1
|
Xu G, Bao Y, Zhang Y, Xiang X, Luo H, Guo X. Applying Machine Learning and SERS for Precise Typing of DNA Secondary Structures. Anal Chem 2024; 96:17109-17117. [PMID: 39413285 DOI: 10.1021/acs.analchem.4c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been demonstrated as an effective method for elucidating secondary structural characteristics of DNA. However, the inherent complexity of the DNA conformation and the lack of SERS samples pose challenges for identifying numerous secondary structures. To address these issues, a synergistic method integrating machine learning with SERS was proposed so as to analyze the SERS spectra of 54 well-defined conformational oligonucleotides, namely, G-quadruplex (G4), i-motif (iM), double-strand (DS), and single-strand (SS) configurations. Principal component analysis (PCA) effectively segregated the oligonucleotides into three distinct conformational groups (G4s, iMs, and others). Furthermore, linear discriminant analysis (LDA), K-nearest neighbor (KNN), and support vector machine (SVM) approaches were utilized to improve the typing accuracy of 54 trained sequences. This enabled the correct classification of the structures of five untrained sequences, as well as the identification of the predominant conformations including G4, iM, and DS formed by two complementary G-rich and C-rich sequences in acidic and neutral pH conditions. The results of this study demonstrated the potential of the proposed methodology for rapid screening and prediction of secondary DNA conformations.
Collapse
Affiliation(s)
- Guantong Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ying Bao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yujing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hong Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
2
|
Contreras-Sepúlveda W, Villegas-Martínez BM, Gesing S, Sánchez-Mondragón JJ, Sánchez-Pérez JC, Vidales-Basurto CA, Escobedo-Alatorre JJ, Torres-Palencia AD, Palillero-Sandoval O, Licea-Rodriguez J, Lozano-Crisóstomo N, García-Melgarejo JC, Palacios-Perez EN. Unleashing quantum algorithms with Qinterpreter: bridging the gap between theory and practice across leading quantum computing platforms. PeerJ Comput Sci 2024; 10:e2318. [PMID: 39650441 PMCID: PMC11623003 DOI: 10.7717/peerj-cs.2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/20/2024] [Indexed: 12/11/2024]
Abstract
Quantum computing is a rapidly emerging and promising field with the potential to transform various research domains including drug design, network technologies, and sustainable energy solutions. Due to the inherent complexity and divergence from classical computing, several major quantum computing libraries have been developed to implement quantum algorithms, namely IBM Qiskit, Amazon Braket, Cirq, PyQuil, and PennyLane. These libraries enable quantum simulations on classical computers and execution on corresponding quantum hardware, such as Qiskit programs on IBM quantum computers. Despite the variations among these platforms, the core concepts remain the same. One notable challenge is the absence of a Python-based quantum interpreter to connect these five frameworks, a gap that remains to be fully addressed. In response, our work introduces a tool called Qinterpreter, accessible through a user-friendly web interface, the Quantum Science Gateway QubitHub, which operates alongside Jupyter Notebooks. Built using the Python Object-Oriented Programming System, Qinterpreter unifies the five well-known quantum libraries into a single framework. Designed as an educational tool for students and researchers entering the quantum domain, Qinterpreter enables the straightforward development and execution of quantum circuits across such platforms. This work highlights the quantum programming versatility and accessibility of Qinterpreter and underscores our ultimate goal of pervading Quantum Computing through younger, less specialized, and diverse cultural and national communities.
Collapse
Affiliation(s)
| | | | - Sandra Gesing
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, United States
| | | | - Juan Carlos Sánchez-Pérez
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Heroica Puebla de Zaragoza, Puebla, México
| | | | - J. Jesús Escobedo-Alatorre
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | | | - Omar Palillero-Sandoval
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Jacob Licea-Rodriguez
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Néstor Lozano-Crisóstomo
- Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Coahuila, Torreón, Coahuila, México
| | | | | |
Collapse
|
3
|
Singh A, Winnerdy FR, Avila CA, Nogues C, Phan AT, Heddi B. Interlocking G-Quadruplexes Using a G-Triad•G Connection: Implications for G-Wire Assembly. J Am Chem Soc 2024; 146:26034-26040. [PMID: 39276075 DOI: 10.1021/jacs.4c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
G-quadruplexes are noncanonical structures of nucleic acids formed mainly by G-rich sequences and play crucial roles in important cellular processes. They are also increasingly used in nanotechnology for their valuable properties. Various unexpected structures of G-quadruplexes have been solved recently, including a stable G-quadruplex lacking one guanine in the G-tetrad core, harboring a vacant site. In this study, we demonstrate the interlocking of two intramolecular G-quadruplexes: one containing a vacant site (4n - 1) and the other with an unbound guanine (4n + 1). These G-quadruplexes interact through a G-triad-G connection with unprecedented 5'-3' stacking. Using these interconnection properties, we have identified a sequence capable of self-assembling into G-wires in K+ solutions with potential nanotechnological applications.
Collapse
Affiliation(s)
- Abhishek Singh
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Constanza Avendaño Avila
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 4 Avenue des sciences, Gif-sur-Yvette 91190, France
| | - Claude Nogues
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 4 Avenue des sciences, Gif-sur-Yvette 91190, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Brahim Heddi
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 4 Avenue des sciences, Gif-sur-Yvette 91190, France
| |
Collapse
|
4
|
Zhang Q, Liu A, Song X, Xu S, Da L, Lin D, Jiang C. Ultrasensitive Fluorescent Microsensors Based on Aptamers Modified with SYBR Green I for Visual Quantitative Detection of Organophosphate Pesticides. Anal Chem 2024; 96:9636-9642. [PMID: 38808501 DOI: 10.1021/acs.analchem.4c01307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Organophosphate pesticides (OPs) are widely utilized in agricultural production, and the residues threaten public health and environmental safety due to their toxicity. Herein, a novel and simple DNA aptamer-based sensor has been fabricated for the rapid, visual, and quantitative detection of profenofos and isocarbophos. The proposed DNA aptamers with a G-quadruplex spatial structure could be recognized by SYBR Green I (SG-I), resulting in strong green fluorescence emitted by SG-I. The DNA aptamers exhibit a higher specific binding ability to target OP molecules through aromatic ring stacking, disrupting the interaction between SG-I and DNA aptamers to induce green fluorescence quenching. Meanwhile, the fluorescence wavelength of G-quadruplex fluorescence emission peaks changes, accompanied by an obvious fluorescence variation from green to blue. SG-I-modified aptasensor without any additive reference fluorescence units for use in multicolor fluorescence assay for selective monitoring of OPs was first developed. The developed aptasensor provides a favorable linear range from 0 to 200 nM, with a low detection limit of 2.48 and 3.01 nM for profenofos and isocarbophos, respectively. Moreover, it offers high selectivity and stability in real sample detection with high recoveries. Then, a self-designed portable smartphone sensing platform was successfully used for quantitative result outputs, demonstrating experience in designing a neotype sensing strategy for point-of-care pesticide monitoring.
Collapse
Affiliation(s)
- Qianru Zhang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Anqi Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xin Song
- Hefei Public Security Bureau, Hefei, Anhui 230001, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Liangguo Da
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Dan Lin
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
5
|
Tevonyan LL, Beniaminov AD, Kaluzhny DN. Quenching of G4-DNA intrinsic fluorescence by ligands. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:47-56. [PMID: 38217705 DOI: 10.1007/s00249-023-01696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
G-quadruplex (G4) structures formed by the guanine-rich DNA regions exhibit several distinctive optical properties, including UV absorption and circular dichroism spectra. Some G4 DNA possess intrinsic UV fluorescence whose origin is not completely clear to date. In this work, we study the effect of TMPyP4 and Methylene Blue on the intrinsic fluorescence of the dimeric G4 DNA structure formed by two d(G3T)4 sequences. We demonstrate that binding of the ligands results in quenching of the intrinsic fluorescence, although the conformation of the G4 DNA and its dimeric structure remain preserved. The binding sites of the ligands were suggested by the photoinduced oxidation of guanines and analysis of binding isoterms. We discuss how DNA-ligand complexes can affect the intrinsic fluorescence of G4 DNA.
Collapse
Affiliation(s)
- Liana L Tevonyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Artemy D Beniaminov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
6
|
Luo Y, Granzhan A, Marquevielle J, Cucchiarini A, Lacroix L, Amrane S, Verga D, Mergny JL. Guidelines for G-quadruplexes: I. In vitro characterization. Biochimie 2023; 214:5-23. [PMID: 36596406 DOI: 10.1016/j.biochi.2022.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Besides the well-known DNA double-helix, non-canonical nucleic acid structures regulate crucial biological activities. Among these oddities, guanine-rich DNA sequences can form unusual four-stranded secondary structures called G-quadruplexes (G4s). G4-prone sequences have been found in the genomes of most species, and G4s play important roles in essential processes such as transcription, replication, genome integrity and epigenetic regulation. Here, we present a short overview of G-quadruplexes followed by a detailed description of the biophysical and biochemical methods used to characterize G4s in vitro. The principles, experimental details and possible shortcomings of each method are discussed to provide a comprehensive view of the techniques used to study these structures. We aim to provide a set of guidelines for standardizing research on G-quadruplexes; these guidelines are not meant to be a dogmatic set of rules, but should rather provide useful information on the methods currently used to study these fascinating motifs.
Collapse
Affiliation(s)
- Yu Luo
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
| | - Julien Marquevielle
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Anne Cucchiarini
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Laurent Lacroix
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Samir Amrane
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France.
| | - Jean-Louis Mergny
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
7
|
Feng H, Kwok CK. Spectroscopic analysis reveals the effect of hairpin loop formation on G-quadruplex structures. RSC Chem Biol 2022; 3:431-435. [PMID: 35441140 PMCID: PMC8984947 DOI: 10.1039/d2cb00045h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
We study and uncover the effect of hairpin structures in loops of G-quadruplexes using spectroscopic methods. Notably, we show that the sequence, structure, and position of the hairpin loop control the spectroscopic properties of long loop G-quadruplexes, and highlight that intrinsic fluorescence can be used to monitor the formation of non-canonical G-quadruplexes. This work studies the intrinsic fluorescence properties of long-loop G-quadruplexes (G4) with hairpin loop structures, revealing the unique information of G4 provided by intrinsic fluorescence compared to other spectroscopic assays.![]()
Collapse
Affiliation(s)
- Hengxin Feng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
8
|
Abstract
The intrinsic fluorescence of nucleic acids is extremely weak compared to that of the fluorescent labels used to probe their structural and functional behavior. Thus, for technical reasons, the investigation of the intrinsic DNA fluorescence was limited for a long time. But with the improvement in spectroscopic techniques, the situation started to change around the turn of the century. During the past two decades, various factors modulating the static and dynamic properties of the DNA fluorescence have been determined; it was shown that, under certain conditions, quantum yields may be up 100 times higher than what was known so far. The ensemble of these studies opened up new paths for the development of label-free DNA fluorescence for biochemical applications. In parallel, these studies have shed new light on the primary processes leading to photoreactions that damage DNA when it absorbs UV radiation.We have been studying a variety of DNA systems, ranging from the monomeric nucleobases to double-stranded and four-stranded structures using fluorescence spectroscopy. The specificity of our work resides in the quantitative association of the steady-state fluorescence spectra with time-resolved data recorded from the femtosecond to the nanosecond timescales, made possible by the development of specific methodologies.Among others, our fluorescence studies provide information on the energy and the polarization of electronic transitions. These are valuable indicators for the evolution of electronic excitations in complex systems, where the electronic coupling between chromophores plays a key role. Highlighting collective effects that originate from electronic interactions in DNA multimers is the objective of the present Account.In contrast to the monomeric chromophores, whose fluorescence decays within a few picoseconds, that of DNA multimers persists on the nanosecond timescale. Even if long-lived states represent only a small fraction of electronic excitations, they may be crucial to the DNA photoreactivity because the probability to reach reactive conformations increases over time, owing to the incessant structural dynamics of nucleic acids.Our femtosecond studies have revealed that an ultrafast excitation energy transfer takes place among the nucleobases within duplexes and G-quadruplexes. Such an ultrafast process is possible when collective states are populated directly upon photon absorption. At much longer times, we discovered an unexpected long-lived high-energy emission stemming from what was coined "HELM excitons". These collective states, whose emission increases with the duplex size, could be responsible for the delayed fluorescence of ππ* states observed for genomic DNA.Most studies dealing with excited-state relaxation in DNA were carried out with excitation in the absorption band peaking at around 260 nm. We went beyond this and also performed the first time-resolved study with excitation in the UVA spectral range, where a very weak absorption tail is present. The resulting fluorescence decays are much slower and the fluorescence quantum yields are much higher than for UVC excitation. We showed that the base pairing of DNA strands enhances the UVA fluorescence and, in parallel, increases the photoreactivity because it modifies the nature of the involved collective excited states.
Collapse
Affiliation(s)
- Thomas Gustavsson
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Milovanović B, Stanković IM, Petković M, Etinski M. Modulating Excited Charge-Transfer States of G-Quartet Self-Assemblies by Earth Alkaline Cations and Hydration. J Phys Chem A 2020; 124:8101-8111. [DOI: 10.1021/acs.jpca.0c05022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Branislav Milovanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia
| | - Ivana M. Stanković
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade 11000, Serbia
| | - Milena Petković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia
| | - Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia
| |
Collapse
|
10
|
Zuffo M, Gandolfini A, Heddi B, Granzhan A. Harnessing intrinsic fluorescence for typing of secondary structures of DNA. Nucleic Acids Res 2020; 48:e61. [PMID: 32313962 PMCID: PMC7293009 DOI: 10.1093/nar/gkaa257] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
High-throughput investigation of structural diversity of nucleic acids is hampered by the lack of suitable label-free methods, combining fast and cheap experimental workflow with high information content. Here, we explore the use of intrinsic fluorescence emitted by nucleic acids for this scope. After a preliminary assessment of suitability of this phenomenon for tracking conformational changes of DNA, we examined steady-state emission spectra of an 89-membered set of oligonucleotides with reported conformation (G-quadruplexes (G4s), i-motifs, single- and double-strands) by means of multivariate analysis. Principal component analysis of emission spectra resulted in successful clustering of oligonucleotides into three corresponding conformational groups, without discrimination between single- and double-stranded structures. Linear discriminant analysis was exploited for the assessment of novel sequences, allowing the evaluation of their G4-forming propensity. Our method does not require any labeling agent or dye, avoiding the related bias, and can be utilized to screen novel sequences of interest in a high-throughput and cost-effective manner. In addition, we observed that left-handed (Z-) G4 structures were systematically more fluorescent than most other G4 structures, almost reaching the quantum yield of 5'-d[(G3T)3G3]-3' (G3T, the most fluorescent G4 structure reported to date).
Collapse
Affiliation(s)
- Michela Zuffo
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France.,CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France
| | - Aurélie Gandolfini
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France.,CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France
| | - Brahim Heddi
- Laboratoire de Biologie et de Pharmacologie Appliquée, CNRS UMR8113, École Normale Supérieure Paris-Saclay, F-94235 Cachan, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France.,CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
11
|
Martínez-Fernández L, Esposito L, Improta R. Studying the excited electronic states of guanine rich DNA quadruplexes by quantum mechanical methods: main achievements and perspectives. Photochem Photobiol Sci 2020; 19:436-444. [DOI: 10.1039/d0pp00065e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calculations are providing more and more useful insights into the interaction between light and DNA quadruplexes.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química
- Facultad de Ciencias
- Modulo 13 Universidad Autónoma de Madrid
- Campus de Excelencia UAM-CSIC Cantoblanco
- 28049 Madrid
| | | | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini
- CNR
- I-80134 Napoli
- Italy
| |
Collapse
|
12
|
Winnerdy FR, Bakalar B, Maity A, Vandana JJ, Mechulam Y, Schmitt E, Phan AT. NMR solution and X-ray crystal structures of a DNA molecule containing both right- and left-handed parallel-stranded G-quadruplexes. Nucleic Acids Res 2019; 47:8272-8281. [PMID: 31216034 PMCID: PMC6735952 DOI: 10.1093/nar/gkz349] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/16/2019] [Accepted: 06/13/2019] [Indexed: 01/29/2023] Open
Abstract
Analogous to the B- and Z-DNA structures in double-helix DNA, there exist both right- and left-handed quadruple-helix (G-quadruplex) DNA. Numerous conformations of right-handed and a few left-handed G-quadruplexes were previously observed, yet they were always identified separately. Here, we present the NMR solution and X-ray crystal structures of a right- and left-handed hybrid G-quadruplex. The structure reveals a stacking interaction between two G-quadruplex blocks with different helical orientations and displays features of both right- and left-handed G-quadruplexes. An analysis of loop mutations suggests that single-nucleotide loops are preferred or even required for the left-handed G-quadruplex formation. The discovery of a right- and left-handed hybrid G-quadruplex further expands the polymorphism of G-quadruplexes and is potentially useful in designing a left-to-right junction in G-quadruplex engineering.
Collapse
Affiliation(s)
- Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Blaž Bakalar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - J Jeya Vandana
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yves Mechulam
- Laboratoire de Biochimie, UMR 7654, CNRS, Ecole Polytechnique, Palaiseau 91128, France
| | - Emmanuelle Schmitt
- Laboratoire de Biochimie, UMR 7654, CNRS, Ecole Polytechnique, Palaiseau 91128, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
13
|
Lightfoot HL, Hagen T, Tatum NJ, Hall J. The diverse structural landscape of quadruplexes. FEBS Lett 2019; 593:2083-2102. [PMID: 31325371 DOI: 10.1002/1873-3468.13547] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
G-quadruplexes are secondary structures formed in G-rich sequences in DNA and RNA. Considerable research over the past three decades has led to in-depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G-quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson-Crick-based secondary structures, most G-quadruplexes display highly redundant structural characteristics. However, numerous reports of G-quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G-quadruplex scaffolds. This review addresses G-quadruplex formation and structure, including recent reports of non-canonical G-quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex-RNA targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Natalie J Tatum
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| |
Collapse
|
14
|
Chan CY, Umar MI, Kwok CK. Spectroscopic analysis reveals the effect of a single nucleotide bulge on G-quadruplex structures. Chem Commun (Camb) 2019; 55:2616-2619. [PMID: 30724299 DOI: 10.1039/c8cc09929d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Here we investigate and reveal the effect of bulge position and bulge identity on G-quadruplexes using label-free spectroscopic techniques. Notably, we report significant differences in the spectroscopic features of bulged DNA and RNA G-quadruplexes, and demonstrate that intrinsic fluorescence can be generally used to detect the formation of canonical and non-canonical G-quadruplexes.
Collapse
Affiliation(s)
- Chun-Yin Chan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| | | | | |
Collapse
|
15
|
Haase L, Karg B, Weisz K. Manipulating DNA G-Quadruplex Structures by Using Guanosine Analogues. Chembiochem 2019; 20:985-993. [PMID: 30511814 DOI: 10.1002/cbic.201800642] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 12/22/2022]
Abstract
The ability to control the folding topology of DNA G-quadruplexes allows for rational design of quadruplex-based scaffolds for potential use in various therapeutic and technological applications. By exploiting the distinct conformational properties of some base- and sugar-modified guanosine surrogates, conformational transitions can be induced through their judicious incorporation at specific sites in the quadruplex core. Changes may involve tetrad polarity inversions with conservation of the global fold or complete refolding to new topologies. Reliable predictions relating to low-energy conformers formed upon specific chemical perturbations of the system and the rational design of modified sequences suffer from our still limited understanding of the subtle interplay of various favorable and unfavorable interactions within a particular quadruplex scaffold. However, aided by an increasing number of systematic substitution experiments and high-resolution structures of modified quadruplex variants, critical interactions, in addition to glycosidic bond angle propensities, are starting to emerge as important contributors to modification-driven quadruplex refolding.
Collapse
Affiliation(s)
- Linn Haase
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Beatrice Karg
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| |
Collapse
|
16
|
Dvorkin SA, Karsisiotis AI, Webba da Silva M. Encoding canonical DNA quadruplex structure. SCIENCE ADVANCES 2018; 4:eaat3007. [PMID: 30182059 PMCID: PMC6118410 DOI: 10.1126/sciadv.aat3007] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/24/2018] [Indexed: 05/24/2023]
Abstract
The main challenge in DNA quadruplex design is to encode a three-dimensional structure into the primary sequence, despite its multiple, repetitive guanine segments. We identify and detail structural elements describing all 14 feasible canonical quadruplex scaffolds and demonstrate their use in control of design. This work outlines a new roadmap for implementation of targeted design of quadruplexes for material, biotechnological, and therapeutic applications.
Collapse
Affiliation(s)
- Scarlett A. Dvorkin
- School of Pharmacy and Pharmaceutical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Andreas I. Karsisiotis
- School of Pharmacy and Pharmaceutical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | | |
Collapse
|
17
|
The estimation of H-bond and metal ion-ligand interaction energies in the G-Quadruplex ⋯ Mn+ complexes. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Sha R, Xiang L, Liu C, Balaeff A, Zhang Y, Zhang P, Li Y, Beratan DN, Tao N, Seeman NC. Charge splitters and charge transport junctions based on guanine quadruplexes. NATURE NANOTECHNOLOGY 2018; 13:316-321. [PMID: 29483600 DOI: 10.1038/s41565-018-0070-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.
Collapse
Affiliation(s)
- Ruojie Sha
- Department of Chemistry, New York University, New York, NY, USA
| | - Limin Xiang
- Biodesign Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Chaoren Liu
- Departments of Chemistry, Duke University, Durham, NC, USA
| | - Alexander Balaeff
- Departments of Chemistry, Duke University, Durham, NC, USA
- Nanoscience Technology Center & Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Yuqi Zhang
- Departments of Chemistry, Duke University, Durham, NC, USA
| | - Peng Zhang
- Departments of Chemistry, Duke University, Durham, NC, USA
| | - Yueqi Li
- Biodesign Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - David N Beratan
- Departments of Chemistry, Duke University, Durham, NC, USA.
- Department of Biochemistry, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
| | - Nongjian Tao
- Biodesign Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, NY, USA.
| |
Collapse
|
19
|
Poudel L, Steinmetz NF, French RH, Parsegian VA, Podgornik R, Ching WY. Implication of the solvent effect, metal ions and topology in the electronic structure and hydrogen bonding of human telomeric G-quadruplex DNA. Phys Chem Chem Phys 2018; 18:21573-85. [PMID: 27425864 DOI: 10.1039/c6cp04357g] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We present a first-principles density functional study elucidating the effects of solvent, metal ions and topology on the electronic structure and hydrogen bonding of 12 well-designed three dimensional G-quadruplex (G4-DNA) models in different environments. Our study shows that the parallel strand structures are more stable in dry environments and aqueous solutions containing K(+) ions within the tetrad of guanine but conversely, that the anti-parallel structure is more stable in solutions containing the Na(+) ions within the tetrad of guanine. The presence of metal ions within the tetrad of the guanine channel always enhances the stability of the G4-DNA models. The parallel strand structures have larger HOMO-LUMO gaps than antiparallel structures, which are in the range of 0.98 eV to 3.11 eV. Partial charge calculations show that sugar and alkali ions are positively charged whereas nucleobases, PO4 groups and water molecules are all negatively charged. Partial charges on each functional group with different signs and magnitudes contribute differently to the electrostatic interactions involving G4-DNA and favor the parallel structure. A comparative study between specific pairs of different G4-DNA models shows that the Hoogsteen OH and NH hydrogen bonds in the guanine tetrad are significantly influenced by the presence of metal ions and water molecules, collectively affecting the structure and the stability of G4-DNA.
Collapse
Affiliation(s)
- Lokendra Poudel
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Roger H French
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - V Adrian Parsegian
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Rudolf Podgornik
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA and Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia and Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| |
Collapse
|
20
|
Durec M, Zaccaria F, Fonseca Guerra C, Marek R. Modified Guanines as Constituents of Smart Ligands for Nucleic Acid Quadruplexes. Chemistry 2016; 22:10912-22. [PMID: 27385491 DOI: 10.1002/chem.201601608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 01/25/2023]
Abstract
Repetitive guanine-rich nucleic acid sequences play a crucial role in maintaining genome stability and the cell life cycle and represent potential targets for regulatory drugs. Recently, it has been demonstrated that guanine-based ligands with a porphyrin core can be used as markers of G-quadruplex assemblies in cell tissues. Herein, model systems of guanine-based ligands are explored by DFT methods. The energies of formation of modified guanine tetrads and those of modified tetrads stacked on the top of natural guanine tetrads have been calculated. The interaction energy has been decomposed into contributions from hydrogen bonding, stacking, and ion coordination and a twist-rise potential energy scan has been performed to find the individual local minima. Energy decomposition analysis reveals the impact of various substituents (F, Cl, Br, I, Me, NMe2 ) on individual energy terms. In addition, cooperative reinforcement in forming the modified and stacked tetrads, as well as the frontier orbitals participating in the hydrogen-bonding framework involving the HOMO-LUMO gap between the occupied σHOMO on the proton-accepting C=O and =N- groups and unoccupied σLUMO on the N-H groups, has been studied. The investigated systems are demonstrated to have a potential in ligand development, mainly due to stacking enhancement compared with natural guanine, which is used as a reference.
Collapse
Affiliation(s)
- Matúš Durec
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5A4, 62500, Brno, Czech Republic.,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5A4, 62500, Brno, Czech Republic
| | - Francesco Zaccaria
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5A4, 62500, Brno, Czech Republic. .,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5A4, 62500, Brno, Czech Republic.
| |
Collapse
|
21
|
Sherlock ME, Rumble CA, Kwok CK, Breffke J, Maroncelli M, Bevilacqua PC. Steady-State and Time-Resolved Studies into the Origin of the Intrinsic Fluorescence of G-Quadruplexes. J Phys Chem B 2016; 120:5146-58. [PMID: 27267433 DOI: 10.1021/acs.jpcb.6b03790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretches of guanines in DNA and RNA can fold into guanine quadruplex structures (GQSs). These structures protect telomeres in DNA and regulate gene expression in RNA. GQSs have an intrinsic fluorescence that is sensitive to different parameters, including loop sequence and length. However, the dependence of GQS fluorescence on solution and sequence parameters and the origin of this fluorescence are poorly understood. Herein we examine effects of dangling nucleotides and cosolute conditions on GQS fluorescence using both steady-state and time-resolved fluorescence spectroscopy. The quantum yield of dGGGTGGGTGGGTGGG, termed "dG3T", is found to be modest at ∼2 × 10(-3). Nevertheless, dG3T and its variants are significantly brighter than the common nucleic acid fluorophore 2-aminopurine (2AP) largely due to their sizable extinction coefficients. Dangling 5'-end nucleotides generally reduce emission and blue-shift the resultant spectrum, whereas dangling 3'-end nucleotides slightly enhance fluorescence, particularly on the red side of the emission band. Time-resolved fluorescence decays are broadly distributed in time and require three exponential components for accurate fits. Time-resolved emission spectra suggest the presence of two emitting populations centered at ∼330 and ∼390 nm, with the redder component being a well-defined long-lived (∼1 ns) entity. Insights into GQS fluorescence obtained here should be useful in designing brighter intrinsic RNA and DNA quadruplexes for use in label-free biotechnological applications.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christopher A Rumble
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Chun Kit Kwok
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Jens Breffke
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Mark Maroncelli
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Philip C Bevilacqua
- Department of Chemistry, ‡Center for RNA Molecular Biology, and §Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
22
|
Improta R, Santoro F, Blancafort L. Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chem Rev 2016; 116:3540-93. [PMID: 26928320 DOI: 10.1021/acs.chemrev.5b00444] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The photophysics and photochemistry of DNA is of great importance due to the potential damage of the genetic code by UV light. Quantum mechanical studies have played a key role in interpretating the results of modern time-resolved pump-probe spectroscopy, and in elucidating the main photoactivated reactive paths. This review provides a concise, complete picture of the computational studies carried out, approximately, in the past decade. We start with an overview of the photophysics of the nucleobases in the gas phase and in solution. We discuss the proposed mechanisms for ultrafast decay to the ground state, that involve conical intersections, consider the role of triplet states, and analyze how the solvent modulates the photophysics. Then we move to larger systems, from dinucleotides to single- and double-stranded oligonucleotides. We focus on the possible role of charge transfer and delocalized or excitonic states in the photophysics of these systems and discuss the main photochemical paths. We finish with an outlook on the current challenges in the field and future directions of research.
Collapse
Affiliation(s)
- Roberto Improta
- Istituto di Biostrutture Biommagini (IBB-CNR), CNR-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134, Napoli, Italy
| | - Fabrizio Santoro
- Area della Ricerca di Pisa, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), CNR-Consiglio Nazionale delle Ricerche , Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi , 17071 Girona, Spain
| |
Collapse
|
23
|
Changenet-Barret P, Gustavsson T, Markovitsi D, Manet I. Ultrafast Electron Transfer in Complexes of Doxorubicin with Human Telomeric G-Quadruplexes and GC Duplexes Probed by Femtosecond Fluorescence Spectroscopy. Chemphyschem 2016; 17:1264-72. [PMID: 26790038 DOI: 10.1002/cphc.201501091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 01/23/2023]
Abstract
Doxorubicin (DOX) is a natural anthracycline widely used in chemotherapy; its combined application as a chemotherapeutic and photodynamic agent has been recently proposed. In this context, understanding the photoinduced properties of DOX complexes with nucleic acids is crucial. Herein, the study of photoinduced electron transfer in DOX-DNA complexes by femtosecond fluorescence spectroscopy is reported. The behaviour of complexes with two model DNA structures, a G-quadruplex (G4) formed by the human telomeric sequence (Tel21) and a d(GC) duplex, is compared. The DOX affinity for these two sequences is similar. Although both 1:1 and 2:1 stoichiometries have been reported for DOX-G4 complexes, only 1:1 complexes form with the duplex. The steady-state absorption indicates a strong binding interaction with the duplex due to drug intercalation between the GC base pairs. In contrast, the interaction of DOX with Tel21 is much weaker and arises from drug binding on the G4 external faces at two independent binding sites. As observed for DOX-d(GC) complexes, fluorescence of the drug in the first binding site of Tel21 exhibits decays within a few picoseconds following a biphasic pattern; this is attributed to the existence of two drug conformations. The fluorescence of the drug in the second binding site of Tel21 shows slower decays within 150 ps. These timescales are consistent with electron transfer from the guanines to the excited drug, as favoured by the lower oxidation potential of the stacked guanines of G4 with respect to those in the duplex.
Collapse
Affiliation(s)
- Pascale Changenet-Barret
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191, Gif-sur-Yvette, France. .,LOB, CNRS, INSERM, Université Paris Saclay, 91128, Palaiseau, France.
| | - Thomas Gustavsson
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191, Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris Saclay, F-91191, Gif-sur-Yvette, France
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività, CNR, via P. Gobetti 101, 40129, Bologna, Italy.
| |
Collapse
|
24
|
Cheong VV, Lech CJ, Heddi B, Phan AT. Inverting the G-Tetrad Polarity of a G-Quadruplex by Using Xanthine and 8-Oxoguanine. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Cheong VV, Lech CJ, Heddi B, Phan AT. Inverting the G-Tetrad Polarity of a G-Quadruplex by Using Xanthine and 8-Oxoguanine. Angew Chem Int Ed Engl 2015; 55:160-3. [PMID: 26563582 DOI: 10.1002/anie.201507034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/04/2015] [Indexed: 01/24/2023]
Abstract
G-quadruplexes are four-stranded nucleic acid structures that are built from consecutively stacked guanine tetrad (G-tetrad) assemblies. The simultaneous incorporation of two guanine base lesions, xanthine (X) and 8-oxoguanine (O), within a single G-tetrad of a G-quadruplex was recently shown to lead to the formation of a stable G⋅G⋅X⋅O tetrad. Herein, a judicious introduction of X and O into a human telomeric G-quadruplex-forming sequence is shown to reverse the hydrogen-bond polarity of the modified G-tetrad while preserving the original folding topology. The control exerted over G-tetrad polarity by joint X⋅O modification will be valuable for the design and programming of G-quadruplex structures and their properties.
Collapse
Affiliation(s)
- Vee Vee Cheong
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)
| | - Christopher Jacques Lech
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)
| | - Brahim Heddi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore).
| |
Collapse
|
26
|
Li Y, Sugiyama H. Photoreactivity of the linker region of two consecutive G-quadruplexes formed by human telomeric DNA. Chem Commun (Camb) 2015; 51:8861-4. [DOI: 10.1039/c5cc01812a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The photoreaction method was applied to probe the linker region of two consecutive G-quadruplexes.
Collapse
Affiliation(s)
- Yue Li
- Department of Chemistry, Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
| |
Collapse
|