1
|
Balli OI, Uversky VN, Durdagi S, Coskuner-Weber O. Challenges and limitations in the studies of glycoproteins: A computational chemist's perspective. Proteins 2021; 90:322-339. [PMID: 34549826 DOI: 10.1002/prot.26242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022]
Abstract
Experimenters face challenges and limitations while analyzing glycoproteins due to their high flexibility, stereochemistry, anisotropic effects, and hydration phenomena. Computational studies complement experiments and have been used in characterization of the structural properties of glycoproteins. However, recent investigations revealed that computational studies face significant challenges as well. Here, we introduce and discuss some of these challenges and weaknesses in the investigations of glycoproteins. We also present requirements of future developments in computational biochemistry and computational biology areas that could be necessary for providing more accurate structural property analyses of glycoproteins using computational tools. Further theoretical strategies that need to be and can be developed are discussed herein.
Collapse
Affiliation(s)
- Oyku Irem Balli
- Molecular Biotechnology, Turkish-German University, Istanbul, Turkey
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | | |
Collapse
|
2
|
Akbayrak IY, Caglayan SI, Ozcan Z, Uversky VN, Coskuner-Weber O. Current Challenges and Limitations in the Studies of Intrinsically Disordered Proteins in Neurodegenerative Diseases by Computer Simulations. Curr Alzheimer Res 2020; 17:805-818. [PMID: 33167839 DOI: 10.2174/1567205017666201109094908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Experiments face challenges in the analysis of intrinsically disordered proteins in solution due to fast conformational changes and enhanced aggregation propensity. Computational studies complement experiments, being widely used in the analyses of intrinsically disordered proteins, especially those positioned at the centers of neurodegenerative diseases. However, recent investigations - including our own - revealed that computer simulations face significant challenges and limitations themselves. In this review, we introduced and discussed some of the scientific challenges and limitations of computational studies conducted on intrinsically disordered proteins. We also outlined the importance of future developments in the areas of computational chemistry and computational physics that would be needed for generating more accurate data for intrinsically disordered proteins from computer simulations. Additional theoretical strategies that can be developed are discussed herein.
Collapse
Affiliation(s)
- Ibrahim Y Akbayrak
- Materials Science and Technologies, Turkish-German University, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey
| | - Sule I Caglayan
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey
| | - Zilan Ozcan
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, United States
| | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey
| |
Collapse
|
3
|
Habiboglu MG, Coskuner-Weber O. Quantum Chemistry Meets Deep Learning for Complex Carbohydrate and Glycopeptide Species I. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2018-1251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Carbohydrate complexes are crucial in many various biological and medicinal processes. The impacts of N-acetyl on the glycosidic linkage flexibility of methyl β-D-glucopyranose, and of the glycoamino acid β-D-glucopyranose-asparagine are poorly understood at the electronic level. Furthermore, the effect of D- and L-isomers of asparagine in the complexes of N-acetyl-β-D-glucopyranose-(L)-asparagine and N-acetyl-β-D-glucopyranose-(D)-asparagine is unknown. In this study, we performed density functional theory calculations of methyl β-D-glucopyranose, methyl N-acetyl-β-D-glucopyranose, and of glycoamino acids β-D-glucopyranose-asparagine, N-acetyl-β-D-glucopyranose-(L)-asparagine and N-acetyl-β-D-glucopyranose-(D)-asparagine for studying their linkage flexibilities, total solvated energies, thermochemical properties and intra-molecular hydrogen bond formations in an aqueous solution environment using the COnductor-like Screening MOdel (COSMO) for water. We linked these density functional theory calculations to deep learning via estimating the total solvated energy of each linkage torsional angle value. Our results show that deep learning methods accurately estimate the total solvated energies of complex carbohydrate and glycopeptide species and provide linkage flexibility trends for methyl β-D-glucopyranose, methyl N-acetyl-β-D-glucopyranose, and of glycoamino acids β-D-glucopyranose-asparagine, N-acetyl-β-D-glucopyranose-(L)-asparagine and N-acetyl-β-D-glucopyranose-(D)-asparagine in agreement with density functional theory results. To the best of our knowledge, this study represents the first application of density functional theory along with deep learning for complex carbohydrate and glycopeptide species in an aqueous solution medium. In addition, this study shows that a few thousands of optimization frames from DFT calculations are enough for accurate estimations by deep learning tools.
Collapse
Affiliation(s)
- M. Gokhan Habiboglu
- Turkisch-Deutsche Universität, Electrical and Electronics Engineering Department , Sahinkaya Caddesi, No. 86 , Beykoz, Istanbul 34820 , Turkey
| | - Orkid Coskuner-Weber
- Turkish-Deutsche Universität, Molecular Biotechnology , Sahinkaya Caddesi, No. 86 , Beykoz, Istanbul 34820 , Turkey
- National Institute of Standards and Technology, Biochemical Reference Data Division , 100 Bureau Drive, Gaithersburg , MD 20899 , USA
| |
Collapse
|
4
|
Coskuner-Weber O. Revisiting Cu(II) Bound Amyloid-β40 and Amyloid-β42 Peptides: Varying Coordination Chemistries. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.424144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
5
|
de Ruyck J, Roos G, Krammer EM, Prévost M, Lensink MF, Bouckaert J. Molecular Mechanisms of Drug Action: X-ray Crystallography at the Basis of Structure-based and Ligand-based Drug Design. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biological systems are recognized for their complexity and diversity and yet we sometimes manage to cure disease via the administration of small chemical drug molecules. At first, active ingredients were found accidentally and at that time there did not seem a need to understand the molecular mechanism of drug functioning. However, the urge to develop new drugs, the discovery of multipurpose characteristics of some drugs, and the necessity to remove unwanted secondary drug effects, incited the pharmaceutical sector to rationalize drug design. This did not deliver success in the years directly following its conception, but it drove the evolution of biochemical and biophysical techniques to enable the characterization of molecular mechanisms of drug action. Functional and structural data generated by biochemists and structural biologists became a valuable input for computational biologists, chemists and bioinformaticians who could extrapolate in silico, based on variations in the structural aspects of the drug molecules and their target. This opened up new avenues with much improved predictive power because of a clearer perception of the role and impact of structural elements in the intrinsic affinity and specificity of the drug for its target. In this chapter, we review how crystal structures can initiate structure-based drug design in general.
Collapse
Affiliation(s)
- J. de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - G. Roos
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - E.-M. Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. Prévost
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. F. Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - J. Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| |
Collapse
|
6
|
Coskuner O. Divalent copper ion bound amyloid-β(40) and amyloid-β(42) alloforms are less preferred than divalent zinc ion bound amyloid-β(40) and amyloid-β(42) alloforms. J Biol Inorg Chem 2016; 21:957-973. [DOI: 10.1007/s00775-016-1392-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/31/2016] [Indexed: 12/25/2022]
|
7
|
Stewart CD, Arman H, Bawazir H, Musie GT. Synthesis, Characterization, and Spectroscopic Investigation of New Iron(III) and Copper(II) Complexes of a Carboxylate Rich Ligand and Their Interaction with Carbohydrates in Aqueous Solution. Inorg Chem 2014; 53:10974-88. [DOI: 10.1021/ic501351a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Christopher D. Stewart
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Huda Bawazir
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ghezai T. Musie
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
8
|
Wise O, Coskuner O. New force field parameters for metalloproteins I: Divalent copper ion centers including three histidine residues and an oxygen-ligated amino acid residue. J Comput Chem 2014; 35:1278-89. [DOI: 10.1002/jcc.23622] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/06/2014] [Accepted: 03/23/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Olivia Wise
- Department of Chemistry; The University of Texas at San Antonio, One UTSA Circle; San Antonio Texas 78249
- Neurosciences Institute; The University of Texas at San Antonio, One UTSA Circle; San Antonio Texas 78249
| | - Orkid Coskuner
- Department of Chemistry; The University of Texas at San Antonio, One UTSA Circle; San Antonio Texas 78249
- Neurosciences Institute; The University of Texas at San Antonio, One UTSA Circle; San Antonio Texas 78249
| |
Collapse
|
9
|
Structures and free energy landscapes of aqueous zinc(II)-bound amyloid-β(1-40) and zinc(II)-bound amyloid-β(1-42) with dynamics. J Biol Inorg Chem 2012; 17:927-38. [PMID: 22674434 DOI: 10.1007/s00775-012-0909-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/16/2012] [Indexed: 12/26/2022]
Abstract
Binding of divalent metal ions with intrinsically disordered fibrillogenic proteins, such as amyloid-β (Aβ), influences the aggregation process and the severity of neurodegenerative diseases. The Aβ monomers and oligomers are the building blocks of the aggregates. In this work, we report the structures and free energy landscapes of the monomeric zinc(II)-bound Aβ40 (Zn:Aβ40) and zinc(II)-bound Aβ42 (Zn:Aβ42) intrinsically disordered fibrillogenic metallopeptides in an aqueous solution by utilizing an approach that employs first principles calculations and parallel tempering molecular dynamics simulations. The structural and thermodynamic properties, including the secondary and tertiary structures and conformational Gibbs free energies of these intrinsically disordered metallopeptide alloforms, are presented. The results show distinct differing characteristics for these metallopeptides. For example, prominent β-sheet formation in the N-terminal region (Asp1, Arg5, and Tyr10) of Zn:Aβ40 is significantly decreased or lacking in Zn:Aβ42. Our findings indicate that blocking multiple reactive residues forming abundant β-sheet structure located in the central hydrophobic core and C-terminal regions of Zn:Aβ42 via antibodies or small organic molecules might help to reduce the aggregation of Zn(II)-bound Aβ42. Furthermore, we find that helix formation increases but β-sheet formation decreases in the C-terminal region upon Zn(II) binding to Aβ. This depressed β-sheet formation in the C-terminal region (Gly33-Gly38) in monomeric Zn:Aβ42 might be linked to the formation of amorphous instead of fibrillar aggregates of Zn:Aβ42.
Collapse
|
10
|
Coskuner O, Allison TC. Dynamic and Structural Properties of Aqueous Arsenic Solutions. Chemphyschem 2009; 10:1187-9. [DOI: 10.1002/cphc.200800650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Coskuner O, Bergeron DE, Rincon L, Hudgens JW, Gonzalez CA. Identification of Active Sites of Biomolecules II: Saccharide and Transition Metal Ion in Aqueous Solution. J Phys Chem A 2009; 113:2491-9. [DOI: 10.1021/jp805747f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Jeffrey W. Hudgens
- Computational Chemistry Group, Physical and Chemical Properties Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8380, Gaithersburg, Maryland 20899, Computational Materials Science Center, George Mason University, Research I, Fairfax, Virginia 22030, and Departamento de Química, Universidad de los Andes, Mérida-5101, Venezuela
| | | |
Collapse
|
12
|
Coskuner O, Bergeron DE, Rincon L, Hudgens JW, Gonzalez CA. Glycosidic linkage conformation of methyl-α-mannopyranoside. J Chem Phys 2008; 129:045102. [DOI: 10.1063/1.2958916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|