2
|
Chillemi G, De Santis S, Falconi M, Mancini G, Migliorati V, Battistoni A, Pacello F, Desideri A, D'Angelo P. Carbon monoxide binding to the heme group at the dimeric interface modulates structure and copper accessibility in the Cu,Zn superoxide dismutase from Haemophilus ducreyi: in silico and in vitro evidences. J Biomol Struct Dyn 2012; 30:269-79. [PMID: 22686457 DOI: 10.1080/07391102.2012.680028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
X-ray absorption near-edge structure (XANES) spectroscopy and molecular dynamics (MD) simulations have been jointly applied to the study of the Cu,Zn superoxide dismutase from Haemophilus ducreyi (HdSOD) in interaction with the carbon monoxide molecule. The configurational flexibility of the Fe(II)-heme group, intercalated between the two subunits, has been sampled by MD simulations and included in the XANES data analysis without optimization in the structural parameter space. Our results provide an interpretation of the observed discrepancy in the Fe-heme distances as detected by extended X-ray absorption fine structure (EXAFS) spectroscopy and the classical XANES analysis, in which the structural parameters are optimized in a unique structure. Moreover, binding of the CO molecule to the heme induces a long range effect on the Cu,Zn active site, as evidenced by both MD simulations and in vitro experiments. MD simulation of the CO bound system, in fact, highlighted a structural rearrangement of the protein-protein hydrogen bond network in the region of the Cu,Zn active site, correlated with an increase in water accessibility at short distance from the copper atom. In line, in vitro experiments evidenced an increase of copper accessibility to a chelating agent when the CO molecule binds to the heme group, as compared to a heme deprived HdSOD. Altogether, our results support the hypothesis that the HdSOD is a heme-sensor protein, in which binding to small gaseous molecules modulates the enzyme superoxide activity as an adaptive response to the bacterial environment.
Collapse
|
3
|
Jayaraman T, Tejero J, Chen BB, Blood AB, Frizzell S, Shapiro C, Tiso M, Hood BL, Wang X, Zhao X, Conrads TP, Mallampalli RK, Gladwin MT. 14-3-3 binding and phosphorylation of neuroglobin during hypoxia modulate six-to-five heme pocket coordination and rate of nitrite reduction to nitric oxide. J Biol Chem 2011; 286:42679-42689. [PMID: 21965683 DOI: 10.1074/jbc.m111.271973] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroglobin protects neurons from hypoxia in vitro and in vivo; however, the underlying mechanisms for this effect remain poorly understood. Most of the neuroglobin is present in a hexacoordinate state with proximal and distal histidines in the heme pocket directly bound to the heme iron. At equilibrium, the concentration of the five-coordinate neuroglobin remains very low (0.1-5%). Recent studies have shown that post-translational redox regulation of neuroglobin surface thiol disulfide formation increases the open probability of the heme pocket and allows nitrite binding and reaction to form NO. We hypothesized that the equilibrium between the six- and five-coordinate states and secondary reactions with nitrite to form NO could be regulated by other hypoxia-dependent post-translational modification(s). Protein sequence models identified candidate sites for both 14-3-3 binding and phosphorylation. In both in vitro experiments and human SH-SY5Y neuronal cells exposed to hypoxia and glucose deprivation, we observed that 1) neuroglobin phosphorylation and protein-protein interactions with 14-3-3 increase during hypoxic and metabolic stress; 2) neuroglobin binding to 14-3-3 stabilizes and increases the half-life of phosphorylation; and 3) phosphorylation increases the open probability of the heme pocket, which increases ligand binding (CO and nitrite) and accelerates the rate of anaerobic nitrite reduction to form NO. These data reveal a series of hypoxia-dependent post-translational modifications to neuroglobin that regulate the six-to-five heme pocket equilibrium and heme access to ligands. Hypoxia-regulated reactions of nitrite and neuroglobin may contribute to the cellular adaptation to hypoxia.
Collapse
Affiliation(s)
- Thottala Jayaraman
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| | - Jesús Tejero
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Bill B Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Arlin B Blood
- Division of Neonatology, Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, California 92354
| | - Sheila Frizzell
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Calli Shapiro
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mauro Tiso
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Brian L Hood
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Xunde Wang
- NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Xuejun Zhao
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Thomas P Conrads
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Rama K Mallampalli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Mark T Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
5
|
Anselmi M, Di Nola A, Amadei A. Kinetics of carbon monoxide migration and binding in solvated neuroglobin as revealed by molecular dynamics simulations and quantum mechanical calculations. J Phys Chem B 2011; 115:2436-46. [PMID: 21332165 DOI: 10.1021/jp110833v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroglobin (Ngb) is a globular protein that reversibly binds small ligands at the six coordination position of the heme. With respect to other globins similar to myoglobin, Ngb displays some peculiarities as the topological reorganization of the internal cavities coupled to the sliding of the heme, or the binding of the endogenous distal histidine to the heme in the absence of an exogenous ligand. In this Article, by using multiple (independent) molecular dynamics trajectories (about 500 ns in total), the migration pathways of photolized carbon monoxide (CO) within solvated Ngb were analyzed, and a quantitative description of CO migration and corresponding kinetics was obtained. MD results, combined with quantum mechanical calculations on the CO-heme binding-unbinding reaction step in Ngb, allowed construction of a quantitative model representing the relevant steps of CO migration and rebinding.
Collapse
|
7
|
D’Angelo P, Della Longa S, Arcovito A, Anselmi M, Di Nola A, Chillemi G. Dynamic Investigation of Protein Metal Active Sites: Interplay of XANES and Molecular Dynamics Simulations. J Am Chem Soc 2010; 132:14901-9. [DOI: 10.1021/ja1056533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paola D’Angelo
- Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy, Department of Experimental Medicine, University of L’Aquila, 67100 L’Aquila, Italy, Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy, and CASPUR, Consortium for Supercomputing Applications, Via dei Tizii 6b, 00185 Rome, Italy
| | - Stefano Della Longa
- Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy, Department of Experimental Medicine, University of L’Aquila, 67100 L’Aquila, Italy, Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy, and CASPUR, Consortium for Supercomputing Applications, Via dei Tizii 6b, 00185 Rome, Italy
| | - Alessandro Arcovito
- Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy, Department of Experimental Medicine, University of L’Aquila, 67100 L’Aquila, Italy, Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy, and CASPUR, Consortium for Supercomputing Applications, Via dei Tizii 6b, 00185 Rome, Italy
| | - Massimiliano Anselmi
- Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy, Department of Experimental Medicine, University of L’Aquila, 67100 L’Aquila, Italy, Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy, and CASPUR, Consortium for Supercomputing Applications, Via dei Tizii 6b, 00185 Rome, Italy
| | - Alfredo Di Nola
- Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy, Department of Experimental Medicine, University of L’Aquila, 67100 L’Aquila, Italy, Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy, and CASPUR, Consortium for Supercomputing Applications, Via dei Tizii 6b, 00185 Rome, Italy
| | - Giovanni Chillemi
- Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy, Department of Experimental Medicine, University of L’Aquila, 67100 L’Aquila, Italy, Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy, and CASPUR, Consortium for Supercomputing Applications, Via dei Tizii 6b, 00185 Rome, Italy
| |
Collapse
|
8
|
Ding L, Shen L, Chen XB, Fang WH. Solvent Effects on Photoreactivity of Valerophenone: A Combined QM and MM Study. J Org Chem 2009; 74:8956-62. [DOI: 10.1021/jo902080z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lina Ding
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Shen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xue-Bo Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|