1
|
Affiliation(s)
- Elena Boldyreva
- Novosibirsk State University ul. Pirogova, 2 Novosibirsk 630090 Russian Federation
- Boreskov Institute of Catalysis Siberian Branch of Russian Academy of Sciences Lavrentieva ave., 5 Novosibirsk 630090 Russian Federation
| |
Collapse
|
2
|
Shenderovich IG. Editorial to the Special Issue "Gulliver in the Country of Lilliput: An Interplay of Noncovalent Interactions". Molecules 2020; 26:E158. [PMID: 33396433 PMCID: PMC7794748 DOI: 10.3390/molecules26010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022] Open
Abstract
Noncovalent interactions allow our world to exist [...].
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Jabłuszewska A, Krawczuk A, Dos Santos LHR, Macchi P. Accurate Modelling of Group Electrostatic Potential and Distributed Polarizability in Dipeptides. Chemphyschem 2020; 21:2155-2165. [DOI: 10.1002/cphc.202000441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Angelika Jabłuszewska
- Faculty of Chemistry Jagiellonian University in Krakow Gronostajowa 2 30-387 Krakow Poland
| | - Anna Krawczuk
- Faculty of Chemistry Jagiellonian University in Krakow Gronostajowa 2 30-387 Krakow Poland
| | - Leonardo H. R. Dos Santos
- Departamento de Química Universidade Federal de Minas Gerais Av. Antônio Carlos 6627 31270-901 Belo Horizonte MG Brazil
| | - Piero Macchi
- Department of Chemistry, Materials and Chemical Engineering Polytechnics of Milan Via Mancinelli 7 20131 Milan Italy
| |
Collapse
|
4
|
Bajaj N, Bhatt H, Murli C, Vishwakarma SR, Chitra R, Ravindran TR, Deo MN. Perceptible isotopic effect in 3D-framework of α-glycine at low temperatures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:495-507. [PMID: 29975911 DOI: 10.1016/j.saa.2018.06.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
Glycine, the most fundamental amino acid, albeit studied for many decades, has kept researchers captivated with interesting structural variations relevant to important biological, astrophysical and technological applications. We report here a noticeable effect of deuteration on the three dimensional hydrogen bonding network of α-glycine using low temperature infrared absorption studies in a wide spectral range, corroborated with Raman scattering studies. These systematic studies in the range 300-4.2 K have demonstrated a relatively compact assembly of glycine molecules in the three dimensional bilayered structure of hydrogenated glycine (gly-h) at low temperatures. This is inferred from a remarkable temperature effect in the weak intra-bilayer hydrogen bond ~ along the b-axis, which strengthens upon cooling. A pronounced increase in the intensity of NH3 torsional and NH stretching modes has been observed. This is accompanied with a large rate of stiffening and softening respectively of these modes upon cooling and a change in slope across 210 K and 80 K. In contrast, the D---O hydrogen bond lengths in fully deuterated isotope (gly-d), as estimated using empirical correlation, show that the weak intra-bilayer hydrogen bond is not strengthened upon cooling down to 180 K, whereas the stronger intra-layer hydrogen bonds in the ac-plane become further strong. The ND3 torsional vibrations show no temperature effect. This implies a relatively stable two dimensional layered structure formed by strongly hydrogen bonded glycine sheets in the ac-plane. Below 180 K, similar qualitative trends have been obtained for the hydrogen bond lengths in the two isotopes. In addition, temperature induced variation of the characteristic "indicator" band of zwitterionic gly-h and gly-d has also been reported.
Collapse
Affiliation(s)
- Naini Bajaj
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai, India
| | - Himal Bhatt
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India.
| | - Chitra Murli
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai, India
| | - S R Vishwakarma
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - R Chitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - T R Ravindran
- Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
| | - M N Deo
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai, India.
| |
Collapse
|
5
|
Szeleszczuk Ł, Pisklak DM, Zielińska-Pisklak M. Can we predict the structure and stability of molecular crystals under increased pressure? First-principles study of glycine phase transitions. J Comput Chem 2018. [DOI: 10.1002/jcc.25198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Łukasz Szeleszczuk
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Banacha 1 02-093 Warsaw Poland
| | - Dariusz Maciej Pisklak
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Banacha 1 02-093 Warsaw Poland
| | - Monika Zielińska-Pisklak
- Department of Biomaterials Chemistry, Chair and Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw; Banacha 1 02-093 Warsaw Poland
| |
Collapse
|
6
|
Shinozaki A, Komatsu K, Kagi H, Fujimoto C, Machida S, Sano-Furukawa A, Hattori T. Behavior of intermolecular interactions in α-glycine under high pressure. J Chem Phys 2018; 148:044507. [PMID: 29390805 DOI: 10.1063/1.5009980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pressure-response on the crystal structure of deuterated α-glycine was investigated at room temperature, using powder and single-crystal X-ray diffraction, and powder neutron diffraction measurements under high pressure. No phase change was observed up to 8.7 GPa, although anisotropy of the lattice compressibility was found. No significant changes in the compressibility and the intramolecular distance between non-deuterated α-glycine and deuterated α-glycine were observed. Neutron diffraction measurements indicated the distance of the intermolecular D⋯O bond along with the c-axis increased with compression up to 6.4 GPa. The distance of another D⋯O bond along with the a-axis decreased with increasing pressure and became the shortest intermolecular hydrogen bond above 3 GPa. In contrast, the lengths of the bifurcated N-D⋯O and C-D⋯O hydrogen bonds, which are formed between the layers of the α-glycine molecules along the b-axis, decreased significantly with increasing pressure. The decrease of the intermolecular distances resulted in the largest compressibility of the b-axis, compared to the other two axes. The Hirshfeld analysis suggested that the reduction of the void region size, rather than shrinkage of the strong N-D⋯O hydrogen bonds, occurred with compression.
Collapse
Affiliation(s)
- Ayako Shinozaki
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kazuki Komatsu
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Hiroyuki Kagi
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Chikako Fujimoto
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Shinichi Machida
- CROSS, Neutron Science and Technology Center, IQBRC Building, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Asami Sano-Furukawa
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Takanori Hattori
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| |
Collapse
|
7
|
Neu J, Nemes CT, Regan KP, Williams MRC, Schmuttenmaer CA. Exploring the solid state phase transition in dl-norvaline with terahertz spectroscopy. Phys Chem Chem Phys 2018; 20:276-283. [DOI: 10.1039/c7cp05479c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Experimental and theoretical demonstration of the power of terahertz spectroscopy to provide novel insights into solid-state phase-transformations in organic materials.
Collapse
Affiliation(s)
- Jens Neu
- Department of Chemistry
- Yale University
- New Haven
- USA
| | | | | | | | | |
Collapse
|
8
|
Bull CL, Flowitt-Hill G, de Gironcoli S, Küçükbenli E, Parsons S, Pham CH, Playford HY, Tucker MG. ζ-Glycine: insight into the mechanism of a polymorphic phase transition. IUCRJ 2017; 4:569-574. [PMID: 28989714 PMCID: PMC5619850 DOI: 10.1107/s205225251701096x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/25/2017] [Indexed: 05/30/2023]
Abstract
Glycine is the simplest and most polymorphic amino acid, with five phases having been structurally characterized at atmospheric or high pressure. A sixth form, the elusive ζ phase, was discovered over a decade ago as a short-lived intermediate which formed as the high-pressure ∊ phase transformed to the γ form on decompression. However, its structure has remained unsolved. We now report the structure of the ζ phase, which was trapped at 100 K enabling neutron powder diffraction data to be obtained. The structure was solved using the results of a crystal structure prediction procedure based on fully ab initio energy calculations combined with a genetic algorithm for searching phase space. We show that the fate of ζ-glycine depends on its thermal history: although at room temperature it transforms back to the γ phase, warming the sample from 100 K to room temperature yielded β-glycine, the least stable of the known ambient-pressure polymorphs.
Collapse
Affiliation(s)
- Craig L. Bull
- ISIS Facility, Rutherford–Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Giles Flowitt-Hill
- ISIS Facility, Rutherford–Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, UK
- School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King’s Buildings, W. Mains Road, Edinburgh EH9 3FJ, UK
| | - Stefano de Gironcoli
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| | - Emine Küçükbenli
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| | - Simon Parsons
- School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King’s Buildings, W. Mains Road, Edinburgh EH9 3FJ, UK
| | - Cong Huy Pham
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Helen Y. Playford
- ISIS Facility, Rutherford–Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Matthew G. Tucker
- ISIS Facility, Rutherford–Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, UK
- Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| |
Collapse
|
9
|
Zhang F, Wang HW, Tominaga K, Hayashi M. Mixing of intermolecular and intramolecular vibrations in optical phonon modes: terahertz spectroscopy and solid-state density functional theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1256] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Feng Zhang
- Molecular Photoscience Research Center; Kobe University; Kobe Japan
| | - Houng-Wei Wang
- Center for Condensed Matte Sciences; National Taiwan University; Taipei Taiwan
| | - Keisuke Tominaga
- Molecular Photoscience Research Center; Kobe University; Kobe Japan
| | - Michitoshi Hayashi
- Center for Condensed Matte Sciences; National Taiwan University; Taipei Taiwan
| |
Collapse
|
10
|
Moggach SA, Marshall WG, Rogers DM, Parsons S. How focussing on hydrogen bonding interactions in amino acids can miss the bigger picture: a high-pressure neutron powder diffraction study of ε-glycine. CrystEngComm 2015. [DOI: 10.1039/c5ce00327j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of intermolecular interactions using purely geometric criteria can be misleading: glycine exhibits apparently ideal H-bonding geometry for dimers with repulsive interaction energies.
Collapse
Affiliation(s)
- Stephen A. Moggach
- EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions
- The University of Edinburgh
- King's Buildings
- Edinburgh, UK
| | - William G. Marshall
- ISIS Pulsed Neutron and Muon Facility
- STFC Rutherford Appleton Laboratory
- Harwell Science and Innovation Campus
- Didcot, UK
| | - David M. Rogers
- EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions
- The University of Edinburgh
- King's Buildings
- Edinburgh, UK
| | - Simon Parsons
- EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions
- The University of Edinburgh
- King's Buildings
- Edinburgh, UK
| |
Collapse
|
11
|
Tsapatsaris N, Kolesov BA, Fischer J, Boldyreva EV, Daemen L, Eckert J, Bordallo HN. Polymorphism of Paracetamol: A New Understanding of Molecular Flexibility through Local Methyl Dynamics. Mol Pharm 2014; 11:1032-41. [DOI: 10.1021/mp400707m] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Boris A. Kolesov
- Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- REC-008 Novosibirsk State University, ul. Pirogova 2, Novosibirsk 630090, Russia
| | | | - Elena V. Boldyreva
- REC-008 Novosibirsk State University, ul. Pirogova 2, Novosibirsk 630090, Russia
- Institute of Solid-State Chemistry and Mechanochemistry SB RAS, Kutateladze 18, Novosibirsk 630128, Russia
| | - Luke Daemen
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Juergen Eckert
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Heloisa N. Bordallo
- European Spallation Source ESS AB, P.O. Box 176, Lund 221 00, Sweden
- Niels Bohr Institute, Universitetsparken
5, Copenhagen 2100, Denmark
| |
Collapse
|
12
|
|
13
|
Tsapatsaris N, Landsgesell S, Koza MM, Frick B, Boldyreva EV, Bordallo HN. Polymorphic drugs examined with neutron spectroscopy: Is making more stable forms really that simple? Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Aree T, Bürgi HB, Minkov VS, Boldyreva EV, Chernyshov D, Törnroos KW. Dynamics and thermodynamics of crystalline polymorphs. 2. β-Glycine, analysis of variable-temperature atomic displacement parameters. J Phys Chem A 2013; 117:8001-9. [PMID: 23865724 DOI: 10.1021/jp404408h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular dynamics in the crystal and the thermodynamic functions of the β-polymorph of glycine have been determined from a combination of molecular translation-libration frequencies reflecting the temperature dependence of atomic displacement parameters (ADPs), with frequencies derived from ONIOM(DFT:PM3) calculations on a 15-molecule β-glycine cluster. ADPs have been obtained from variable-temperature diffraction data to 0.5 Å resolution collected with X-ray synchrotron (10-300 K) and sealed tube radiation (50-298 K). At the higher temperatures, the ADPs of β-glycine from synchrotron are larger than those from sealed tube probably due to different experimental conditions. The lattice vibration frequencies from normal-mode analysis of ADPs and the internal vibration frequencies from ONIOM(B3LYP/6-311+G(2d,p):PM3) calculations agree with those from spectroscopy. Estimation of thermodynamic functions using the vibrational frequencies, the Einstein and Debye models of heat capacity, and the room-temperature compressibility provides C(p), H(vib), and S(vib) that agree with those from calorimetry. The β-phase with higher H and G is found to be less stable than the α-phase in the temperature range of the experiment.
Collapse
Affiliation(s)
- Thammarat Aree
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | | | | | | | |
Collapse
|
15
|
Borissova AO, Lyssenko KA, Gurinov AA, Shenderovich IG. Energy Analysis of Competing Non-Covalent Interaction in 1:1 and 1:2 Adducts of Collidine with Benzoic Acids by Means of X-Ray Diffraction. ACTA ACUST UNITED AC 2013. [DOI: 10.1524/zpch.2013.0400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The hydrogen bond pattern and the types of non-covalent interactions in the crystals of the 1:1 and 1:2 adducts of 2,4,6-trimethylpyridine and benzoic acids are studied using high-resolution X-ray diffraction. The geometries of the hydrogen bonds are estimated using a combined XRD/DFT approach that provides the geometrical parameters within the margin of error of neutron diffraction studies. The energies of the non-covalent interactions are estimated on the base of the experimental electron density distribution function. It is shown that the structures of the adducts are governed by the NOH and OHO hydrogen bonds. In turn, C-H...O contacts and stacking interactions define the packing of the adducts in the crystal. On the other hand, it is important to note that the latter interactions affect the competition of the former hydrogen bonds in some 1:2 adducts.
Collapse
Affiliation(s)
| | - Konstantin A. Lyssenko
- Russian Academy of Sciences, A.N. Nesmeyanov Institute of Organoelement Compoun, Moscow, Russische Föderation
| | - Andrey A. Gurinov
- St. Petersburg State University, Department of Physics, St. Petersburg, Russische Föderation
| | | |
Collapse
|
16
|
Aree T, Bürgi HB, Capelli SC. Dynamics and thermodynamics of crystalline polymorphs: α-glycine, analysis of variable-temperature atomic displacement parameters. J Phys Chem A 2012; 116:8092-9. [PMID: 22746958 DOI: 10.1021/jp304858y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multitemperature synchrotron diffraction data to 0.5 Å resolution in the temperature range 10-298 K and neutron data at 18 K of the α-glycine polymorph have been collected at the KEK photon factory (PF), SPring-8 and the Institut Laue Langevin (ILL) for the study of molecular motion in the crystal and of the associated thermodynamic functions. Atomic displacement parameters (ADPs) of non-H atoms are obtained from refinements based on nonspherical atomic scattering factors (invariom model) to minimize correlation between parameters describing thermal motion and valence electron density. The ADPs in the temperature range 50-298 K from SPring-8 connect smoothly with those from neutron diffraction at 18 K and 288-323 K. The combined ADPs from both sources covering the temperature range 18-323 K are used for a normal-mode analysis in the molecular mean field approximation. The lattice vibration frequencies from the ADP analysis and the internal vibration frequencies from an ONIOM (B3LYP/6-311+G(2d,p):PM3) calculation together with the Einstein, Debye, and Nernst-Lindemann models of heat capacity are used to calculate Cp, Hvib, and Svib values that are in good agreement with those from calorimetry.
Collapse
Affiliation(s)
- Thammarat Aree
- Department of Chemistry, Faculty of Science, and Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University , Phyathai Road, Pathumwan, Bangkok 10330, Thailand
| | | | | |
Collapse
|
17
|
|
18
|
Vener MV, Medvedev AG, Churakov AV, Prikhodchenko PV, Tripol'skaya TA, Lev O. H-bond network in amino acid cocrystals with H2O or H2O2. The DFT study of serine-H2O and serine-H2O2. J Phys Chem A 2011; 115:13657-63. [PMID: 22004006 DOI: 10.1021/jp207899z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure, IR spectrum, and H-bond network in the serine-H(2)O and serine-H(2)O(2) crystals were studied using DFT computations with periodic boundary conditions. Two different basis sets were used: the all-electron Gaussian-type orbital basis set and the plane wave basis set. Computed frequencies of the IR-active vibrations of the titled crystals are quite different in the range of 10-100 cm(-1). Harmonic approximation fails to reproduce IR active bands in the 2500-2800 frequency region of serine-H(2)O and serine-H(2)O(2). The bands around 2500 and 2700 cm(-1) do exist in the anharmonic IR spectra and are caused by the first overtone of the OH bending vibrations of H(2)O and a combination vibration of the symmetric and asymmetric bendings of H(2)O(2). The quantum-topological analysis of the crystalline electron density enables us to describe quantitatively the H-bond network. It is much more complex in the title crystals than in a serine crystal. Appearance of water leads to an increase of the energy of the amino acid-amino acid interactions, up to ~50 kJ/mol. The energy of the amino acid-water H-bonds is ~30 kJ/mol. The H(2)O/H(2)O(2) substitution does not change the H-bond network; however, the energy of the amino acid-H(2)O(2) contacts increases up to 60 kJ/mol. This is caused by the fact that H(2)O(2) is a much better proton donor than H(2)O in the title crystals.
Collapse
Affiliation(s)
- Mikhail V Vener
- Department of Quantum Chemistry, Mendeleev University of Chemical Technology, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
19
|
Markel AL, Achkasov AF, Alekhina TA, Prokudina OI, Ryazanova MA, Ukolova TN, Efimov VM, Boldyreva EV, Boldyrev VV. Effects of the alpha- and gamma-polymorphs of glycine on the behavior of catalepsy prone rats. Pharmacol Biochem Behav 2011; 98:234-40. [DOI: 10.1016/j.pbb.2010.12.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 12/17/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
|
20
|
Surovtsev NV, Malinovsky VK, Boldyreva EV. Raman study of low-frequency modes in three glycine polymorphs. J Chem Phys 2011; 134:045102. [DOI: 10.1063/1.3524342] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
|
22
|
Bordallo HN, Boldyreva EV, Fischer J, Koza MM, Seydel T, Minkov VS, Drebushchak VA, Kyriakopoulos A. Observation of subtle dynamic transitions by a combination of neutron scattering, X-ray diffraction and DSC: A case study of the monoclinic l-cysteine. Biophys Chem 2010; 148:34-41. [DOI: 10.1016/j.bpc.2010.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
|
23
|
Reddy CM, Rama Krishna G, Ghosh S. Mechanical properties of molecular crystals—applications to crystal engineering. CrystEngComm 2010. [DOI: 10.1039/c003466e] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
de Souza JM, Freire PTC, Argyriou DN, Stride JA, Barthès M, Kalceff W, Bordallo HN. Raman and Neutron Scattering Study of Partially Deuterated L-Alanine: Evidence of a Solid-Solid Phase Transition. Chemphyschem 2009; 10:3337-43. [DOI: 10.1002/cphc.200900482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Minkov VS, Tumanov NA, Kolesov BA, Boldyreva EV, Bizyaev SN. Phase transitions in the crystals of L- and DL-cysteine on cooling: the role of the hydrogen-bond distortions and the side-chain motions. 2. DL-cysteine. J Phys Chem B 2009; 113:5262-72. [PMID: 19301837 DOI: 10.1021/jp810355a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural strain and a first-order phase transition in the crystalline DL-cysteine on cooling and on reverse heating were followed by Raman spectroscopy and X-ray diffraction. The transition is reversible and has a large hysteresis (over 100 K). The temperature at which the transition is observed depends strongly on the cooling/heating rate. The phase transition is accompanied by crystal fragmentation. The low-temperature phase could be obtained not only as a result of the solid-state transformation in situ as a polycrystalline sample (with strong preferred orientation, or without it, depending on the preparative technique), but also (using an original crystallization technique) as a single crystal of the quality suitable for structural analysis. For the first time, the crystal structure of the low-temperature phase was solved independently by powder and by single-crystal diffraction techniques. The spectral changes were correlated with the precise diffraction data on the intramolecular conformations and the intermolecular hydrogen bonding before and after the phase transition. The role of the distortion of the intermolecular hydrogen bonds and of the motions of the -CH(2)SH side chains in the phase transition is discussed in a comparison with the low-temperature phase transition in L-cysteine, which is of a different type and preserves the single crystals intact (Kolesov et al. J. Phys. Chem. B, 2008, 112 (40), 12827-12839).
Collapse
Affiliation(s)
- Vasil S Minkov
- REC-008 Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
26
|
Wu FG, Chen L, Yu ZW. Water Mediates the Metastable Crystal-to-Stable Crystal Phase Transition Process in Phospholipid Aqueous Dispersion. J Phys Chem B 2009; 113:869-72. [DOI: 10.1021/jp810820d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fu-Gen Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lin Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Mishra AK, Murli C, Sharma SM. High Pressure Raman Spectroscopic Study of Deuterated γ-Glycine. J Phys Chem B 2008; 112:15867-74. [DOI: 10.1021/jp806381e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ajay K. Mishra
- High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Chitra Murli
- High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Surinder M. Sharma
- High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|