1
|
Werner HJ, Hansen A. Accurate Calculation of Isomerization and Conformational Energies of Larger Molecules Using Explicitly Correlated Local Coupled Cluster Methods in Molpro and ORCA. J Chem Theory Comput 2023; 19:7007-7030. [PMID: 37486154 DOI: 10.1021/acs.jctc.3c00270] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An overview of the approximations in the explicitly correlated local coupled cluster methods PNO-LCCSD(T)-F12 in Molpro and DLPNO-CCSD(T)F12 in ORCA is given. Options to select the domains of projected atomic orbitals (PAOs), pair natural orbitals (PNOs), and triples natural orbitals (TNOs) in both programs are described and compared in detail. The two programs are applied to compute isomerization and conformational energies of the ISOL24 and ACONFL test sets, where the former is part of the GMTKN55 benchmark suite. Thorough studies of basis set effects are presented for selected systems. These revealed large intramolecular basis set superposition effects that make it practically impossible to reliably determine the complete basis set (CBS) limits without including explicitly correlated terms. The latter strongly reduce the basis set dependence and at the same time also errors caused by the local domain approximations. On the basis of these studies, the PNO-LCCSD(T)-F12 method is applied to determine new reference energies for the above-mentioned benchmark sets. We are confident that our results should agree within a few tenths of a kcal mol-1 with the (unknown) CCSD(T)/CBS values, which therefore allowed us to define computational settings for accurate explicitly correlated local coupled cluster methods with moderate computational effort. With these protocols, especially PNO-LCCSD(T)-F12b/AVTZ', reliable reference values for comprehensive benchmark sets can be generated efficiently. This can significantly advance the development and evaluation of the performance of approximate electronic structure methods, especially improved density functional approximations or machine learning approaches.
Collapse
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| |
Collapse
|
2
|
Liang Q, Yang J. Third-Order Many-Body Expansion of OSV-MP2 Wave Function for Low-Order Scaling Analytical Gradient Computation. J Chem Theory Comput 2021; 17:6841-6860. [PMID: 34704757 DOI: 10.1021/acs.jctc.1c00581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a many-body expansion (MBE) formulation and implementation for efficient computation of analytical energy gradients from the orbital-specific-virtual second-order Møllet-Plesset perturbation theory (OSV-MP2) based on our earlier work (Zhou et al. J. Chem. Theory Comput. 2020, 16, 196-210). The third-order MBE(3) expansion of OSV-MP2 amplitudes and density matrices was developed to adopt the orbital-specific clustering and long-range termination schemes, which avoids term-by-term differentiations of the MBE energy bodies. We achieve better efficiency by exploiting the algorithmic sparsity that allows us to prune out insignificant fitting integrals and OSV relaxations. With these approximations, the present implementation is benchmarked on a range of molecules that show an economic scaling in the linear and quadratic regimes for computing MBE(3)-OSV-MP2 amplitude and gradient equations, respectively, and yields normal accuracy comparable to the original OSV-MP2 results. The MPI-3-based parallelism through shared memory one-sided communication is further developed for improving parallel scalability and memory accessibility by sorting the MBE(3) orbital clusters into independent tasks that are distributed on multiple processes across many nodes, supporting both global and local data locations in which selected MBE(3)-OSV-MP2 intermediates of different sizes are distinguished and accordingly placed. The accuracy and efficiency level of our MBE(3)-OSV-MP2 analytical gradient implementation is finally illustrated in two applications: we show that the subtle coordination structure differences of mechanically interlocked Cu-catenane complexes can be distinguished when tuning ligand lengths; and the porphycene molecular dynamics reveals the emergence of the vibrational signature arising from softened N-H stretching associated with hydrogen transfer, using an MP2 level of electron correlation and classical nuclei for the first time.
Collapse
Affiliation(s)
- Qiujiang Liang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
3
|
Wang Z, Liu W. iOI: An Iterative Orbital Interaction Approach for Solving the Self-Consistent Field Problem. J Chem Theory Comput 2021; 17:4831-4845. [PMID: 34240856 DOI: 10.1021/acs.jctc.1c00445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An iterative orbital interaction (iOI) approach is proposed to solve, in a bottom-up fashion, the self-consistent field problem in quantum chemistry. While it belongs grossly to the family of fragment-based quantum chemical methods, iOI is distinctive in that (1) it divides and conquers not only the energy but also the wave function and that (2) the subsystem sizes are automatically determined by successively merging neighboring small subsystems until they are just enough for converging the wave function to a given accuracy. Orthonormal occupied and virtual localized molecular orbitals are obtained in a natural manner, which can be used for all post-SCF purposes.
Collapse
Affiliation(s)
- Zikuan Wang
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
4
|
Ma Q, Werner HJ. Scalable Electron Correlation Methods. 8. Explicitly Correlated Open-Shell Coupled-Cluster with Pair Natural Orbitals PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. J Chem Theory Comput 2021; 17:902-926. [PMID: 33405921 DOI: 10.1021/acs.jctc.0c01129] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We present explicitly correlated open-shell pair natural orbital local coupled-cluster methods, PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. The methods are extensions of our previously reported PNO-R/UCCSD methods (J. Chem. Theory Comput., 2020, 16, 3135-3151, https://pubs.acs.org/doi/10.1021/acs.jctc.0c00192) with additions of explicit correlation and perturbative triples corrections. The explicit correlation treatment follows the spin-orbital CCSD-F12b theory using Ansatz 3*A, which is found to yield comparable or better basis set convergence than the more rigorous Ansatz 3C in computed ionization potentials and reaction energies using double- to quaduple-ζ basis sets. The perturbative triples correction is adapted from the spin-orbital (T) theory to use triples natural orbitals (TNOs). To address the coupling due to off-diagonal Fock matrix elements, the local triples amplitudes are iteratively solved using small domains of TNOs, and a semicanonical (T0) domain correction with larger domains is applied to reduce the domain errors. The performance of the methods is demonstrated through benchmark calculations on ionization potentials, radical stabilization energies, reaction energies of fragmentations and rearrangements in radical cations, and spin-state energy differences of iron complexes. For a few test sets where canonical calculations are feasible, PNO-RCCSD(T)-F12 results agree with the canonical ones to within 0.4 kcal mol-1, and this maximum error is reduced to below 0.2 kcal mol-1 when large local domains are used. For larger systems, results using different thresholds for the local approximations are compared to demonstrate that 1 kcal mol-1 level of accuracy can be achieved using our default settings. For a couple of difficult cases, it is demonstrated that the errors from individual approximations are only a fraction of 1 kcal mol-1, and the overall accuracy of the method does not rely on error compensations. In contrast to canonical calculations, the use of spin-orbitals does not lead to a significant increase of computational time and memory usage in the most expensive steps of PNO-R/UCCSD(T)-F12 calculations. The only exception is the iterative solution of the (T) amplitudes, which can be avoided without significant errors by using a perturbative treatment of the off-diagonal coupling, known as (T1) approximation. For most systems, even the semicanonical approximation (T0) leads only to small errors in relative energies. Our program is well parallelized and capable of computing accurate correlation energies for molecules with 100-200 atoms using augmented triple-ζ basis sets in less than a day of elapsed time on a small computer cluster.
Collapse
Affiliation(s)
- Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
5
|
Krause C, Werner HJ. Scalable Electron Correlation Methods. 6. Local Spin-Restricted Open-Shell Second-Order Møller-Plesset Perturbation Theory Using Pair Natural Orbitals: PNO-RMP2. J Chem Theory Comput 2019; 15:987-1005. [PMID: 30571916 DOI: 10.1021/acs.jctc.8b01012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a (near) linear scaling implementation of high-spin open-shell Møller-Plesset perturbation theory using pair natural orbitals (PNO-RMP2). The theory is based on a new variant of open-shell MP2 which is fully spin-adapted and uses a single set of spin-free amplitudes, as in closed-shell MP2. This method, denoted SROMP2, is invariant to unitary orbital transformations within the closed, open, and virtual orbital subspaces. Accordingly, only a single set of PNOs per spatial orbital pair is needed, and the efficiency is similar to closed-shell calculations. The PNOs are obtained using a semicanonical approximation with large domains of projected atomic orbitals (PAOs). Linear scaling is achieved provided that the open-shell orbitals are local, and distant pairs are treated by multipole approximations. The method is efficiently parallelized. The convergence of ionization and reaction energies as a function of the PAO and PNO domain sizes is demonstrated and found to be very similar as for closed-shell calculations. The suitability of the PNOs for explicitly correlated PNO-RCCSD-F12 calculations is also tested. So far, this method is only simulated using a conventional program with appropriate projections to the PAO and PNO subspaces. It is demonstrated for radical stabilization energies as well as ionization potentials that the errors caused by the local domain approximations with our default thresholds are negligible.
Collapse
Affiliation(s)
- Christine Krause
- Institut für Theoretische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| |
Collapse
|
6
|
Jin Y, Bartlett RJ. Perturbation Improved Natural Linear-Scaled Coupled-Cluster Method and Its Application to Conformational Analysis. J Phys Chem A 2019; 123:371-381. [PMID: 30585491 DOI: 10.1021/acs.jpca.8b07947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fragment-based coupled-cluster (CC) theory utilizing the transferable functional groups through natural localized molecular orbital (NLMO), that is, the natural linear-scaled coupled-cluster (NLSCC) has been further developed to take the extra-fragment interactions into account. The correction to the interaction energies sacrificed during the fragmentation process for the previous NLSCC method is computed by a computationally efficient perturbation theory that maintains the original scaling. The new linear-scaled coupled-cluster for the singles and doubles (CCSD) method is applied to the analysis of relative energies of delicate conformational problems of polypeptides. By adding a perturbation correction, results accurate to less than a kcal/mol are obtained for the alanine tetramer.
Collapse
Affiliation(s)
- Yifan Jin
- Quantum Theory Project and Departments of Chemistry and Physics , University of Florida , Gainesville , Florida 32611 , United States
| | - Rodney J Bartlett
- Quantum Theory Project and Departments of Chemistry and Physics , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
7
|
Kozłowska J, Schwilk M, Roztoczyńska A, Bartkowiak W. Assessment of DFT for endohedral complexes' dipole moment: PNO-LCCSD-F12 as a reference method. Phys Chem Chem Phys 2018; 20:29374-29388. [PMID: 30451255 DOI: 10.1039/c8cp05928d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a systematic evaluation of the performance of a wide range of exchange-correlation functionals and related dispersion correction schemes for the computation of dipole moments of endohedral complexes, formed through the encapsulation of an AB molecule (AB = LiF, HCl) inside carbon nanotubes (CNTs) of different diameter. The consistency and accuracy of (i) generalized gradient approximation, (ii) meta GGA, (iii) global hybrid, and (iv) range-separated hybrid density functionals are assessed. In total, 37 density functionals are tested. The results obtained using the highly accurate pair natural orbitals based explicitly correlated local coupled cluster singles doubles (PNO-LCCSD-F12) method of Werner and co-workers [Schwilk et al., J. Chem. Theory Comput., 2017, 13, 3650; Ma et al., J. Chem. Theory Comput., 2017, 13, 4871] with the aug-cc-pVTZ basis set serve as a reference. The static electric dipole moment is computed via the finite field response or, when possible, as the expectation value of the dipole operator. Among others, it is shown that functionals belonging to the class of range-separated hybrids, provide results closest to the coupled cluster reference data. In particular, the ωB97X as well as the M11 functional may be considered as a promising choice for computing electric properties of noncovalent endohedral complexes. On the other hand, the worst performance was found for the functionals which do not include the Hartree-Fock exchange. The analysis of both the coupled cluster and the DFT results indicates a strong coupling of dispersion and polarization that may also explain why lower level DFT methods, as well as Hartree-Fock and MP2, cannot yield dipole moments beyond a qualitative agreement with the higher order reference data. Interestingly, the much smaller and less systematically constructed basis sets of Pople of moderate size provide results of accuracy at least comparable with the extended Dunning's aug-cc-pVTZ basis set.
Collapse
Affiliation(s)
- Justyna Kozłowska
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, PL-50370 Wrocław, Poland.
| | | | | | | |
Collapse
|
8
|
Ma Q, Werner H. Explicitly correlated local coupled‐cluster methods using pair natural orbitals. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1371] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qianli Ma
- Institute for Theoretical ChemistryUniversity of StuttgartStuttgartGermany
| | | |
Collapse
|
9
|
Guo Y, Riplinger C, Becker U, Liakos DG, Minenkov Y, Cavallo L, Neese F. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)]. J Chem Phys 2018; 148:011101. [PMID: 29306283 DOI: 10.1063/1.5011798] [Citation(s) in RCA: 377] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).
Collapse
Affiliation(s)
- Yang Guo
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Christoph Riplinger
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Ute Becker
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Dimitrios G Liakos
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Yury Minenkov
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), KAUST Catalysis Center (KCC), 23955-6900 Thuwal, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), KAUST Catalysis Center (KCC), 23955-6900 Thuwal, Saudi Arabia
| | - Frank Neese
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
10
|
Guo Y, Becker U, Neese F. Comparison and combination of “direct” and fragment based local correlation methods: Cluster in molecules and domain based local pair natural orbital perturbation and coupled cluster theories. J Chem Phys 2018; 148:124117. [DOI: 10.1063/1.5021898] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Yang Guo
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Ute Becker
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Fiedler B, Himmel D, Krossing I, Friedrich J. More Stable Template Localization for an Incremental Focal-Point Approach—Implementation and Application to the Intramolecular Decomposition of Tris-perfluoro- tert-butoxyalane. J Chem Theory Comput 2018; 14:557-571. [DOI: 10.1021/acs.jctc.7b00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin Fiedler
- Institut
für Chemie, Technische Universität Chemnitz, 09111 Chemnitz, Germany
| | - Daniel Himmel
- Institut
für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Ingo Krossing
- Institut
für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Joachim Friedrich
- Institut
für Chemie, Technische Universität Chemnitz, 09111 Chemnitz, Germany
| |
Collapse
|
12
|
Fiedler B, Schmitz G, Hättig C, Friedrich J. Combining Accuracy and Efficiency: An Incremental Focal-Point Method Based on Pair Natural Orbitals. J Chem Theory Comput 2017; 13:6023-6042. [PMID: 29045786 DOI: 10.1021/acs.jctc.7b00654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, we present a new pair natural orbitals (PNO)-based incremental scheme to calculate CCSD(T) and CCSD(T0) reaction, interaction, and binding energies. We perform an extensive analysis, which shows small incremental errors similar to previous non-PNO calculations. Furthermore, slight PNO errors are obtained by using TPNO = TTNO with appropriate values of 10-7 to 10-8 for reactions and 10-8 for interaction or binding energies. The combination with the efficient MP2 focal-point approach yields chemical accuracy relative to the complete basis-set (CBS) limit. In this method, small basis sets (cc-pVDZ, def2-TZVP) for the CCSD(T) part are sufficient in case of reactions or interactions, while some larger ones (e.g., (aug)-cc-pVTZ) are necessary for molecular clusters. For these larger basis sets, we show the very high efficiency of our scheme. We obtain not only tremendous decreases of the wall times (i.e., factors >102) due to the parallelization of the increment calculations as well as of the total times due to the application of PNOs (i.e., compared to the normal incremental scheme) but also smaller total times with respect to the standard PNO method. That way, our new method features a perfect applicability by combining an excellent accuracy with a very high efficiency as well as the accessibility to larger systems due to the separation of the full computation into several small increments.
Collapse
Affiliation(s)
- Benjamin Fiedler
- Institut für Chemie, Technische Universität Chemnitz , 09111 Chemnitz, Germany
| | - Gunnar Schmitz
- Institut for Kemi, Aarhus Universitet , 8000 Aarhus C, Denmark
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Joachim Friedrich
- Institut für Chemie, Technische Universität Chemnitz , 09111 Chemnitz, Germany
| |
Collapse
|
13
|
Margraf JT, Perera A, Lutz JJ, Bartlett RJ. Single-reference coupled cluster theory for multi-reference problems. J Chem Phys 2017; 147:184101. [DOI: 10.1063/1.5003128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Johannes T. Margraf
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Ajith Perera
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Jesse J. Lutz
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Rodney J. Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
14
|
Scott CJC, Thom AJW. Stochastic coupled cluster theory: Efficient sampling of the coupled cluster expansion. J Chem Phys 2017; 147:124105. [DOI: 10.1063/1.4991795] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Peng B, Kowalski K. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations. J Chem Theory Comput 2017; 13:4179-4192. [DOI: 10.1021/acs.jctc.7b00605] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bo Peng
- William R. Wiley Environmental
Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P. O. Box 999, Richland, Washington 99352, United States
| | - Karol Kowalski
- William R. Wiley Environmental
Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P. O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Schwilk M, Ma Q, Köppl C, Werner HJ. Scalable Electron Correlation Methods. 3. Efficient and Accurate Parallel Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD). J Chem Theory Comput 2017; 13:3650-3675. [DOI: 10.1021/acs.jctc.7b00554] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Max Schwilk
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Qianli Ma
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Christoph Köppl
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
17
|
Menezes F, Kats D, Werner HJ. Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2). J Chem Phys 2016; 145:124115. [DOI: 10.1063/1.4963019] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Datta D, Kossmann S, Neese F. Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory. J Chem Phys 2016. [DOI: 10.1063/1.4962369] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dipayan Datta
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Simone Kossmann
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Fiedler B, Coriani S, Friedrich J. Molecular Dipole Moments within the Incremental Scheme Using the Domain-Specific Basis-Set Approach. J Chem Theory Comput 2016; 12:3040-52. [PMID: 27300371 DOI: 10.1021/acs.jctc.6b00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present the first implementation of the fully automated incremental scheme for CCSD unrelaxed dipole moments using the domain-specific basis-set approach. Truncation parameters are varied, and the accuracy of the method is statistically analyzed for a test set of 20 molecules. The local approximations introduce small errors at second order and negligible ones at third order. For a third-order incremental CCSD expansion with a CC2 error correction, a cc-pVDZ/SV domain-specific basis set (tmain = 3.5 Bohr), and the truncation parameter f = 30 Bohr, we obtain a mean error of 0.00 mau (-0.20 mau) and a standard deviation of 1.95 mau (2.17 mau) for the total dipole moments (Cartesian components of the dipole vectors). By analyzing incremental CCSD energies, we demonstrate that the MP2 and CC2 error correction schemes are an exclusive correction for the domain-specific basis-set error. Our implementation of the incremental scheme provides fully automated computations of highly accurate dipole moments at reduced computational cost and is fully parallelized in terms of the calculation of the increments. Therefore, one can utilize the incremental scheme, on the same hardware, to extend the basis set in comparison to standard CCSD and thus obtain a better total accuracy.
Collapse
Affiliation(s)
- Benjamin Fiedler
- Institute for Chemistry, Technische Universität Chemnitz , Straße der Nationen 62, D-09111 Chemnitz, Germany
| | - Sonia Coriani
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste , Via L. Giorgieri 1, I-34127 Trieste, Italy.,Aarhus Institute of Advanced Studies, Aarhus University , Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| | - Joachim Friedrich
- Institute for Chemistry, Technische Universität Chemnitz , Straße der Nationen 62, D-09111 Chemnitz, Germany
| |
Collapse
|
20
|
Zhang J, Dolg M. Third-Order Incremental Dual-Basis Set Zero-Buffer Approach for Large High-Spin Open-Shell Systems. J Chem Theory Comput 2016; 11:962-8. [PMID: 26579750 DOI: 10.1021/ct501052e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The third-order incremental dual-basis set zero-buffer approach (inc3-db-B0) is an efficient, accurate, and black-box quantum chemical method for obtaining correlation energies of large systems, and it has been successfully applied to many real chemical problems. In this work, we extend this approach to high-spin open-shell systems. In the open-shell approach, we will first decompose the occupied orbitals of a system into several domains by a K-means clustering algorithm. The essential part is that we preserve the active (singly occupied) orbitals in all the calculations of the domain correlation energies. The duplicated contributions of the active orbitals to the correlation energy are subtracted from the incremental expansion. All techniques of truncating the virtual space such as the B0 approximation can be applied. This open-shell inc3-db-B0 approach is combined with the CCSD and CCSD(T) methods and applied to the computations of a singlet-triplet gap and an electron detachment process. Our approach exhibits an accuracy better than 0.6 kcal/mol or 0.3 eV compared with the standard implementation, while it saves a large amount of the computational time and can be efficiently parallelized.
Collapse
Affiliation(s)
- Jun Zhang
- Institute for Theoretical Chemistry, University of Cologne , Greinstraße 4, D-50939 Cologne, Germany
| | - Michael Dolg
- Institute for Theoretical Chemistry, University of Cologne , Greinstraße 4, D-50939 Cologne, Germany
| |
Collapse
|
21
|
Liakos DG, Neese F. Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory. J Chem Theory Comput 2015; 11:4054-63. [DOI: 10.1021/acs.jctc.5b00359] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dimitrios G. Liakos
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 32-34, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 32-34, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
22
|
Azar RJ, Head-Gordon M. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions. J Chem Phys 2015; 142:204101. [DOI: 10.1063/1.4921377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Richard Julian Azar
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
23
|
Schwilk M, Usvyat D, Werner HJ. Communication: Improved pair approximations in local coupled-cluster methods. J Chem Phys 2015; 142:121102. [DOI: 10.1063/1.4916316] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Max Schwilk
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Denis Usvyat
- Institute for Physical and Theoretical Chemistry, Universität Regensburg, Universitätsstrasse 31, D-93040 Regensburg, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
24
|
Vogiatzis KD, Klopper W, Friedrich J. Non-covalent Interactions of CO2 with Functional Groups of Metal–Organic Frameworks from a CCSD(T) Scheme Applicable to Large Systems. J Chem Theory Comput 2015; 11:1574-84. [DOI: 10.1021/ct5011888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Konstantinos D. Vogiatzis
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, United States
- Institute
of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg
2, D-76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute
of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg
2, D-76131 Karlsruhe, Germany
| | - Joachim Friedrich
- Institute
of Chemistry, Chemnitz University of Technology, Strasse der Nationen 62, D-09111 Chemnitz, Germany
| |
Collapse
|
25
|
Werner HJ, Knizia G, Krause C, Schwilk M, Dornbach M. Scalable Electron Correlation Methods I.: PNO-LMP2 with Linear Scaling in the Molecular Size and Near-Inverse-Linear Scaling in the Number of Processors. J Chem Theory Comput 2015; 11:484-507. [DOI: 10.1021/ct500725e] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Gerald Knizia
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Christine Krause
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Max Schwilk
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Mark Dornbach
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
26
|
Friedrich J, McAlexander HR, Kumar A, Crawford TD. Incremental evaluation of coupled cluster dipole polarizabilities. Phys Chem Chem Phys 2015; 17:14284-96. [DOI: 10.1039/c4cp05076b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we present the first implementation of the incremental scheme for coupled cluster linear-response frequency-dependent dipole polarizabilities.
Collapse
Affiliation(s)
- Joachim Friedrich
- Institute for Chemistry
- Chemnitz University of Technology
- 09111 Chemnitz
- Germany
| | | | | | | |
Collapse
|
27
|
Dolg M. Approaching the complete basis set limit of CCSD(T) for large systems by the third-order incremental dual-basis set zero-buffer F12 method. J Chem Phys 2014; 140:044114. [DOI: 10.1063/1.4862826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
28
|
DePrince, AE, Kennedy MR, Sumpter BG, Sherrill CD. Density-fitted singles and doubles coupled cluster on graphics processing units. Mol Phys 2014. [DOI: 10.1080/00268976.2013.874599] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Friedrich J, Hänchen J. Incremental CCSD(T)(F12*)|MP2: A Black Box Method To Obtain Highly Accurate Reaction Energies. J Chem Theory Comput 2013; 9:5381-94. [DOI: 10.1021/ct4008074] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joachim Friedrich
- Institute for Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Julia Hänchen
- Institute for Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
30
|
Zhang J, Dolg M. Third-Order Incremental Dual-Basis Set Zero-Buffer Approach: An Accurate and Efficient Way To Obtain CCSD and CCSD(T) Energies. J Chem Theory Comput 2013; 9:2992-3003. [DOI: 10.1021/ct400284d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Zhang
- Department of Chemistry, University of Cologne, Cologne, Germany
| | - Michael Dolg
- Department of Chemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Anacker T, Friedrich J. Highly accurate incremental CCSD(T) calculations on aqua- and amine-complexes. Mol Phys 2013. [DOI: 10.1080/00268976.2013.781693] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tony Anacker
- a Department of Theoretical Chemistry , Chemnitz University of Technology , Chemnitz , Germany
| | - Joachim Friedrich
- a Department of Theoretical Chemistry , Chemnitz University of Technology , Chemnitz , Germany
| |
Collapse
|
32
|
Körzdörfer T, Parrish RM, Sears JS, Sherrill CD, Brédas JL. On the relationship between bond-length alternation and many-electron self-interaction error. J Chem Phys 2013; 137:124305. [PMID: 23020329 DOI: 10.1063/1.4752431] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Predicting accurate bond-length alternations (BLAs) in long conjugated molecular chains has been a major challenge for electronic-structure theory for many decades. While Hartree-Fock (HF) overestimates BLA significantly, second-order perturbation theory and commonly used density functional theory (DFT) approaches typically underestimate it. Here, we discuss how this failure is related to the many-electron self-interaction error (MSIE), which is inherent to both HF and DFT approaches. We use tuned long-range corrected hybrids to minimize the MSIE for a series of polyenes. The key result is that the minimization of the MSIE alone does not yield accurate BLAs. On the other hand, if the range-separation parameter is tuned to yield accurate BLAs, we obtain a significant MSIE that grows with chain length. Our findings demonstrate that reducing the MSIE is one but not the only important aspect necessary to obtain accurate BLAs from density functional theory.
Collapse
Affiliation(s)
- Thomas Körzdörfer
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | | | | | | | |
Collapse
|
33
|
Friedrich J, Walczak K. Incremental CCSD(T)(F12)|MP2-F12—A Method to Obtain Highly Accurate CCSD(T) Energies for Large Molecules. J Chem Theory Comput 2012; 9:408-17. [DOI: 10.1021/ct300938w] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joachim Friedrich
- Institute for Chemistry, Chemnitz
University of Technology,
Strasse der Nationen 62, 09111 Chemnitz, Germany
| | - Katarzyna Walczak
- Institute for Chemistry, Chemnitz
University of Technology,
Strasse der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
34
|
Hohenstein EG, Parrish RM, Martínez TJ. Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory. J Chem Phys 2012; 137:044103. [DOI: 10.1063/1.4732310] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Hättig C, Tew DP, Helmich B. Local explicitly correlated second- and third-order Møller–Plesset perturbation theory with pair natural orbitals. J Chem Phys 2012; 136:204105. [DOI: 10.1063/1.4719981] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
36
|
Kozlowski PM, Kumar M, Piecuch P, Li W, Bauman NP, Hansen JA, Lodowski P, Jaworska M. The Cobalt–Methyl Bond Dissociation in Methylcobalamin: New Benchmark Analysis Based on Density Functional Theory and Completely Renormalized Coupled-Cluster Calculations. J Chem Theory Comput 2012; 8:1870-94. [DOI: 10.1021/ct300170y] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pawel M. Kozlowski
- Department of Chemistry, University
of Louisville,
2320 South Brook St., Louisville, Kentucky 40292, United States
| | - Manoj Kumar
- Department of Chemistry, University
of Louisville,
2320 South Brook St., Louisville, Kentucky 40292, United States
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University,
578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Wei Li
- Department of Chemistry, Michigan State University,
578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Nicholas P. Bauman
- Department of Chemistry, Michigan State University,
578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Jared A. Hansen
- Department of Chemistry, Michigan State University,
578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Piotr Lodowski
- Institute
of Chemistry, University of Silesia, Szkolna
9, PL-40 006 Katowice, Poland
| | - Maria Jaworska
- Institute
of Chemistry, University of Silesia, Szkolna
9, PL-40 006 Katowice, Poland
| |
Collapse
|
37
|
Lyakh DI, Bartlett RJ. A remark on the disconnected nature of Lagrange equations in the context of a linear-scaling implementation of the coupled-cluster energy gradients. Mol Phys 2012. [DOI: 10.1080/00268976.2012.679639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Dmitry I. Lyakh
- a Quantum Theory Project, University of Florida , Gainesville , FL, 32611 , USA
| | - Rodney J. Bartlett
- a Quantum Theory Project, University of Florida , Gainesville , FL, 32611 , USA
| |
Collapse
|
38
|
Friedrich J. Incremental Scheme for Intermolecular Interactions: Benchmarking the Accuracy and the Efficiency. J Chem Theory Comput 2012; 8:1597-607. [DOI: 10.1021/ct200686h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joachim Friedrich
- Institute for Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz,
Germany
| |
Collapse
|
39
|
Krause C, Werner HJ. Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals. Phys Chem Chem Phys 2012; 14:7591-604. [DOI: 10.1039/c2cp40231a] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Werner HJ, Schütz M. An efficient local coupled cluster method for accurate thermochemistry of large systems. J Chem Phys 2011; 135:144116. [DOI: 10.1063/1.3641642] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Jacobson LD, Herbert JM. An efficient, fragment-based electronic structure method for molecular systems: Self-consistent polarization with perturbative two-body exchange and dispersion. J Chem Phys 2011; 134:094118. [DOI: 10.1063/1.3560026] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Local Approximations for an Efficient and Accurate Treatment of Electron Correlation and Electron Excitations in Molecules. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2011. [DOI: 10.1007/978-90-481-2853-2_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Korona T. The effect of local approximations on first-order properties from expectation-value coupled cluster theory. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0872-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Riley KE, Pitonák M, Jurecka P, Hobza P. Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 2010; 110:5023-63. [PMID: 20486691 DOI: 10.1021/cr1000173] [Citation(s) in RCA: 570] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kevin E Riley
- Department of Chemistry, University of Puerto Rico, Rio Piedras, Puerto Rico 00931
| | | | | | | |
Collapse
|
45
|
Friedrich J, Coriani S, Helgaker T, Dolg M. Implementation of the incremental scheme for one-electron first-order properties in coupled-cluster theory. J Chem Phys 2010; 131:154102. [PMID: 20568842 DOI: 10.1063/1.3243864] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A fully automated parallelized implementation of the incremental scheme for coupled-cluster singles-and-doubles (CCSD) energies has been extended to treat molecular (unrelaxed) first-order one-electron properties such as the electric dipole and quadrupole moments. The convergence and accuracy of the incremental approach for the dipole and quadrupole moments have been studied for a variety of chemically interesting systems. It is found that the electric dipole moment can be obtained to within 5% and 0.5% accuracy with respect to the exact CCSD value at the third and fourth orders of the expansion, respectively. Furthermore, we find that the incremental expansion of the quadrupole moment converges to the exact result with increasing order of the expansion: the convergence of nonaromatic compounds is fast with errors less than 16 mau and less than 1 mau at third and fourth orders, respectively (1 mau=10(-3)ea(0)(2)); the aromatic compounds converge slowly with maximum absolute deviations of 174 and 72 mau at third and fourth orders, respectively.
Collapse
Affiliation(s)
- Joachim Friedrich
- Institute for Theoretical Chemistry, University of Cologne, Greinstr. 4, 50939 Cologne, Germany.
| | | | | | | |
Collapse
|
46
|
Li W, Piecuch P. Multilevel Extension of the Cluster-in-Molecule Local Correlation Methodology: Merging Coupled-Cluster and Møller−Plesset Perturbation Theories. J Phys Chem A 2010; 114:6721-7. [DOI: 10.1021/jp1038738] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
47
|
Friedrich J, Hanrath M, Dolg M. Fully Automated Implementation of the Incremental Scheme for Correlation Energies. ACTA ACUST UNITED AC 2010. [DOI: 10.1524/zpch.2010.6121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The applicability and performance of a fully automated implementation of the incremental scheme for the evaluation of correlation contributions in wavefunction-based quantum chemical calculations on large molecules is briefly reviewed and a typical example from organic chemistry is discussed in more detail. The accuracy of relative energies is analyzed for various water hexamers at the CCSD(T)/aug-cc-pVDZ level. Furthermore the accuracy of the potential energy surface of octane is analyzed at the CCSD level of theory. Finally, CCSD(T)/aug-cc-pVTZ calculations with 1656 basis functions in C1 symmetry are reported for (H2O)18, where a full calculation is infeasible within reasonable time.
Collapse
Affiliation(s)
- Joachim Friedrich
- Universität Köln, Institut für Theoretische Chemie, Köln, Deutschland
| | | | | |
Collapse
|
48
|
Friedrich J. Localized Orbitals for Incremental Evaluations of the Correlation Energy within the Domain-Specific Basis Set Approach. J Chem Theory Comput 2010; 6:1834-42. [DOI: 10.1021/ct1000999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joachim Friedrich
- Institute for Theoretical Chemistry, University of Cologne, Greinstr. 4, 50939 Cologne, Germany
| |
Collapse
|
49
|
Kobayashi M, Nakai H. Divide-and-conquer-based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations. J Chem Phys 2009; 131:114108. [DOI: 10.1063/1.3211119] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
He X, Fusti-Molnar L, Merz KM. Accurate benchmark calculations on the gas-phase basicities of small molecules. J Phys Chem A 2009; 113:10096-103. [PMID: 19694482 PMCID: PMC2749970 DOI: 10.1021/jp904423r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate benchmark calculations of gas-phase basicities of small molecules are presented and compared with available experimental results. The optimized geometries and thermochemical analyses were obtained from MP2/aug-cc-pVTZ calculations. Two different ab initio electron-correlated methods MP2 and CCSD(T) were employed for subsequent gas-phase basicity calculations, and the single-point energies were extrapolated to the complete basis set (CBS) limit. The overall accuracy for different ab initio methods is compared, and the accuracy in descending order is CCSD(T)_CBS > CCSD(T)/aug-cc-pVDZ > (MP2/aug-cc-pVQZ approximately MP2_CBS) > HF/aug-cc-pVQZ. The best root-mean-squared-error obtained was 1.0 kcal mol(-1) at the CCSD(T)_CBS//MP2/aug-cc-pVTZ level for a test set of 41 molecules. Clearly, accurate calculations for the electron correlation energy are important for the theoretical prediction of molecular gas-phase basicities. However, conformational effects were also found to be relevant in several instances when more complicated molecules were examined.
Collapse
Affiliation(s)
- Xiao He
- Department of Chemistry and the Quantum Theory Project, 2328 New Physics Building, P.O. Box 118435, University of Florida, Gainesville, Florida 32611-8435
| | - Laszlo Fusti-Molnar
- Department of Chemistry and the Quantum Theory Project, 2328 New Physics Building, P.O. Box 118435, University of Florida, Gainesville, Florida 32611-8435
| | - Kenneth M. Merz
- Department of Chemistry and the Quantum Theory Project, 2328 New Physics Building, P.O. Box 118435, University of Florida, Gainesville, Florida 32611-8435
| |
Collapse
|