2
|
Chang Y, An F, Li Q, Luo Z, Che L, Yang J, Chen Z, Zhang W, Wu G, Hu X, Xie D, Yuan K, Yang X. Electronically Excited OH Super-rotors from Water Photodissociation by Using Vacuum Ultraviolet Free-Electron Laser Pulses. J Phys Chem Lett 2020; 11:7617-7623. [PMID: 32830973 DOI: 10.1021/acs.jpclett.0c02320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fragmentation dynamics of water in a superexcited state play an important role in the ionosphere of the planets and in the photodissociation region (PDR) of the planetary nebula. In this Letter, we experimentally study the fragmentation dynamics of H2O with the energy above its ionization potential initiated by vacuum ultraviolet free-electron laser pulses. The experimental results indicate that the binary fragmentation channels H + OH and the triple channels O + 2H both present at 96.4 nm photolysis. Electronically excited OH super-rotors (v = 0, N ≥ 36, or v = 1, N ≥ 34), with the internal energy just above the OH (A) dissociation energy, are observed for the first time, which are only supported by the large centrifugal barriers. An absolute cross section of these super-rotors is estimated to be 0.7(±0.3) × 10-18 cm2. The tunnelling rates of these extremely rotationally excited states are also analyzed. This work shows a spectacular example of energy transfer from a photon to fragment rotation through photodissociation.
Collapse
Affiliation(s)
- Yao Chang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Feng An
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, China
| | - Qinming Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zijie Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Department of Physics, School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning 116026, P. R. China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning 116026, P. R. China
| | - Jiayue Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhichao Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xixi Hu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, China
| | - Daiqian Xie
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Hydroxyl super rotors from vacuum ultraviolet photodissociation of water. Nat Commun 2019; 10:1250. [PMID: 30890696 PMCID: PMC6424997 DOI: 10.1038/s41467-019-09176-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/01/2019] [Indexed: 11/08/2022] Open
Abstract
Hydroxyl radicals (OH) play a central role in the interstellar medium. Here, we observe highly rotationally excited OH radicals with energies above the bond dissociation energy, termed OH "super rotors", from the vacuum ultraviolet photodissociation of water. The most highly excited OH(X) super rotors identified at 115.2 nm photolysis have an internal energy of 4.86 eV. A striking enhancement in the yield of vibrationally-excited OH super rotors is detected when exciting the bending vibration of the water molecule. Theoretical analysis shows that bending excitation enhances the probability of non-adiabatic coupling between the [Formula: see text] and [Formula: see text] states of water at collinear O-H-H geometries following fast internal conversion from the initially excited [Formula: see text] state. The present study illustrates a route to produce extremely rotationally excited OH(X) radicals from vacuum ultraviolet water photolysis, which may be related to the production of the highly rotationally excited OH(X) radicals observed in the interstellar medium.
Collapse
|
4
|
Hu X, Zhou L, Xie D. State-to-state photodissociation dynamics of the water molecule. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1350] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing China
| | - Linsen Zhou
- Department of Chemistry and Chemical Biology; University of New Mexico; Albuquerque NM USA
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing China
| |
Collapse
|
6
|
Zhou L, Xie D. Full-Dimensional Quantum Dynamics of Vibrational Mediated Photodissociation of HOD in Its B Band. J Phys Chem A 2015. [DOI: 10.1021/acs.jpca.5b05029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linsen Zhou
- Institute
of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic
Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Daiqian Xie
- Institute
of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic
Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Synergetic
Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Zhou L, Xie D, Guo H. Signatures of non-adiabatic dynamics in the fine-structure state distributions of the OH(X̃/Ã) products in the B-band photodissociation of H2O. J Chem Phys 2015; 142:124317. [DOI: 10.1063/1.4915536] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Linsen Zhou
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, China
| | - Daiqian Xie
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
8
|
Lin GSM, Zhou L, Xie D. Theoretical Study of the State-to-State Photodissociation Dynamics of the Vibrationally Excited Water Molecule in the B Band. J Phys Chem A 2014; 118:9220-7. [DOI: 10.1021/jp503062s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guang-Shuang-Mu Lin
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Linsen Zhou
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
- Synergetic
Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Zhou L, Jiang B, Xie D, Guo H. State-to-State Photodissociation Dynamics of H2O in the B-band: Competition between Two Coexisting Nonadiabatic Pathways. J Phys Chem A 2012; 117:6940-7. [DOI: 10.1021/jp310546g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Linsen Zhou
- Institute of Theoretical and
Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Bin Jiang
- Institute of Theoretical and
Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daiqian Xie
- Institute of Theoretical and
Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hua Guo
- Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
16
|
Yabushita A, Hama T, Iida D, Kawanaka N, Kawasaki M, Watanabe N, Ashfold MNR, Loock HP. Release of hydrogen molecules from the photodissociation of amorphous solid water and polycrystalline ice at 157 and 193nm. J Chem Phys 2008; 129:044501. [DOI: 10.1063/1.2953714] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|