1
|
Liu Y, Mulvihill E, Geva E. Combining the generalized quantum master equation approach with quasiclassical mapping Hamiltonian methods to simulate the dynamics of electronic coherences. J Chem Phys 2024; 161:164101. [PMID: 39435829 DOI: 10.1063/5.0232462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
The generalized quantum master equation (GQME) approach provides a powerful general-purpose framework for simulating the inherently quantum mechanical dynamics of a subset of electronic reduced density matrix elements of interest in complex molecular systems. Previous studies have found that combining the GQME approach with quasiclassical mapping Hamiltonian (QC/MH) methods can dramatically improve the accuracy of electronic populations obtained via those methods. In this paper, we perform a complimentary study of the advantages offered by the GQME approach for simulating the dynamics of electronic coherences, which play a central role in optical spectroscopy, quantum information science, and quantum technology. To this end, we focus on cases where the electronic coherences predicted for the spin-boson benchmark model by direct application of various QC/MH methods are inaccurate. We find that similar to the case of electronic populations, combining the QC/MH methods with the GQME approach can dramatically improve the accuracy of the electronic coherences obtained via those methods. We also provide a comprehensive analysis of how the performance of GQMEs depends on the choice of projection operator and electronic basis and show that the accuracy and feasibility of the GQME approach can benefit from casting the GQME in terms of the eigen-basis of the observable of interest.
Collapse
Affiliation(s)
- Yudan Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
2
|
Cai B, Song H, Brnovic A, Pavliuk MV, Hammarström L, Tian H. Promoted Charge Separation and Long-Lived Charge-Separated State in Porphyrin-Viologen Dyad Nanoparticles. J Am Chem Soc 2023; 145:18687-18692. [PMID: 37582183 PMCID: PMC10472426 DOI: 10.1021/jacs.3c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/17/2023]
Abstract
Developing light-harvesting systems with efficient photoinduced charge separation and long-lived charge-separated (CS) state is desirable but still challenging. In this study, we designed a zinc porphyrin photosensitizer covalently linked with viologen (ZnP-V) that can be prepared into nanoparticles in aqueous solution. In DMF solution, the monomeric ZnP-V dyads show no electron transfer between the ZnP and viologen units. In contrast, the ZnP-V nanoparticles in aqueous solution show fast charge separation with a CS state lifetime of up to 4.3 ms. This can be attributed to charge hopping induced by aggregation or distance modification between the donor and acceptor induced by electronic interaction. Nevertheless, the lifetime of the CS state is orders of magnitude longer than for molecular aggregates reported previously. The ZnP-V nanoparticles show enhanced photocatalytic hydrogen production as compared to the ZnP nanoparticles and still hold promise for other applications such as photovoltaic devices and photoredox catalysis.
Collapse
Affiliation(s)
- Bin Cai
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Hongwei Song
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Andjela Brnovic
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Mariia V. Pavliuk
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Leif Hammarström
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Haining Tian
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| |
Collapse
|
3
|
Lyu N, Mulvihill E, Soley MB, Geva E, Batista VS. Tensor-Train Thermo-Field Memory Kernels for Generalized Quantum Master Equations. J Chem Theory Comput 2023; 19:1111-1129. [PMID: 36719350 DOI: 10.1021/acs.jctc.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The generalized quantum master equation (GQME) approach provides a rigorous framework for deriving the exact equation of motion for any subset of electronic reduced density matrix elements (e.g., the diagonal elements). In the context of electronic dynamics, the memory kernel and inhomogeneous term of the GQME introduce the implicit coupling to nuclear motion and dynamics of electronic density matrix elements that are projected out (e.g., the off-diagonal elements), allowing for efficient quantum dynamics simulations. Here, we focus on benchmark quantum simulations of electronic dynamics in a spin-boson model system described by various types of GQMEs. Exact memory kernels and inhomogeneous terms are obtained from short-time quantum-mechanically exact tensor-train thermo-field dynamics (TT-TFD) simulations and are compared with those obtained from an approximate linearized semiclassical method, allowing for assessment of the accuracy of these approximate memory kernels and inhomogeneous terms. Moreover, we have analyzed the computational cost of the full and reduced-dimensionality GQMEs. The scaling of the computational cost is dependent on several factors, sometimes with opposite scaling trends. The TT-TFD memory kernels can provide insights on the main sources of inaccuracies of GQME approaches when combined with approximate input methods and pave the road for the development of quantum circuits that implement GQMEs on digital quantum computers.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ellen Mulvihill
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Micheline B Soley
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
4
|
Lai Y, Geva E. Electronic Absorption Spectra from Off-Diagonal Quantum Master Equations. J Chem Phys 2022; 157:104115. [DOI: 10.1063/5.0106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Quantum master equations (QMEs) provide a general framework for describing electronic dynamics within a complex molecular system. Off-diagonal QMEs (OD-QMEs) correspond to a family of QMEs that describe the electronic dynamics in the interaction picture based on treating the off-diagonal coupling terms between electronic states as a small perturbation within the framework of second-order perturbation theory. The fact that OD-QMEs are given in terms of the interaction picture makes it non-trivial to obtain Schrodinger picture electronic coherences from them. A key experimental quantity that relies on the ability to obtain accurate Schrodinger picture electronic coherences is the absorption spectrum. In this paper, we propose using a recently introduced procedure for extracting Schrodinger picture electronic coherences from interaction picture inputs to calculate electronic absorption spectra from electronic dynamics generated by OD-QMEs. The accuracy of the absorption spectra obtained in this way is studied in the context of a biexciton benchmark model, by comparing spectra calculated based on time-local and time-nonlocal OD-QMEs to spectra calculated based on a Redfield-type QME and the non-perturbative and quantum-mechanically exact hierarchical equations of motion (HEOM) method.
Collapse
Affiliation(s)
- Yifan Lai
- Chemistry, University of Michigan, United States of America
| | - Eitan Geva
- Department of Chemistry, University of Michigan Department of Chemistry, United States of America
| |
Collapse
|
5
|
Mulvihill E, Geva E. Simulating the dynamics of electronic observables via reduced-dimensionality generalized quantum master equations. J Chem Phys 2022; 156:044119. [DOI: 10.1063/5.0078040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
Lai Y, Geva E. On simulating the dynamics of electronic populations and coherences via quantum master equations based on treating off-diagonal electronic coupling terms as a small perturbation. J Chem Phys 2021; 155:204101. [PMID: 34852488 DOI: 10.1063/5.0069313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quantum master equations provide a general framework for describing the dynamics of electronic observables within a complex molecular system. One particular family of such equations is based on treating the off-diagonal coupling terms between electronic states as a small perturbation within the framework of second-order perturbation theory. In this paper, we show how different choices of projection operators, as well as whether one starts out with the time-convolution or the time-convolutionless forms of the generalized quantum master equation, give rise to four different types of such off-diagonal quantum master equations (OD-QMEs), namely, time-convolution and time-convolutionless versions of a Pauli-type OD-QME for only the electronic populations and an OD-QME for the full electronic density matrix (including both electronic populations and coherences). The fact that those OD-QMEs are given in terms of the interaction picture makes it non-trivial to obtain Schrödinger picture electronic coherences from them. To address this, we also extend a procedure for extracting Schrödinger picture electronic coherences from interaction picture populations recently introduced by Trushechkin in the context of time-convolutionless Pauli-type OD-QME to the other three types of OD-QMEs. The performance of the aforementioned four types of OD-QMEs is explored in the context of the Garg-Onuchic-Ambegaokar benchmark model for charge transfer in the condensed phase across a relatively wide parameter range. The results show that time-convolution OD-QMEs can be significantly more accurate than their time-convolutionless counterparts, particularly in the case of Pauli-type OD-QMEs, and that rather accurate Schrödinger picture coherences can be obtained from interaction picture electronic inputs.
Collapse
Affiliation(s)
- Yifan Lai
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
7
|
Mulvihill E, Geva E. A Road Map to Various Pathways for Calculating the Memory Kernel of the Generalized Quantum Master Equation. J Phys Chem B 2021; 125:9834-9852. [PMID: 34424700 DOI: 10.1021/acs.jpcb.1c05719] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The generalized quantum master equation (GQME) provides a powerful framework for simulating electronic energy, charge, and coherence transfer dynamics in molecular systems. Within this framework, the effect of the nuclear degrees of freedom on the time evolution of the electronic reduced density matrix is fully captured by a memory kernel superoperator. However, the actual memory kernel depends on the choice of projection operator and is therefore not unique. Furthermore, calculating the memory kernel can be done in multiple ways that use different forms of projection-free inputs. Although the electronic dynamics is invariant to those choices when quantum-mechanically exact projection-free inputs are used, this is not the case when they are obtained via more feasible semiclassical or mixed quantum-classical approximate methods. Furthermore, the accuracy and numerical stability of the resulting electronic dynamics has been observed to be sensitive to the above-mentioned choices when approximate methods are used to calculate the projection-free inputs. In this article, we provide a systematic road map to 30 possible pathways for calculating the memory kernel and highlight how they are related as well as the ways in which they differ. We also compare the performance of different pathways in the context of the spin-boson benchmark model, with the projection-free inputs obtained via a mapping Hamiltonian linearized semiclassical method. In this case, we find that expressing the memory kernel with an exponential operator where the projection operator precedes the Liouvillian yields the most accurate and most numerically stable results.
Collapse
Affiliation(s)
- Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan48109, United States
| |
Collapse
|
8
|
Mulvihill E, Lenn KM, Gao X, Schubert A, Dunietz BD, Geva E. Simulating energy transfer dynamics in the Fenna-Matthews-Olson complex via the modified generalized quantum master equation. J Chem Phys 2021; 154:204109. [PMID: 34241158 DOI: 10.1063/5.0051101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The generalized quantum master equation (GQME) provides a general and formally exact framework for simulating the reduced dynamics of open quantum systems. The recently introduced modified approach to the GQME (M-GQME) corresponds to a specific implementation of the GQME that is geared toward simulating the dynamics of the electronic reduced density matrix in systems governed by an excitonic Hamiltonian. Such a Hamiltonian, which is often used for describing energy and charge transfer dynamics in complex molecular systems, is given in terms of diabatic electronic states that are coupled to each other and correspond to different nuclear Hamiltonians. Within the M-GQME approach, the effect of the nuclear degrees of freedom on the time evolution of the electronic density matrix is fully captured by a memory kernel superoperator, which can be obtained from short-lived (compared to the time scale of energy/charge transfer) projection-free inputs. In this paper, we test the ability of the M-GQME to predict the energy transfer dynamics within a seven-state benchmark model of the Fenna-Matthews-Olson (FMO) complex, with the short-lived projection-free inputs obtained via the Ehrenfest method. The M-GQME with Ehrenfest-based inputs is shown to yield accurate results across a wide parameter range. It is also found to dramatically outperform the direct application of the Ehrenfest method and to provide better-behaved convergence with respect to memory time in comparison to an alternative implementation of the GQME approach previously applied to the same FMO model.
Collapse
Affiliation(s)
- Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kristina M Lenn
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Schubert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Brian D, Liu Z, Dunietz BD, Geva E, Sun X. Three-state harmonic models for photoinduced charge transfer. J Chem Phys 2021; 154:174105. [PMID: 34241055 DOI: 10.1063/5.0050289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A widely used strategy for simulating the charge transfer between donor and acceptor electronic states in an all-atom anharmonic condensed-phase system is based on invoking linear response theory to describe the system in terms of an effective spin-boson model Hamiltonian. Extending this strategy to photoinduced charge transfer processes requires also taking into consideration the ground electronic state in addition to the excited donor and acceptor electronic states. In this paper, we revisit the problem of describing such nonequilibrium processes in terms of an effective three-state harmonic model. We do so within the framework of nonequilibrium Fermi's golden rule (NE-FGR) in the context of photoinduced charge transfer in the carotenoid-porphyrin-C60 (CPC60) molecular triad dissolved in explicit tetrahydrofuran (THF). To this end, we consider different ways for obtaining a three-state harmonic model from the equilibrium autocorrelation functions of the donor-acceptor, donor-ground, and acceptor-ground energy gaps, as obtained from all-atom molecular dynamics simulations of the CPC60/THF system. The quantum-mechanically exact time-dependent NE-FGR rate coefficients for two different charge transfer processes in two different triad conformations are then calculated using the effective three-state model Hamiltonians as well as a hierarchy of more approximate expressions that lead to the instantaneous Marcus theory limit. Our results show that the photoinduced charge transfer in CPC60/THF can be described accurately by the effective harmonic three-state models and that nuclear quantum effects are small in this system.
Collapse
Affiliation(s)
- Dominikus Brian
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Zengkui Liu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| |
Collapse
|
10
|
Gao X, Geva E. Improving the Accuracy of Quasiclassical Mapping Hamiltonian Methods by Treating the Window Function Width as an Adjustable Parameter. J Phys Chem A 2020; 124:11006-11016. [DOI: 10.1021/acs.jpca.0c09750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xing Gao
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518100, China
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Tong Z, Gao X, Cheung MS, Dunietz BD, Geva E, Sun X. Charge transfer rate constants for the carotenoid-porphyrin-C60 molecular triad dissolved in tetrahydrofuran: The spin-boson model vs the linearized semiclassical approximation. J Chem Phys 2020; 153:044105. [DOI: 10.1063/5.0016160] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Zhengqing Tong
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| | - Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Barry D. Dunietz
- Department of Chemistry, Kent State University, 1787 Summit Street, Kent, Ohio 44242, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|
12
|
Gao X, Saller MAC, Liu Y, Kelly A, Richardson JO, Geva E. Benchmarking Quasiclassical Mapping Hamiltonian Methods for Simulating Electronically Nonadiabatic Molecular Dynamics. J Chem Theory Comput 2020; 16:2883-2895. [DOI: 10.1021/acs.jctc.9b01267] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Yudan Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aaron Kelly
- Department of Chemistry, Dalhousie University, 15000 Halifax, Nova Scotia, Canada
| | | | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Mulvihill E, Gao X, Liu Y, Schubert A, Dunietz BD, Geva E. Combining the mapping Hamiltonian linearized semiclassical approach with the generalized quantum master equation to simulate electronically nonadiabatic molecular dynamics. J Chem Phys 2019; 151:074103. [DOI: 10.1063/1.5110891] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yudan Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Schubert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
14
|
Mulvihill E, Schubert A, Sun X, Dunietz BD, Geva E. A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation. J Chem Phys 2019; 150:034101. [DOI: 10.1063/1.5055756] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Schubert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Xiang Sun
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
15
|
Kananenka AA, Sun X, Schubert A, Dunietz BD, Geva E. A comparative study of different methods for calculating electronic transition rates. J Chem Phys 2018; 148:102304. [DOI: 10.1063/1.4989509] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexei A. Kananenka
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiang Sun
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Schubert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
16
|
Kananenka AA, Hsieh CY, Cao J, Geva E. Nonadiabatic Dynamics via the Symmetrical Quasi-Classical Method in the Presence of Anharmonicity. J Phys Chem Lett 2018; 9:319-326. [PMID: 29239614 DOI: 10.1021/acs.jpclett.7b03002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The symmetrical quasi-classical (SQC) method recently proposed by Miller and Cotton allows one to simulate nonadiabatic dynamics based on an algorithm with classical-like scaling with respect to system size. This is made possible by casting the electronic degrees of freedom in terms of mapping variables that can be propagated in a classical-like manner. While SQC was shown to be rather accurate when applied to benchmark models with harmonic electronic potential energy surfaces, it was also found to become inaccurate and to suffer numerical instabilities when applied to anharmonic systems. In this paper, we propose an extended SQC (E-SQC) methodology for overcoming those discrepancies by describing the anharmonic nuclear modes, which are coupled to the electronic degrees of freedom, in terms of classical-like mapping variables. The accuracy of E-SQC relative to standard SQC is demonstrated on benchmark models with quartic and Morse potential energy surfaces.
Collapse
Affiliation(s)
- Alexei A Kananenka
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Chang-Yu Hsieh
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02319, United States
- Singapore-MIT Alliance for Research and Technology (SMART) Center , Singapore 487373
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02319, United States
- Singapore-MIT Alliance for Research and Technology (SMART) Center , Singapore 487373
| | | |
Collapse
|
17
|
Sun X, Geva E. Non-Condon nonequilibrium Fermi’s golden rule rates from the linearized semiclassical method. J Chem Phys 2016. [DOI: 10.1063/1.4960337] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiang Sun
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
18
|
Sun X, Geva E. Non-Condon equilibrium Fermi’s golden rule electronic transition rate constants via the linearized semiclassical method. J Chem Phys 2016; 144:244105. [DOI: 10.1063/1.4954509] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiang Sun
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
19
|
Sun X, Geva E. Nonequilibrium Fermi’s Golden Rule Charge Transfer Rates via the Linearized Semiclassical Method. J Chem Theory Comput 2016; 12:2926-41. [DOI: 10.1021/acs.jctc.6b00236] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang Sun
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eitan Geva
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
20
|
Sun X, Geva E. Equilibrium Fermi’s Golden Rule Charge Transfer Rate Constants in the Condensed Phase: The Linearized Semiclassical Method vs Classical Marcus Theory. J Phys Chem A 2015; 120:2976-90. [DOI: 10.1021/acs.jpca.5b08280] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang Sun
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
21
|
Manna AK, Balamurugan D, Cheung MS, Dunietz BD. Unraveling the Mechanism of Photoinduced Charge Transfer in Carotenoid-Porphyrin-C60 Molecular Triad. J Phys Chem Lett 2015; 6:1231-1237. [PMID: 26262978 DOI: 10.1021/acs.jpclett.5b00074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Photoinduced charge transfer (CT) plays a central role in biologically significant systems and in applications that harvest solar energy. We investigate the relationship of CT kinetics and conformation in a molecular triad. The triad, consisting of carotenoid, porphyrin, and fullerene is structurally flexible and able to acquire significantly varied conformations under ambient conditions. With an integrated approach of quantum calculations and molecular dynamics simulations, we compute the rate of CT at two distinctive conformations. The linearly extended conformation, in which the donor (carotenoid) and the acceptor (fullerene) are separated by nearly 50 Å, enables charge separation through a sequential CT process. A representative bent conformation that is entropically dominant, however, attenuates the CT, although the donor and the acceptor are spatially closer. Our computed rate of CT at the linear conformation is in good agreement with measured values. Our work provides unique fundamental understanding of the photoinduced CT process in the molecular triad.
Collapse
Affiliation(s)
- Arun K Manna
- †Department of Chemistry, Kent State University, 1787 Summit Street, Kent, Ohio 44242, United States
| | - D Balamurugan
- ∥Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Margaret S Cheung
- §Center for Theoretical Biological Physics, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Barry D Dunietz
- †Department of Chemistry, Kent State University, 1787 Summit Street, Kent, Ohio 44242, United States
| |
Collapse
|
22
|
Manna AK, Lee MH, McMahon KL, Dunietz BD. Calculating High Energy Charge Transfer States Using Optimally Tuned Range-Separated Hybrid Functionals. J Chem Theory Comput 2015; 11:1110-7. [DOI: 10.1021/ct501018n] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Arun K. Manna
- Department
of Chemistry, Kent State University, Kent, Ohio 44242, United States
| | - Myeong H. Lee
- Department
of Chemistry, Kent State University, Kent, Ohio 44242, United States
| | - Kayla L. McMahon
- Department
of Chemistry, Kent State University, Kent, Ohio 44242, United States
| | - Barry D. Dunietz
- Department
of Chemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
23
|
Ajisaka S, Žunkovič B, Dubi Y. The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium. Sci Rep 2015; 5:8312. [PMID: 25660494 PMCID: PMC4321170 DOI: 10.1038/srep08312] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022] Open
Abstract
The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system.
Collapse
Affiliation(s)
- Shigeru Ajisaka
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Bojan Žunkovič
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago Chile
| | - Yonatan Dubi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Ilse-Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
24
|
Ray A, Bauri A, Bhattacharya S. Absorption spectrophotometric, fluorescence and quantum chemical investigations on non-covalent interaction between PC₇₀BM and designed diporphyrin in solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 134:566-573. [PMID: 25138385 DOI: 10.1016/j.saa.2014.06.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/05/2014] [Accepted: 06/12/2014] [Indexed: 06/03/2023]
Abstract
Present work reports the photophysical insights on supramolecular interaction of a C₇₀ derivative, namely, [6,6]-phenyl C₇₁ butyric acid methyl ester (PC₇₀BM), with two designed diporphyrin molecules having dithiophene (1) and carbazole (2) spacer in toluene and benzonitrile. Both absorption spectrophotometric and steady state fluorescence investigations reveal efficient complexation of PC₇₀BM with 1 and 2 in both toluene and benzonitrile. The magnitude of average value of binding constant, viz., Kav, for the complexes of PC₇₀BM with 1 and 2 in toluene (benzonitrile) are estimated to be 2.185 × 10(3)dm(3)mol(-1) (3.215 × 10(3)dm(3)mol(-1)) and 10.180 × 10(3)dm(3)mol(-1) (25.405 × 10(3)dm(3)mol(-1)), respectively. Selectivity in binding for the complexation process of PC₇₀BM with 1 and 2 is estimated to be ∼4.6 and ∼7.90 as observed in toluene and benzonitrile, respectively. The complexation between PC₇₀BM and diporphyrin is well accounted by a theoretical model which takes into account the electronic subsystems of both acceptor and donor. Ab initio calculations in vacuo establish that size selective orientation pattern of PC₇₀BM towards the cavity of diporphyrin dictates the magnitude of binding and electronic structure of the PC₇₀BM/diporphyrin complexes.
Collapse
Affiliation(s)
- Anamika Ray
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713 104, India
| | - Ajoy Bauri
- Bio-organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sumanta Bhattacharya
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713 104, India.
| |
Collapse
|
25
|
Olguin M, Basurto L, Zope RR, Baruah T. The effect of structural changes on charge transfer states in a light-harvesting carotenoid-diaryl-porphyrin-C60 molecular triad. J Chem Phys 2014; 140:204309. [PMID: 24880282 DOI: 10.1063/1.4876075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a detailed study of charge transfer (CT) excited states for a large number of configurations in a light-harvesting Carotenoid-diaryl-Porphyrin-C60 (CPC60) molecular triad. The chain-like molecular triad undergoes photoinduced charge transfer process exhibiting a large excited state dipole moment, making it suitable for application to molecular-scale opto-electronic devices. An important consideration is that the structural flexibility of the CPC60 triad impacts its dynamics in solvents. Since experimentally measured dipole moments for the triad of ∼110 D and ∼160 D strongly indicate a range in structural variability in the excited state, studying the effect of structural changes on the CT excited state energetics furthers the understanding of its charge transfer states. We have calculated the variation in the lowest CT excited state energies by performing a scan of possible variation in the structure of the triad. Some of these configurations were generated by incrementally scanning a 360° torsional (dihedral) twist at the C60-porhyrin linkage and the porphyrin-carotenoid linkage. Additionally, five different CPC60 conformations were studied to determine the effect of pi-conjugation and particle-hole Coulombic attraction on the CT excitation energies. Our calculations show that configurational changes in the triad induces a variation of ∼0.6 eV in CT excited state energies in the gas-phase. The corresponding calculated excited state dipoles show a range of 47 D-188 D. The absorption spectra and density of states of these structures show little variation except for the structures where the porphyrin and aryl conjugation is changed.
Collapse
Affiliation(s)
- Marco Olguin
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Luis Basurto
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R Zope
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
26
|
Balamurugan D, Aquino AJA, de Dios F, Flores L, Lischka H, Cheung MS. Multiscale Simulation of the Ground and Photo-Induced Charge-Separated States of a Molecular Triad in Polar Organic Solvent: Exploring the Conformations, Fluctuations, and Free Energy Landscapes. J Phys Chem B 2013; 117:12065-75. [DOI: 10.1021/jp4026927] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- D. Balamurugan
- Department
of Physics, University of Houston, Houston, Texas 77204, United States
| | - Adelia J. A. Aquino
- Department
of Chemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Francis de Dios
- Department
of Physics, University of Houston, Houston, Texas 77204, United States
| | - Lionel Flores
- Department
of Physics, University of Houston, Houston, Texas 77204, United States
| | - Hans Lischka
- Department
of Chemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Margaret S. Cheung
- Department
of Physics, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
27
|
Onidas D, Sipka G, Asztalos E, Maróti P. Mutational control of bioenergetics of bacterial reaction center probed by delayed fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1191-9. [PMID: 23685111 DOI: 10.1016/j.bbabio.2013.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/01/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
Abstract
The free energy gap between the metastable charge separated state P(+)QA(-) and the excited bacteriochlorophyll dimer P* was measured by delayed fluorescence of the dimer in mutant reaction center proteins of the photosynthetic bacterium Rhodobacter sphaeroides. The mutations were engineered both at the donor (L131L, M160L, M197F and M202H) and acceptor (M265I and M234E) sides. While the donor side mutations changed systematically the number of H-bonds to P, the acceptor side mutations modified the energetics of QA by altering the van-der-Waals and electronic interactions (M265IT) and H-bond network to the acidic cluster around QB (M234EH, M234EL, M234EA and M234ER). All mutants decreased the free energy gap of the wild type RC (~890meV), i.e. destabilized the P(+)QA(-) charge pair by 60-110meV at pH8. Multiple modifications in the hydrogen bonding pattern to P resulted in systematic changes of the free energy gap. The destabilization showed no pH-dependence (M234 mutants) or slight increase (WT, donor-side mutants and M265IT above pH8) with average slope of 10-15meV/pH unit over the 6-10.5pH range. In wild type and donor-side mutants, the free energy change of the charge separation consisted of mainly enthalpic term but the acceptor side mutants showed increased entropic (even above that of enthalpic) contributions. This could include softening the structure of the iron ligand (M234EH) and the QA binding pocket (M265IT) and/or increase of the multiplicity of the electron transfer of charge separation in the acceptor side upon mutation.
Collapse
Affiliation(s)
- Delphine Onidas
- Laboratoire de Chimie Physique UMR 8000, Batiment 350, Orsay-Cedex, Université de Paris-Sud, 91405, France
| | | | | | | |
Collapse
|
28
|
Matt B, Xiang X, Kaledin AL, Han N, Moussa J, Amouri H, Alves S, Hill CL, Lian T, Musaev DG, Izzet G, Proust A. Long lived charge separation in iridium(iii)-photosensitized polyoxometalates: synthesis, photophysical and computational studies of organometallic–redox tunable oxide assemblies. Chem Sci 2013. [DOI: 10.1039/c3sc21998d] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
29
|
Alternating electron and proton transfer steps in photosynthetic water oxidation. Proc Natl Acad Sci U S A 2012; 109:16035-40. [PMID: 22988080 DOI: 10.1073/pnas.1206266109] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) → S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) → S(1) transition are similar (τ, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.
Collapse
|
30
|
Fast structural changes (200-900ns) may prepare the photosynthetic manganese complex for oxidation by the adjacent tyrosine radical. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1196-207. [PMID: 22579714 DOI: 10.1016/j.bbabio.2012.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/25/2012] [Accepted: 04/30/2012] [Indexed: 11/20/2022]
Abstract
The Mn complex of photosystem II (PSII) cycles through 4 semi-stable states (S(0) to S(3)). Laser-flash excitation of PSII in the S(2) or S(3) state induces processes with time constants around 350ns, which have been assigned previously to energetic relaxation of the oxidized tyrosine (Y(Z)(ox)). Herein we report monitoring of these processes in the time domain of hundreds of nanoseconds by photoacoustic (or 'optoacoustic') experiments involving pressure-wave detection after excitation of PSII membrane particles by ns-laser flashes. We find that specifically for excitation of PSII in the S(2) state, nuclear rearrangements are induced which amount to a contraction of PSII by at least 30Å(3) (time constant of 350ns at 25°C; activation energy of 285+/-50meV). In the S(3) state, the 350-ns-contraction is about 5 times smaller whereas in S(0) and S(1), no volume changes are detectable in this time domain. It is proposed that the classical S(2)=>S(3) transition of the Mn complex is a multi-step process. The first step after Y(Z)(ox) formation involves a fast nuclear rearrangement of the Mn complex and its protein-water environment (~350ns), which may serve a dual role: (1) The Mn- complex entity is prepared for the subsequent proton removal and electron transfer by formation of an intermediate state of specific (but still unknown) atomic structure. (2) Formation of the structural intermediate is associated (necessarily) with energetic relaxation and thus stabilization of Y(Z)(ox) so that energy losses by charge recombination with the Q(A)(-) anion radical are minimized. The intermediate formed within about 350ns after Y(Z)(ox) formation in the S(2)-state is discussed in the context of two recent models of the S(2)=>S(3) transition of the water oxidation cycle. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: From Natural to Artificial.
Collapse
|
31
|
Su G, Czader A, Homouz D, Bernardes G, Mateen S, Cheung MS. Multiscale Simulation on a Light-Harvesting Molecular Triad. J Phys Chem B 2012; 116:8460-73. [DOI: 10.1021/jp212273n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guoxiong Su
- Department of Physics, University of Houston, Houston, Texas 77204, United
States
| | - Arkadiusz Czader
- Department of Chemistry, University of Houston, Houston, Texas 77204, United
States
| | - Dirar Homouz
- Department of Applied
Math and
Sciences, Khalifa University, Abu Dhabi,
United Arab Emirates
| | - Gabriela Bernardes
- Department of Physics, University of Houston, Houston, Texas 77204, United
States
| | - Sana Mateen
- Department of Physics, University of Houston, Houston, Texas 77204, United
States
| | - Margaret S. Cheung
- Department of Physics, University of Houston, Houston, Texas 77204, United
States
| |
Collapse
|
32
|
Charge separation in a covalently-linked phthalocyanine-oligo(p-phenylenevinylene)-C60 system. Influence of the solvent polarity. J Inorg Biochem 2012; 108:216-24. [DOI: 10.1016/j.jinorgbio.2011.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 11/14/2011] [Accepted: 11/14/2011] [Indexed: 01/02/2023]
|
33
|
Abstract
This special issue is focussed on arguably the most important fundamental question in contemporary chemical research: how to efficiently and economically convert abundant and thermodynamically stable molecules, such as H2O, CO2, and N2 into useable fuel and food sources. The 3 billion year evolutionary experiment of nature has provided a blueprint for the answer: multi-electron catalysis. However, unlike one-electron transfer, we have no refined theories for multi-electron processes. This is despite its centrality to much of chemistry, particularly in catalysis and biology. In this article we highlight recent research developments relevant to this theme with emphasis on the key physical concepts and premises: (i) multi-electron processes as stepwise single-electron transfer events; (ii) proton-coupled electron transfer; (iii) stimulated, concerted, and co-operative phenomena; (iv) feedback mechanisms that may enhance electron transfer rates by minimizing activation barriers; and (v) non-linearity and far-from-equilibrium considerations. The aim of our discussion is to provide inspiration for new directions in chemical research, in the context of an urgent contemporary issue.
Collapse
|
34
|
Listening to PS II: Enthalpy, entropy, and volume changes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:357-65. [DOI: 10.1016/j.jphotobiol.2011.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 11/17/2022]
|
35
|
Kahnt A, Kärnbratt J, Esdaile LJ, Hutin M, Sawada K, Anderson HL, Albinsson B. Temperature dependence of charge separation and recombination in porphyrin oligomer-fullerene donor-acceptor systems. J Am Chem Soc 2011; 133:9863-71. [PMID: 21595470 PMCID: PMC3119959 DOI: 10.1021/ja2019367] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Indexed: 01/12/2023]
Abstract
Electron-transfer reactions are fundamental to many practical devices, but because of their complexity, it is often very difficult to interpret measurements done on the complete device. Therefore, studies of model systems are crucial. Here the rates of charge separation and recombination in donor-acceptor systems consisting of a series of butadiyne-linked porphyrin oligomers (n = 1-4, 6) appended to C(60) were investigated. At room temperature, excitation of the porphyrin oligomer led to fast (5-25 ps) electron transfer to C(60) followed by slower (200-650 ps) recombination. The temperature dependence of the charge-separation reaction revealed a complex process for the longer oligomers, in which a combination of (i) direct charge separation and (ii) migration of excitation energy along the oligomer followed by charge separation explained the observed fluorescence decay kinetics. The energy migration is controlled by the temperature-dependent conformational dynamics of the longer oligomers and thereby limits the quantum yield for charge separation. Charge recombination was also studied as a function of temperature through measurements of femtosecond transient absorption. The temperature dependence of the electron-transfer reactions could be successfully modeled using the Marcus equation through optimization of the electronic coupling (V) and the reorganization energy (λ). For the charge-separation rate, all of the donor-acceptor systems could be successfully described by a common electronic coupling, supporting a model in which energy migration is followed by charge separation. In this respect, the C(60)-appended porphyrin oligomers are suitable model systems for practical charge-separation devices such as bulk-heterojunction solar cells, where conformational disorder strongly influences the electron-transfer reactions and performance of the device.
Collapse
Affiliation(s)
- Axel Kahnt
- Physical Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 3, 412 96 Göteborg, Sweden
| | - Joakim Kärnbratt
- Physical Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 3, 412 96 Göteborg, Sweden
| | - Louisa J. Esdaile
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Marie Hutin
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Katsutoshi Sawada
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Harry L. Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Bo Albinsson
- Physical Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 3, 412 96 Göteborg, Sweden
| |
Collapse
|
36
|
Methodology of pulsed photoacoustics and its application to probe photosystems and receptors. SENSORS 2010; 10:5642-67. [PMID: 22219680 PMCID: PMC3247725 DOI: 10.3390/s100605642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 11/16/2022]
Abstract
We review recent advances in the methodology of pulsed time-resolved photoacoustics and its application to studies of photosynthetic reaction centers and membrane receptors such as the G protein-coupled receptor rhodopsin. The experimental parameters accessible to photoacoustics include molecular volume change and photoreaction enthalpy change. Light-driven volume change secondary to protein conformational changes or electrostriction is directly related to the photoreaction and thus can be a useful measurement of activity and function. The enthalpy changes of the photochemical reactions observed can be measured directly by photoacoustics. With the measurement of enthalpy change, the reaction entropy can also be calculated when free energy is known. Dissecting the free energy of a photoreaction into enthalpic and entropic components may provide critical information about photoactivation mechanisms of photosystems and photoreceptors. The potential limitations and future applications of time-resolved photoacoustics are also discussed.
Collapse
|
37
|
Rio Y, Seitz W, Gouloumis A, Vázquez P, Sessler J, Guldi D, Torres T. A Panchromatic Supramolecular Fullerene-Based Donor-Acceptor Assembly Derived from a Peripherally Substituted Bodipy-Zinc Phthalocyanine Dyad. Chemistry 2010; 16:1929-40. [DOI: 10.1002/chem.200902507] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Rodríguez-Morgade MS, Plonska-Brzezinska ME, Athans AJ, Carbonell E, de Miguel G, Guldi DM, Echegoyen L, Torres T. Synthesis, characterization, and photoinduced electron transfer processes of orthogonal ruthenium phthalocyanine-fullerene assemblies. J Am Chem Soc 2009; 131:10484-96. [PMID: 19722625 DOI: 10.1021/ja902471w] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The convergent synthesis, electrochemical characterization, and photophysical studies of phthalocyanine-fullerene hybrids 3-5 bearing an orthogonal geometry (Chart ) are reported. These donor-acceptor arrays have been assembled through metal coordination of linear fullerene mono- and bispyridyl ligands to ruthenium(II) phthalocyanines. The hybrid [Ru(CO)(C(60)Py)Pc] (3) and the triad [Ru(2)(CO)(2)(C(60)Py(2))Pc(2)] (5) were prepared by treatment of the phthalocyanine 6 with the mono- and hexakis-substituted C(60)-pyridyl ligands 1 and 2, respectively. The triad [Ru(C(60)Py)(2)Pc] (4) was prepared in a similar manner from the monosubstituted C(60)-pyridyl ligand 1 and the phthalocyanine precursor 7. The simplicity of this versatile synthetic approach allows to determine the influence of the donor and acceptor ratio in the radical ion pair state lifetime. The chemical, electrochemical, and photophysical characterization of the phthalocyanine-fullerene hybrids 3-5 was conducted using (1)H and (13)C NMR, UV/vis, and IR spectroscopies, as well as mass spectrometry, cyclic voltammetry, femtosecond transient absorption studies, and nanosecond laser flash photolysis experiments. Arrays 3-5 exhibit electronic coupling between the two electroactive components in the ground state, which is modulated by the axial CO and 4-pyridylfulleropyrrolidine ligands. With respect to the excited state, we have demonstrated that RuPc/C(60) electron donor-acceptor hybrids are a versatile platform to fine-tune the outcome and dynamics of charge transfer processes. The use of ruthenium(II) phthalocyanines instead of the corresponding zinc(II) complexes allows the suppression of energy wasting and unwanted charge recombination, affording radical ion pair state lifetimes on the order of hundreds of nanoseconds for the C(60)-monoadduct-based complexes 3 and 4. For the hexakis-substituted C(60) unit 2, the reduction potential is shifted cathodically, thus raising the radical ion pair state energy. However, the location of the RuPc triplet excited state is not high enough, and still offers a rapid deactivation of the radical ion pair state.
Collapse
Affiliation(s)
- M Salomé Rodríguez-Morgade
- Departamento de Química Orgánica (C-I), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ghosh PK, Smirnov AY, Nori F. Modeling light-driven proton pumps in artificial photosynthetic reaction centers. J Chem Phys 2009; 131:035102. [DOI: 10.1063/1.3170939] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Spallanzani N, Rozzi CA, Varsano D, Baruah T, Pederson MR, Manghi F, Rubio A. Photoexcitation of a light-harvesting supramolecular triad: a time-dependent DFT study. J Phys Chem B 2009; 113:5345-9. [PMID: 19331406 DOI: 10.1021/jp900820q] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the first time-dependent density functional theory (TDDFT) calculation on a light-harvesting triad carotenoid-diaryl-porphyrin-C(60). Besides the numerical challenge that the ab initio study of the electronic structure of such a large system presents, we show that TDDFT is able to provide an accurate description of the excited-state properties of the system. In particular, we calculate the photoabsorption spectrum of the supramolecular assembly, and we provide an interpretation of the photoexcitation mechanism in terms of the properties of the component moieties. The spectrum is in good agreement with experimental data, and provides useful insight on the photoinduced charge-transfer mechanism which characterizes the system.
Collapse
Affiliation(s)
- N Spallanzani
- Department of Physics, University of Modena e Reggio Emilia, via Campi 213a, 41100 Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Hou HJM, Shen G, Boichenko VA, Golbeck JH, Mauzerall D. Thermodynamics of Charge Separation of Photosystem I in the menA and menB Null Mutants of Synechocystis sp. PCC 6803 Determined by Pulsed Photoacoustics. Biochemistry 2009; 48:1829-37. [DOI: 10.1021/bi801951t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Harvey J. M. Hou
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia, and The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Gaozhong Shen
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia, and The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Vladimir A. Boichenko
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia, and The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - John H. Golbeck
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia, and The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - David Mauzerall
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia, and The Rockefeller University, 1230 York Avenue, New York, New York 10065
| |
Collapse
|