1
|
Zhu Z, Feng Y, Li W. The state-to-state dynamics of the N + NH( 3Σ −) → N 2(X 1 Σ g+) + H reaction: based on a new global potential energy surface. Mol Phys 2023. [DOI: 10.1080/00268976.2022.2162455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ziliang Zhu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, People’s Republic of China
- Key Laboratory for Structure and Environment Disaster Preventing of Agriculture Greenhouse, Weifang University of Science and Technology, Shouguang, People’s Republic of China
- College of General Education, Weifang University of Science and Technology, Shouguang, People’s Republic of China
| | - Yinghua Feng
- College of General Education, Weifang University of Science and Technology, Shouguang, People’s Republic of China
| | - Wentao Li
- College of General Education, Weifang University of Science and Technology, Shouguang, People’s Republic of China
| |
Collapse
|
2
|
Mota VC, Galvão BRL, Coura DVB, Varandas AJC. Accurate Potential Energy Surface for Quartet State HN 2 and Interplay of N( 4S) + NH( X̃3Σ -) versus H + N 2( A3Σ u+) Reactions. J Phys Chem A 2020; 124:781-789. [PMID: 31922752 DOI: 10.1021/acs.jpca.9b09467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A global potential energy surface for the lowest quartet state of HN2 is reported for the first time from accurate multireference ab initio calculations extrapolated to the complete basis set limit using the double many-body expansion method. All its stationary points are characterized, with the lowest quartet of HN2 predicted to have a bent global minimum 36 kcal mol-1 below the N(4S) + NH(X̃3Σ-) asymptote, from which it is barrierlessly achievable. The entire set of calculated ab initio points has been fitted for energies up to 1000 kcal mol-1 above the global minimum with an RMSD of 0.89 kcal mol-1, a gap comprising all identified stationary points. Special care is taken in modeling the involved long-range forces and cusps caused by crossing seams. The novel PES prompts for the calculation of rate constants for several unexplored reactions that are relevant for combustion, plasma, and atmospheric chemistry.
Collapse
Affiliation(s)
- V C Mota
- Departamento de Fı́sica , Universidade Federal do Espı́rito Santo , 29075-910 Vitória , Brazil
| | - B R L Galvão
- Departamento de Quı́mica , Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG , Av. Amazonas 5253 , 30421-169 Belo Horizonte , Minas Gerais , Brazil
| | - D V B Coura
- Departamento de Fı́sica , Universidade Federal do Espı́rito Santo , 29075-910 Vitória , Brazil
| | - A J C Varandas
- School of Physics and Physical Engineering , Qufu Normal University , 273165 Qufu , China.,Coimbra Chemistry Center and Chemistry Department , University of Coimbra , 3004-535 Coimbra , Portugal
| |
Collapse
|
3
|
Rocha CMR, Varandas AJC. Accurate CHIPR Potential Energy Surface for the Lowest Triplet State of C 3. J Phys Chem A 2019; 123:8154-8169. [PMID: 31184891 DOI: 10.1021/acs.jpca.9b03194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first global ab initio-based potential energy surface (PES) for ground-state triplet C3(3A') based on accurate energies extrapolated to the complete basis set (CBS) limit, and using the combined-hyperbolic-inverse-power-representation method for the analytical modeling. By relying on a cost-effective CBS(D,T) protocol, we ensure that the final form reproduces all topographical features of the PES, including its cyclic-linear isomerization barrier, with CBS(5,6)-quality. To partially account for the incompleteness of the N-electron basis and other minor effects, the available accurate experimental data on the relevant diatomics were used to obtain direct-fit curves that replace the theoretical ones in the many-body expansion. Besides describing properly long-range interactions at all asymptotic channels and permutational symmetry by built-in construction, the PES reported here reproduces the proper exothermicities at dissociation regions as well as the spectroscopy of the diatomic fragments. Bound vibrational state calculations in both linear and cyclic isomers have also been carried out, unveiling a good match of the available data on C3(ã 3Πu), while assisting with IR band positions for C3(3A2') that may serve as a guide for its laboratory and astronomical detection.
Collapse
Affiliation(s)
- C M R Rocha
- Coimbra Chemistry Centre and Chemistry Department , University of Coimbra , 3004-535 Coimbra , Portugal
| | - A J C Varandas
- Coimbra Chemistry Centre and Chemistry Department , University of Coimbra , 3004-535 Coimbra , Portugal.,School of Physics and Physical Engineering , Qufu Normal University , Qufu 273165 , P. R. China
| |
Collapse
|
4
|
Borges Y, Galvão B, Mota V, Varandas A. A trajectory surface hopping study of N2A3Σu+ quenching by H atoms. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Yarkony DR, Xie C, Zhu X, Wang Y, Malbon CL, Guo H. Diabatic and adiabatic representations: Electronic structure caveats. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Fedorov DA, Levine BG. A discontinuous basis enables numerically exact solution of the Schrödinger equation around conical intersections in the adiabatic representation. J Chem Phys 2019; 150:054102. [PMID: 30736673 DOI: 10.1063/1.5058268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Solving the vibrational Schrödinger equation in the neighborhood of conical intersections in the adiabatic representation is a challenge. At the intersection point, first- and second-derivative nonadiabatic coupling matrix elements become singular, with the singularity in the second-derivative coupling (diagonal Born-Oppenheimer correction) being non-integrable. These singularities result from discontinuities in the vibronic functions associated with the individual adiabatic states, and our group has recently argued that these divergent matrix elements cancel when discontinuous adiabatic vibronic functions sum to a continuous total nonadiabatic wave function. Here we describe the realization of this concept: a novel scheme for the numerically exact solution of the Schrödinger equation in the adiabatic representation. Our approach is based on a basis containing functions that are discontinuous at the intersection point. We demonstrate that the individual adiabatic nuclear wave functions are themselves discontinuous at the intersection point. This proves that discontinuous basis functions are essential to any tractable method that solves the Schrödinger equation around conical intersections in the adiabatic representation with high numerical precision. We establish that our method provides numerically exact results by comparison to reference calculations performed in the diabatic representation. In addition, we quantify the energetic error associated with constraining the density to be zero at the intersection point, a natural approximation. Prospects for extending the present treatment of a two-dimensional model to systems of higher dimensionality are discussed.
Collapse
Affiliation(s)
- Dmitry A Fedorov
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Benjamin G Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
7
|
Liu M, Chen X, Grofe A, Gao J. Diabatic States at Construction (DAC) through Generalized Singular Value Decomposition. J Phys Chem Lett 2018; 9:6038-6046. [PMID: 30277783 DOI: 10.1021/acs.jpclett.8b02472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A procedure, called generalized diabatic-at-construction (GDAC), is presented to transform adiabatic potential energy surfaces into a diabatic representation by generalized singular value decomposition. First, we use a set of localized, valence bond-like configuration state functions, called DAC, as the basis states. Then, the adiabatic ground and relevant excited states are determined using multistate density functional theory (MSDFT). GDAC differs in the opposite direction from traditional approaches based on adiabatic-to-diabatic transformation with certain property restraints. The method is illustrated with applications to a model first-order bond dissociation reaction of CH3OCH2Cl polarized by a solvent molecule, the ground- and first-excited-state potential energy surfaces near the minimum conical intersection for the ammonia dimer photodissociation, and the multiple avoided curve crossings in the dissociation of lithium hydride. The GDAC diabatization method may be useful for defining charge-localized states in studies of electron transfer and proton-coupled electron transfer reactions in proteins.
Collapse
Affiliation(s)
- Meiyi Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun , Jilin Province 130023 , China
| | - Xin Chen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun , Jilin Province 130023 , China
| | - Adam Grofe
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun , Jilin Province 130023 , China
| | - Jiali Gao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun , Jilin Province 130023 , China
- Department of Chemistry and Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
8
|
Xie C, Zhu X, Yarkony DR, Guo H. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices. J Chem Phys 2018; 149:144107. [DOI: 10.1063/1.5054310] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Changjian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Xiaolei Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David R. Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
9
|
|
10
|
Rocha CMR, Varandas AJC. Multiple conical intersections in small linear parameter Jahn-Teller systems: the DMBE potential energy surface of ground-state C 3 revisited. Phys Chem Chem Phys 2018; 20:10319-10331. [PMID: 29610812 DOI: 10.1039/c7cp06656b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new single-sheeted DMBE potential energy surface for ground-state C3 is reported. The novel analytical form accurately describes the three symmetry-equivalent C2v disjoint seams, in addition to the symmetry-required D3h one, over the entire configuration space. The present formalism warrants by built-in construction the confluence of the above crossings, and the rotation-in-plane of the C2v seams when the perimeter of the molecule fluctuates. Up to 1050 ab initio energies have been employed in the calibration procedure, of which 421 map the loci of intersection. The calculated energies have been scaled to account for the incompleteness of the basis set and truncation of the MRCI expansion, and fitted analytically with chemical accuracy. The novel form is shown to accurately mimic the region defined by the 4 conical intersections, while exhibiting similar attributes to the previously reported one [J. Chem. Phys., 2015, 143, 074302] at the regions of configuration space away from the crossing seams. Despite being mainly addressed to C3, the present approach should be applicable to adiabatic PESs of any X3 system experiencing similar topological attributes, in particular the small-linear-parameter Jahn-Teller molecules.
Collapse
Affiliation(s)
- C M R Rocha
- Departamento de Química, and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal.
| | | |
Collapse
|
11
|
Grofe A, Qu Z, Truhlar DG, Li H, Gao J. Diabatic-At-Construction Method for Diabatic and Adiabatic Ground and Excited States Based on Multistate Density Functional Theory. J Chem Theory Comput 2017; 13:1176-1187. [PMID: 28135420 PMCID: PMC5793876 DOI: 10.1021/acs.jctc.6b01176] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a diabatic-at-construction (DAC) strategy for defining diabatic states to determine the adiabatic ground and excited electronic states and their potential energy surfaces using the multistate density functional theory (MSDFT). The DAC approach differs in two fundamental ways from the adiabatic-to-diabatic (ATD) procedures that transform a set of preselected adiabatic electronic states to a new representation. (1) The DAC states are defined in the first computation step to form an active space, whose configuration interaction produces the adiabatic ground and excited states in the second step of MSDFT. Thus, they do not result from a similarity transformation of the adiabatic states as in the ATD procedure; they are the basis for producing the adiabatic states. The appropriateness and completeness of the DAC active space can be validated by comparison with experimental observables of the ground and excited states. (2) The DAC diabatic states are defined using the valence bond characters of the asymptotic dissociation limits of the adiabatic states of interest, and they are strictly maintained at all molecular geometries. Consequently, DAC diabatic states have specific and well-defined physical and chemical meanings that can be used for understanding the nature of the adiabatic states and their energetic components. Here we present results for the four lowest singlet states of LiH and compare them to a well-tested ATD diabatization method, namely the 3-fold way; the comparison reveals both similarities and differences between the ATD diabatic states and the orthogonalized DAC diabatic states. Furthermore, MSDFT can provide a quantitative description of the ground and excited states for LiH with multiple strongly and weakly avoided curve crossings spanning over 10 Å of interatomic separation.
Collapse
Affiliation(s)
- Adam Grofe
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zexing Qu
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Donald G. Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hui Li
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Jiali Gao
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Eisfeld W, Viel A. Vibronic eigenstates and the geometric phase effect in the2E″ state of NO3. J Chem Phys 2017; 146:034303. [DOI: 10.1063/1.4973983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Meek GA, Levine BG. The best of both Reps—Diabatized Gaussians on adiabatic surfaces. J Chem Phys 2016; 145:184103. [DOI: 10.1063/1.4966967] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Garrett A. Meek
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Benjamin G. Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
14
|
Galvão B, Mota V, Varandas A. Modeling cusps in adiabatic potential energy surfaces using a generalized Jahn-Teller coordinate. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Meek GA, Levine BG. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections. J Chem Phys 2016; 144:184109. [DOI: 10.1063/1.4948786] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Garrett A. Meek
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Benjamin G. Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
16
|
A practical and efficient diabatization that combines Lorentz and Laplace functions to approximate nonadiabatic coupling terms. J Chem Phys 2015; 143:194102. [DOI: 10.1063/1.4935607] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Li SL, Truhlar DG, Schmidt MW, Gordon MS. Model space diabatization for quantum photochemistry. J Chem Phys 2015; 142:064106. [DOI: 10.1063/1.4907038] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Shaohong L. Li
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Mark S. Gordon
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
18
|
Galvão BRL, Mota VC, Varandas AJC. Modeling cusps in adiabatic potential energy surfaces. J Phys Chem A 2015; 119:1415-21. [PMID: 25633429 DOI: 10.1021/jp512671q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method for modeling cusps on adiabatic potential energy surfaces without the need for any adiabatic-to-diabatic transformation is presented and shown to be successfully applied to the (2)A″ state of NO2. The more complicated case of a system with permutationally equivalent crossing seams is also examined and illustrated by considering the two first (2)A' states of the nitrogen trimer.
Collapse
Affiliation(s)
- B R L Galvão
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG , Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
19
|
Eisfeld W, Vieuxmaire O, Viel A. Full-dimensional diabatic potential energy surfaces including dissociation: The 2E″ state of NO3. J Chem Phys 2014; 140:224109. [DOI: 10.1063/1.4879655] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Zhu X, Yarkony DR. Fitting coupled potential energy surfaces for large systems: Method and construction of a 3-state representation for phenol photodissociation in the full 33 internal degrees of freedom using multireference configuration interaction determined data. J Chem Phys 2014; 140:024112. [DOI: 10.1063/1.4857335] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaolei Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David R. Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
21
|
Yang H, Ge M, Zheng Y. Adiabatic wavepacket dynamics study of the N + NH → N2+ H reaction on the ground-state potential energy surface. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Varandas AJC. Accurate combined-hyperbolic-inverse-power-representation of ab initio potential energy surface for the hydroperoxyl radical and dynamics study of O+OH reaction. J Chem Phys 2013; 138:134117. [DOI: 10.1063/1.4795826] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Varandas AJC. Combined-hyperbolic-inverse-power-representation of potential energy surfaces: A preliminary assessment for H3 and HO2. J Chem Phys 2013; 138:054120. [DOI: 10.1063/1.4788912] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Galvão BRL, Caridade PJSB, Varandas AJC. N(4S /2D)+N2: Accurateab initio-based DMBE potential energy surfaces and surface-hopping dynamics. J Chem Phys 2012; 137:22A515. [DOI: 10.1063/1.4737858] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Zhu X, Yarkony DR. Quasi-diabatic representations of adiabatic potential energy surfaces coupled by conical intersections including bond breaking: A more general construction procedure and an analysis of the diabatic representation. J Chem Phys 2012; 137:22A511. [DOI: 10.1063/1.4734315] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
NIE SHANSHAN, CHU TIANSHU. VECTOR CORRELATIONS AND PRODUCT POLARIZATIONS IN THE N(2D) + D2 → ND + D REACTIVE SYSTEM. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633612500678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The vector correlations between products and reagents of the N (2D) + D 2 reaction are investigated by employing quasi-classical trajectory (QCT) calculation on the accurate DMBE potential energy surface (PES) of the 2A″ state. Stereo-dynamic quantities, including the four generalized polarization-dependent differential cross-sections (PDDCSs), the angular distribution P(θr), the dihedral-angle distribution P(φr), as well as the product rotational angular distribution in the polar form of P(θr, φr), are calculated in the center-of-mass (CM) frame. The results indicate that the product rotational angular momentum j′ not only aligns along the y-axis, but also orients to the negative direction of the y-axis. The isotope effect in the context of chemical stereo-dynamics and influences of different versions of ground-state PESs on vector correlations are shown and discussed.
Collapse
Affiliation(s)
- SHANSHAN NIE
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - TIANSHU CHU
- Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, 266071, P. R. China
| |
Collapse
|
27
|
Zhao M, Sheng L. Product rotational angular momentum polarization in the N+NH (v=0,j=0,3,6,9)→N2+H reaction. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Zhu X, Ma J, Yarkony DR, Guo H. Computational determination of theÃstate absorption spectrum of NH3and of ND3using a new quasi-diabatic representation of the X̃ andÃstates and full six-dimensional quantum dynamics. J Chem Phys 2012; 136:234301. [DOI: 10.1063/1.4725496] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Evenhuis C, Martínez TJ. A scheme to interpolate potential energy surfaces and derivative coupling vectors without performing a global diabatization. J Chem Phys 2011; 135:224110. [DOI: 10.1063/1.3660686] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
MOTA VC, CARIDADE PJSB, VARANDAS AJC. DIABATIC ELECTRONIC MANIFOLD OF HN2(2A′) AND N + NH REACTION DYNAMICS ON ITS LOWEST ADIABAT. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633609005076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A previously reported approach [J. Chem. Phys.97:867, (1997)] to back transform the diagonal adiabats into a 2 × 2 diabatic potential matrix has been utilized to generate a global multi-sheeted form for the title system. Global adiabatic dynamics calculations carried out on the new form using the quasi-classical trajectory method yield results that lie essentially within the statistical error of similar calculations performed on the best surface reported thus far for the title reaction. This makes it suitable for future adiabatic and nonadiabatic calculations carried out either using classical or quantum methods.
Collapse
Affiliation(s)
- V. C. MOTA
- Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | | | - A. J. C. VARANDAS
- Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
31
|
Savee JD, Mann JE, Laperle CM, Continetti RE. Experimental probes of transient neutral species using dissociative charge exchange. INT REV PHYS CHEM 2011. [DOI: 10.1080/0144235x.2010.537131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Yang H, Hankel M, Varandas A, Han K. Nonadiabatic quantum dynamics calculations for the N + NH --> N(2) + H reaction. Phys Chem Chem Phys 2010; 12:9619-23. [PMID: 20607172 DOI: 10.1039/c003930f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonadiabatic quantum dynamics calculations on the two coupled potential energy surfaces (PESs) (1(2)A' and 2(2)A') and also adiabatic quantum calculations on the lowest adiabatic PES are reported for the title reaction. Reaction probabilities for total angular momenta, J, varying from 0 to 160, are calculated to obtain the integral cross section (ICS) for collision energies ranging from 0.05 to 1.0 eV. Calculations using both the close coupling and the Centrifugal Sudden (CS) approximation are carried out to evaluate the role of Coriolis coupling effects for this reaction. The results of the nonadiabatic calculations show that the nonadiabatic effects in the title reaction for the initial state of NH (v = 0, j = 0) could be neglected, at least in the collision energy range considered in this study.
Collapse
Affiliation(s)
- Huan Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | |
Collapse
|
33
|
|
34
|
Li YQ, Varandas AJC. Ab-Initio-Based Global Double Many-Body Expansion Potential Energy Surface for the Electronic Ground State of the Ammonia Molecule. J Phys Chem A 2010; 114:6669-80. [DOI: 10.1021/jp1019685] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Q. Li
- Departamento de Química, Universidade de Coimbra 3004-535 Coimbra, Portugal
| | - A. J. C. Varandas
- Departamento de Química, Universidade de Coimbra 3004-535 Coimbra, Portugal
| |
Collapse
|
35
|
Bozkaya U, Turney JM, Yamaguchi Y, Schaefer HF. The barrier height, unimolecular rate constant, and lifetime for the dissociation of HN2. J Chem Phys 2010; 132:064308. [DOI: 10.1063/1.3310285] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Savee JD, Thomas RD, Mann JE, Continetti RE. Dissociative charge exchange dynamics of HN2+ and DN2+. J Chem Phys 2009; 131:134301. [DOI: 10.1063/1.3236803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
|
38
|
Varandas AJC. Extrapolation to the complete-basis-set limit and the implications of avoided crossings: The X Σ1g+, B Δ1g, and B′ Σ1g+ states of C2. J Chem Phys 2008; 129:234103. [DOI: 10.1063/1.3036115] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|