1
|
Dumont R, Dowdell J, Song J, Li J, Wang S, Kang W, Li B. Control of charge transport in electronically active systems towards integrated biomolecular circuits (IbC). J Mater Chem B 2023; 11:8302-8314. [PMID: 37464922 DOI: 10.1039/d3tb00701d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The miniaturization of traditional silicon-based electronics will soon reach its limitation as quantum tunneling and heat become serious problems at the several-nanometer scale. Crafting integrated circuits via self-assembly of electronically active molecules using a "bottom-up" paradigm provides a potential solution to these technological challenges. In particular, integrated biomolecular circuits (IbC) offer promising advantages to achieve this goal, as nature offers countless examples of functionalities entailed by self-assembly and examples of controlling charge transport at the molecular level within the self-assembled structures. To this end, the review summarizes the progress in understanding how charge transport is regulated in biosystems and the key redox-active amino acids that enable the charge transport. In addition, charge transport mechanisms at different length scales are also reviewed, offering key insights for controlling charge transport in IbC in the future.
Collapse
Affiliation(s)
- Ryan Dumont
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Juwaan Dowdell
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jisoo Song
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jiani Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Suwan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Wei Kang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Bo Li
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| |
Collapse
|
2
|
Kato T, Fujii A. Infrared Spectroscopy of (Benzene-H 2S-X n) +, X = H 2O ( n = 1 and 2) and CH 3OH ( n = 1), Radical Cation Clusters: Microsolvation Effects on the S-π Hemibond. J Phys Chem A 2023; 127:742-750. [PMID: 36636986 DOI: 10.1021/acs.jpca.2c08324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An unconventional covalent bond in which three electrons are shared by two centers is called hemibond. Hemibond formation frequently competes with proton transfer (or ionic hydrogen bond formation), but there have been a few experimental reports on such competition. In the present study, we focus on the (benzene-H2S)+ radical cation cluster, which is a model system of the S-π hemibond. The stability of the S-π hemibond to the microsolvation by water and methanol is explored with infrared spectroscopy of (benzene-H2S-Xn)+, X = H2O (n = 1 and 2) and CH3OH (n = 1), clusters. We also perform energy-optimization and vibrational simulations of (benzene-H2S-Xn)+. By comparison among the observed and simulated spectra, we determine the intermolecular binding motifs in (benzene-H2S-Xn)+. While the S-π hemibonded isomer is exclusively populated in (benzene-H2S-H2O)+, both the hemibonded and proton-transferred isomers coexist in [benzene-H2S-(H2O)2]+ and (benzene-H2S-CH3OH)+. Breaking of the S-π hemibond by the microsolvation is observed, and its solvent and cluster size dependence is interpreted by the proton affinity and the coordination property of the solvent moiety.
Collapse
Affiliation(s)
- Takeru Kato
- Department of Chemistry, Graduate School of Science, Tohoku University Sendai 980-8578, Japan
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University Sendai 980-8578, Japan
| |
Collapse
|
3
|
Li X, Sun W, Qin X, Xie Y, Liu N, Luo X, Wang Y, Chen X. An interesting possibility of forming special hole stepping stones with high-stacking aromatic rings in proteins: three-π five-electron and four-π seven-electron resonance bindings. RSC Adv 2021; 11:26672-26682. [PMID: 35479969 PMCID: PMC9037495 DOI: 10.1039/d1ra05341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022] Open
Abstract
Long-range hole transfer of proteins plays an important role in many biological processes of living organisms. Therefore, it is highly useful to examine the possible hole stepping stones, which can facilitate hole transfer in proteins. However, the structures of stepping stones are diverse because of the complexity of the protein structures. In the present work, we proposed a series of special stepping stones, which are instantaneously formed by three and four packing aromatic side chains of amino acids to capture a hole, corresponding to three-π five-electron (π:π∴π↔π∴π:π) and four-π seven-electron (π:π∴π:π↔π:π:π∴π) resonance bindings with appropriate binding energies. The aromatic amino acids include histidine (His), phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp). The formations of these special stepping stones can effectively reduce the local ionization potential of the high π-stacking region to efficiently capture the migration hole. The quick formations and separations of them promote the efficient hole transfer in proteins. More interestingly, we revealed that a hole cannot delocalize over infinite aromatic rings along the high π-π packing structure at the same time and the micro-surroundings of proteins can modulate the formations of π:π∴π↔π∴π:π and π:π∴π:π↔π:π:π∴π bindings. These results may contribute a new avenue to better understand the potential hole transfer pathway in proteins.
Collapse
Affiliation(s)
- Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Weichao Sun
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xin Qin
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xin Luo
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Yuanying Wang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| |
Collapse
|
4
|
Sulfur Radicals and Their Application. Top Curr Chem (Cham) 2018; 376:22. [DOI: 10.1007/s41061-018-0197-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
|
5
|
|
6
|
Sure S, Ackland ML, Gaur A, Gupta P, Adholeya A, Kochar M. Probing Synechocystis-Arsenic Interactions through Extracellular Nanowires. Front Microbiol 2016; 7:1134. [PMID: 27486454 PMCID: PMC4949250 DOI: 10.3389/fmicb.2016.01134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
Microbial nanowires (MNWs) can play an important role in the transformation and mobility of toxic metals/metalloids in environment. The potential role of MNWs in cell-arsenic (As) interactions has not been reported in microorganisms and thus we explored this interaction using Synechocystis PCC 6803 as a model system. The effect of half maximal inhibitory concentration (IC50) [~300 mM As (V) and ~4 mM As (III)] and non-inhibitory [4X lower than IC50, i.e., 75 mM As (V) and 1 mM As (III)] of As was studied on Synechocystis cells in relation to its effect on Chlorophyll (Chl) a, type IV pili (TFP)-As interaction and intracellular/extracellular presence of As. In silico analysis showed that subunit PilA1 of electrically conductive TFP, i.e., microbial nanowires of Synechocystis have putative binding sites for As. In agreement with in silico analysis, transmission electron microscopy analysis showed that As was deposited on Synechocystis nanowires at all tested concentrations. The potential of Synechocystis nanowires to immobilize As can be further enhanced and evaluated on a large scale and thus can be applied for bioremediation studies.
Collapse
Affiliation(s)
- Sandeep Sure
- TERI-Deakin Nano biotechnology Centre, The Energy and Resources Institute Gurgaon, India
| | - M L Ackland
- Centre for Cellular & Molecular Biology, Deakin University, Melbourne VIC, Australia
| | - Aditya Gaur
- TERI-Deakin Nano biotechnology Centre, The Energy and Resources Institute Gurgaon, India
| | - Priyanka Gupta
- TERI-Deakin Nano biotechnology Centre, The Energy and Resources Institute Gurgaon, India
| | - Alok Adholeya
- TERI-Deakin Nano biotechnology Centre, The Energy and Resources Institute Gurgaon, India
| | - Mandira Kochar
- TERI-Deakin Nano biotechnology Centre, The Energy and Resources Institute Gurgaon, India
| |
Collapse
|
7
|
Monney NPA, Bally T, Yamamoto T, Glass RS. Spectroscopic Evidence for Through-Space Arene–Sulfur–Arene Bonding Interaction in m-Terphenyl Thioether Radical Cations. J Phys Chem A 2015; 119:12990-8. [DOI: 10.1021/acs.jpca.5b09665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Thomas Bally
- Department
of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Takuhei Yamamoto
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Richard S. Glass
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|