1
|
Deng G, Pan S, Jin J, Wang G, Zhao L, Zhou M, Frenking G. Generation and Identification of the Linear OCBNO and OBNCO Molecules with 24 Valence Electrons. Chemistry 2021; 27:412-418. [PMID: 33104262 PMCID: PMC7839540 DOI: 10.1002/chem.202003886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Indexed: 11/23/2022]
Abstract
Two structural isomers containing five second-row element atoms with 24 valence electrons were generated and identified by matrix-isolation IR spectroscopy and quantum chemical calculations. The OCBNO complex, which is produced by the reaction of boron atoms with mixtures of carbon monoxide and nitric oxide in solid neon, rearranges to the more stable OBNCO isomer on UV excitation. Bonding analysis indicates that the OCBNO complex is best described by the bonding interactions between a triplet-state boron cation with an electron configuration of (2s)0 (2pσ )0 (2pπ )2 and the CO/NO- ligands in the triplet state forming two degenerate electron-sharing π bonds and two ligand-to-boron dative σ bonds.
Collapse
Affiliation(s)
- Guohai Deng
- Collaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryShanghai Key Laboratory of, Molecular Catalysts and Innovative MaterialsFudan UniversityShanghai200438P.R. China
| | - Sudip Pan
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P.R. China
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435043MarburgGermany
| | - Jiaye Jin
- Collaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryShanghai Key Laboratory of, Molecular Catalysts and Innovative MaterialsFudan UniversityShanghai200438P.R. China
| | - Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryShanghai Key Laboratory of, Molecular Catalysts and Innovative MaterialsFudan UniversityShanghai200438P.R. China
| | - Lili Zhao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P.R. China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryShanghai Key Laboratory of, Molecular Catalysts and Innovative MaterialsFudan UniversityShanghai200438P.R. China
| | - Gernot Frenking
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P.R. China
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435043MarburgGermany
| |
Collapse
|
2
|
Wei R, Chen X, Gong Y. Bidentate Sulfur Dioxide Complexes of Scandium, Yttrium, and Lanthanum Difluorides. Inorg Chem 2019; 58:5281-5288. [DOI: 10.1021/acs.inorgchem.9b00365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Wei
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuting Chen
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Gong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
3
|
Jin J, Li W, Liu Y, Wang G, Zhou M. Preparation and characterization of chemically bonded argon-boroxol ring cation complexes. Chem Sci 2017; 8:6594-6600. [PMID: 28989687 PMCID: PMC5627188 DOI: 10.1039/c7sc02472j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/17/2017] [Indexed: 11/21/2022] Open
Abstract
The cation complexes [ArB3O4]+, [ArB3O5]+, [ArB4O6]+ and [ArB5O7]+ were prepared via a laser vaporization supersonic ion source in the gas phase. Their vibrational spectra were measured via mass-selected infrared photodissociation spectroscopy. Spectroscopy combined with quantum chemical calculations revealed that the [ArB3O5]+, [ArB4O6]+ and [ArB5O7]+ cation complexes have planar structures each involving an aromatic boroxol ring and an argon-boron covalent bond. In contrast, the [ArB3O4]+ cation is characterized to be a weakly bound complex with a B3O4+ chain structure.
Collapse
Affiliation(s)
- Jiaye Jin
- Department of Chemistry , Collaborative Innovation Center of Chemistry for Energy Materials , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China .
| | - Wei Li
- Department of Chemistry , Collaborative Innovation Center of Chemistry for Energy Materials , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China .
| | - Yuhong Liu
- Department of Chemistry , Collaborative Innovation Center of Chemistry for Energy Materials , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China .
| | - Guanjun Wang
- Department of Chemistry , Collaborative Innovation Center of Chemistry for Energy Materials , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China .
| | - Mingfei Zhou
- Department of Chemistry , Collaborative Innovation Center of Chemistry for Energy Materials , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China .
| |
Collapse
|
4
|
Zhou M, Zhuang J, Wang G, Chen M. Matrix Isolation Spectroscopic and Theoretical Study of Water Adsorption and Hydrolysis on Molecular Tantalum and Niobium Oxides. J Phys Chem A 2011; 115:2238-46. [DOI: 10.1021/jp200143y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Jia Zhuang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Guanjun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Mohua Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Gong Y, Zhou M. Water adsorption on platinum dioxide and dioxygen complex: matrix isolation infrared spectroscopic and theoretical study of three PtO(2)-H(2)O complexes. Chemphyschem 2010; 11:1888-94. [PMID: 20411524 DOI: 10.1002/cphc.201000104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The interactions of water molecule with platinum dioxygen complex and dioxide molecule are investigated by means of matrix isolation infrared spectroscopy and density functional calculations. The platinum atoms reacted with dioxygen to form the previously reported Pt(O(2)) complex. The Pt(O(2)) complex reacted with water molecule to give the Pt(O(2))-H(2)O complex, which was characterized to involve hydrogen bonding between one O atom of Pt(O(2)) and one H atom of H(2)O (structure A). Upon visible light irradiation, the hydrogen bonded Pt(O(2))HOH complex rearranged to another Pt(O(2))-H(2)O isomer (structure B), which involves (O(2))PtOH(2) interaction. The Pt(O(2))-H(2)O complex in structure B can be isomerized to the weakly bound platinum dioxide-water complex (structure C) under UV irradiation.
Collapse
Affiliation(s)
- Yu Gong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Advanced Materials Laboratory, Fudan University, Shanghai 200433, PR China
| | | |
Collapse
|
6
|
Huang Y, Zhao Y, Zheng X, Zhou M. Matrix Isolation Infrared Spectroscopic and Density Functional Theoretical Study of the Reactions of Scandium and Yttrium Monoxides with Monochloromethane. J Phys Chem A 2010; 114:2476-82. [DOI: 10.1021/jp9101948] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yongfei Huang
- Department of Chemistry and State Key Laboratory of ATMMT, Zhejiang Sci-Tech University, Hanzhou, People’s Republic of China
| | - Yanying Zhao
- Department of Chemistry and State Key Laboratory of ATMMT, Zhejiang Sci-Tech University, Hanzhou, People’s Republic of China
| | - Xuming Zheng
- Department of Chemistry and State Key Laboratory of ATMMT, Zhejiang Sci-Tech University, Hanzhou, People’s Republic of China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Advanced Materials Laboratory, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
7
|
Tai TB, Nguyen MT. Structure and electron delocalization of the boron oxide cluster B3(BO)3 and its anion and dianion. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.10.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Nguyen MT, Matus MH, Ngan VT, Grant DJ, Dixon DA. Thermochemistry and Electronic Structure of Small Boron and Boron Oxide Clusters and Their Anions. J Phys Chem A 2009; 113:4895-909. [DOI: 10.1021/jp811391v] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Minh Tho Nguyen
- Department of Chemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium, and Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, A. P. 575, Xalapa, Ver., Mexico
| | - Myrna H. Matus
- Department of Chemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium, and Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, A. P. 575, Xalapa, Ver., Mexico
| | - Vu Thi Ngan
- Department of Chemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium, and Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, A. P. 575, Xalapa, Ver., Mexico
| | - Daniel J. Grant
- Department of Chemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium, and Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, A. P. 575, Xalapa, Ver., Mexico
| | - David A. Dixon
- Department of Chemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium, and Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, A. P. 575, Xalapa, Ver., Mexico
| |
Collapse
|