa potential to describe the double-layer force. Although only a limited q range is used, accurate fits required including an electrostatic repulsion element in the model at low ionic strength, while only a hard sphere model with a tunable diameter is necessary for fitting to high-ionic-strength data. The fit values of net charge agree with available data from potentiometric titrations. Osmotic compressibility data obtained by extrapolating the SAXS profiles or directly from SLS measurements has been fit to a 10-term virial expansion for hard spheres and an equation of state for hard biaxial ellipsoids. We show that modeling rHSA as an ellipsoid, rather than a sphere, provides a much more accurate fit for the thermodynamic data over the entire concentration range. Osmotic virial coefficient data, derived at low protein concentration, can be used to parameterize the model for predicting the behavior up to concentrations as high as 450 g/L. The findings are especially important for the biopharmaceutical sector, which require approaches for predicting concentrated protein solution behavior using minimal sample consumption.
Collapse
Affiliation(s)
- Pernille Sønderby
- Department
of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Jens T. Bukrinski
- Novozymes
Biopharma A/S, Krogshøjvej
36, Bagsværd, DK-2880 Copenhagen, Denmark
| | - Max Hebditch
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K.
| | - Günther H. J. Peters
- Department
of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Robin A. Curtis
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K.
- E-mail: (R.A.C.)
| | - Pernille Harris
- Department
of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kgs. Lyngby, Denmark
- E-mail: (P.H.)
| |
Collapse
|
38
|
Kowacz M, Warszyński P. Effect of infrared light on protein behavior in contact with solid surfaces. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Failure of Debye-Hückel Screening in Low-Charge Colloidal Suspensions. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2040051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory remains the cornerstone of colloid stability. Electrostatic interactions dominate van der Waals attractions at large colloid-colloid separations h, unless strongly screened. Under these conditions, the potential U ( h ) between charged colloids is expected to be exponentially screened, U ( h ) ∼ exp ( − κ h ) / h , with κ − 1 = λ D where λ D is the classical Debye-Hückel screening length. By measuring the force between individual charged particles at dilute electrolyte concentrations (<mM) using optical tweezers, we tested experimentally the prediction κ − 1 = λ D in a nonpolar solvent. At low salt concentrations, we found close agreement between the directly-measured decay length κ − 1 and Debye-Hückel predictions. However, above a critical electrolyte concentration (≈450 μ M), we obtained significant discrepancies between measured and predicted screening lengths, with κ − 1 ≫ λ D . In marked contrast to expectations, we found that the measured screening length κ − 1 appears to grow as the ionic strength of the solution is increased. The origin of this discrepancy is discussed and the importance of considering the surface is highlighted.
Collapse
|
40
|
Posey ND, Hango CR, Minter LM, Tew GN. The Role of Cargo Binding Strength in Polymer-Mediated Intracellular Protein Delivery. Bioconjug Chem 2018; 29:2679-2690. [DOI: 10.1021/acs.bioconjchem.8b00363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Peltzer RM, Kolli HB, Stocker A, Cascella M. Self-Assembly of α-Tocopherol Transfer Protein Nanoparticles: A Patchy Protein Model. J Phys Chem B 2018; 122:7066-7072. [DOI: 10.1021/acs.jpcb.8b05936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raphael Mathias Peltzer
- Department of Chemistry, and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O.
Box 1033, Blindern, 0315 Oslo, Norway
| | - Hima Bindu Kolli
- Department of Chemistry, and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O.
Box 1033, Blindern, 0315 Oslo, Norway
| | - Achim Stocker
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Michele Cascella
- Department of Chemistry, and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O.
Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
42
|
Lošdorfer BoŽič A. From discrete to continuous description of spherical surface charge distributions. SOFT MATTER 2018; 14:1149-1161. [PMID: 29345714 DOI: 10.1039/c7sm02207g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The importance of electrostatic interactions in soft matter and biological systems can often be traced to non-uniform charge effects, which are commonly described using a multipole expansion of the corresponding charge distribution. The standard approach when extracting the charge distribution of a given system is to treat the constituent charges as points. This can, however, lead to an overestimation of multipole moments of high order, such as dipole, quadrupole, and higher moments. Focusing on distributions of charges located on a spherical surface - characteristic of numerous biological macromolecules, such as globular proteins and viral capsids, as well as of inverse patchy colloids - we develop a novel way of representing spherical surface charge distributions based on the von Mises-Fisher distribution. This approach takes into account the finite spatial extension of individual charges, and leads to a simple yet powerful way of describing surface charge distributions and their multipole expansions. In this manner, we analyze charge distributions and the derived multipole moments of a number of different spherical configurations of identical charges with various degrees of symmetry. We show how the number of charges, their size, and the geometry of their configuration influence the behavior and relative importance of multipole magnitudes of different order. Importantly, we clearly demonstrate how neglecting the effect of charge size leads to an overestimation of high-order multipoles. The results of our work can be applied to construct analytical models of electrostatic interactions and multipole expansion of charged particles in diverse soft matter and biological systems.
Collapse
|
43
|
Wang W, Lilyestrom WG, Hu ZY, Scherer TM. Cluster Size and Quinary Structure Determine the Rheological Effects of Antibody Self-Association at High Concentrations. J Phys Chem B 2018; 122:2138-2154. [PMID: 29359938 DOI: 10.1021/acs.jpcb.7b10728] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The question of how nonspecific reversible intermolecular protein interactions affect solution rheology at high concentrations is fundamentally rooted in the translation of nanometer-scale interactions into macroscopic properties. Well-defined solutions of purified monoclonal antibodies (mAbs) provide a useful system with which to investigate the manifold intricacies of weak protein interactions at high concentrations. Recently, characterization of self-associating IgG1 antibody (mAb2) solutions has established the direct role of protein clusters on concentrated mAb rheology. Expanding on our earlier work with three additional mAbs (mAb1, mAb3, and mAb4), the observed concentration-dependent static light scattering and rheological data present a substantially more complex relationship between protein interactions and solution viscosity at high concentrations. The four mAb systems exhibited divergent correlations between cluster formation (size) and concentrated solution viscosities dependent on mAb primary sequence and solution conditions. To address this challenge, well-established features of colloidal cluster phenomena could be applied as a framework for interpreting our observations. The initial stages of mAb cluster formation were investigated with small-angle X-ray scattering (SAXS) and ensemble-optimized fit methods, to uncover shifts in the dimer structure populations which are produced by changes in mAb interaction modes and association valence under the different solution conditions. Analysis of mAb average cluster number and effective hydrodynamic radii at high concentrations revealed cluster architectures can have a wide range of fractal dimensions. Collectively, the static light scattering, SAXS, and rheological characterization demonstrate that nonspecific and anisotropic attractive intermolecular interactions produce antibody clusters with different quinary structures to regulate the rheological properties of concentrated mAb solutions.
Collapse
Affiliation(s)
- Wenhua Wang
- Late Stage Pharmaceutical Development, Genentech (a Member of the Roche Group) , 1 DNA Way, MS 56-1A, South San Francisco, California 94080, United States
| | - Wayne G Lilyestrom
- Late Stage Pharmaceutical Development, Genentech (a Member of the Roche Group) , 1 DNA Way, MS 56-1A, South San Francisco, California 94080, United States
| | - Zhi Yu Hu
- Late Stage Pharmaceutical Development, Genentech (a Member of the Roche Group) , 1 DNA Way, MS 56-1A, South San Francisco, California 94080, United States
| | - Thomas M Scherer
- Late Stage Pharmaceutical Development, Genentech (a Member of the Roche Group) , 1 DNA Way, MS 56-1A, South San Francisco, California 94080, United States
| |
Collapse
|
44
|
Hartl J, Peschel A, Johannsmann D, Garidel P. Characterizing protein-protein-interaction in high-concentration monoclonal antibody systems with the quartz crystal microbalance. Phys Chem Chem Phys 2018; 19:32698-32707. [PMID: 29199300 DOI: 10.1039/c7cp05711c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Making use of a quartz crystal microbalance (QCM), concentrated solutions of therapeutic antibodies were studied with respect to their behavior under shear excitation with frequencies in the MHz range. At high protein concentration and neutral pH, viscoelastic behavior was found in the sense that the storage modulus, G', was nonzero. Fits of the frequency dependence of G'(ω) and G''(ω) (G'' being the loss modulus) using the Maxwell-model produced good agreement with the experimental data. The fit parameters were the relaxation time, τ, and the shear modulus at the inverse relaxation time, G* (at the "cross-over frequency" ωC = 1/τ). The influence of two different pharmaceutical excipients (histidine and citrate) was studied at variable concentrations of the antibody and variable pH. In cases, where viscoelasticity was observed, G* was in the range of a few kPa, consistent with entropy-driven interactions. τ was small at low pH, where the antibody carries a positive charge. τ increased with increasing pH. The relaxation time τ was found to be correlated with other parameters quantifying protein-protein interactions, namely the steady shear viscosity (η), the second osmotic virial coefficient as determined with both self-interaction chromatography (B22,SIC) and static light scattering (B22,SLS), and the diffusion interaction parameter as determined with dynamic light scattering (kD). While B22 and kD describe protein-protein interactions in diluted samples, the QCM can be applied to concentrated solutions, thereby being sensitive to higher-order protein-protein interactions.
Collapse
Affiliation(s)
- Josef Hartl
- Boehringer Ingelheim Pharma GmbH and Co. KG, Protein Science, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | | | | | | |
Collapse
|
45
|
Uchman M, Abrikosov AI, Lepšík M, Lund M, Matějíček P. Nonclassical Hydrophobic Effect in Micellization: Molecular Arrangement of Non-Amphiphilic Structures. ADVANCED THEORY AND SIMULATIONS 2017. [DOI: 10.1002/adts.201700002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mariusz Uchman
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Alexei I. Abrikosov
- Division of Physical Chemistry; University of Lund; Lund Sweden
- Materials Modeling and Development Laboratory; National University of Science and Technology ‘MISIS’; Moscow Russia
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Prague 6 Czech Republic
| | - Mikael Lund
- Division of Theoretical Chemistry; University of Lund; Lund Sweden
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague 2 Czech Republic
| |
Collapse
|
46
|
Lošdorfer Božič A, Podgornik R. pH Dependence of Charge Multipole Moments in Proteins. Biophys J 2017; 113:1454-1465. [PMID: 28978439 DOI: 10.1016/j.bpj.2017.08.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 11/26/2022] Open
Abstract
Electrostatic interactions play a fundamental role in the structure and function of proteins. Due to ionizable amino acid residues present on the solvent-exposed surfaces of proteins, the protein charge is not constant but varies with the changes in the environment-most notably, the pH of the surrounding solution. We study the effects of pH on the charge of four globular proteins by expanding their surface charge distributions in terms of multipoles. The detailed representation of the charges on the proteins is in this way replaced by the magnitudes and orientations of the multipole moments of varying order. Focusing on the three lowest-order multipoles-the total charge, dipole, and quadrupole moment-we show that the value of pH influences not only their magnitudes, but more notably and importantly also the spatial orientation of their principal axes. Our findings imply important consequences for the study of protein-protein interactions and the assembly of both proteinaceous shells and patchy colloids with dissociable charge groups.
Collapse
Affiliation(s)
| | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
47
|
Zhang F. Nonclassical nucleation pathways in protein crystallization. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:443002. [PMID: 28984274 DOI: 10.1088/1361-648x/aa8253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.
Collapse
Affiliation(s)
- Fajun Zhang
- Universität Tübingen, Institut für Angewandte Physik, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Self-association of a highly charged arginine-rich cell-penetrating peptide. Proc Natl Acad Sci U S A 2017; 114:11428-11433. [PMID: 29073067 DOI: 10.1073/pnas.1712078114] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) measurements reveal a striking difference in intermolecular interactions between two short highly charged peptides-deca-arginine (R10) and deca-lysine (K10). Comparison of SAXS curves at high and low salt concentration shows that R10 self-associates, while interactions between K10 chains are purely repulsive. The self-association of R10 is stronger at lower ionic strengths, indicating that the attraction between R10 molecules has an important electrostatic component. SAXS data are complemented by NMR measurements and potentials of mean force between the peptides, calculated by means of umbrella-sampling molecular dynamics (MD) simulations. All-atom MD simulations elucidate the origin of the R10-R10 attraction by providing structural information on the dimeric state. The last two C-terminal residues of R10 constitute an adhesive patch formed by stacking of the side chains of two arginine residues and by salt bridges formed between the like-charge ion pair and the C-terminal carboxyl groups. A statistical analysis of the Protein Data Bank reveals that this mode of interaction is a common feature in proteins.
Collapse
|
49
|
Wahle CW, Martini KM, Hollenbeck DM, Langner A, Ross DS, Hamilton JF, Thurston GM. Model for screened, charge-regulated electrostatics of an eye lens protein: Bovine gammaB-crystallin. Phys Rev E 2017; 96:032415. [PMID: 29346981 PMCID: PMC5830141 DOI: 10.1103/physreve.96.032415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 06/07/2023]
Abstract
We model screened, site-specific charge regulation of the eye lens protein bovine gammaB-crystallin (γB) and study the probability distributions of its proton occupancy patterns. Using a simplified dielectric model, we solve the linearized Poisson-Boltzmann equation to calculate a 54×54 work-of-charging matrix, each entry being the modeled voltage at a given titratable site, due to an elementary charge at another site. The matrix quantifies interactions within patches of sites, including γB charge pairs. We model intrinsic pK values that would occur hypothetically in the absence of other charges, with use of experimental data on the dependence of pK values on aqueous solution conditions, the dielectric model, and literature values. We use Monte Carlo simulations to calculate a model grand-canonical partition function that incorporates both the work-of-charging and the intrinsic pK values for isolated γB molecules and we calculate the probabilities of leading proton occupancy configurations, for 4<pH<8 and Debye screening lengths from 6 to 20 Å. We select the interior dielectric value to model γB titration data. At pH 7.1 and Debye length 6.0 Å, on a given γB molecule the predicted top occupancy pattern is present nearly 20% of the time, and 90% of the time one or another of the first 100 patterns will be present. Many of these occupancy patterns differ in net charge sign as well as in surface voltage profile. We illustrate how charge pattern probabilities deviate from the multinomial distribution that would result from use of effective pK values alone and estimate the extents to which γB charge pattern distributions broaden at lower pH and narrow as ionic strength is lowered. These results suggest that for accurate modeling of orientation-dependent γB-γB interactions, consideration of numerous pairs of proton occupancy patterns will be needed.
Collapse
Affiliation(s)
- Christopher W. Wahle
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - K. Michael Martini
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
| | - Dawn M. Hollenbeck
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Andreas Langner
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - David S. Ross
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - John F. Hamilton
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - George M. Thurston
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| |
Collapse
|
50
|
Ohnuki J, Yodogawa A, Takano M. Electrostatic balance between global repulsion and local attraction in reentrant polymerization of actin. Cytoskeleton (Hoboken) 2017; 74:504-511. [DOI: 10.1002/cm.21391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/11/2017] [Accepted: 07/21/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Jun Ohnuki
- Department of Pure and Applied Physics; Waseda University; Tokyo 169-8555 Japan
| | - Akira Yodogawa
- Department of Advanced Science and Engineering; Waseda University; Tokyo 169-8555 Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics; Waseda University; Tokyo 169-8555 Japan
| |
Collapse
|