1
|
Nagahata Y, Kobayashi M, Toda M, Maeda S, Taketsugu T, Komatsuzaki T. An encompassed representation of timescale hierarchies in first-order reaction network. Proc Natl Acad Sci U S A 2024; 121:e2317781121. [PMID: 38758700 PMCID: PMC11126998 DOI: 10.1073/pnas.2317781121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Complex networks are pervasive in various fields such as chemistry, biology, and sociology. In chemistry, first-order reaction networks are represented by a set of first-order differential equations, which can be constructed from the underlying energy landscape. However, as the number of nodes increases, it becomes more challenging to understand complex kinetics across different timescales. Hence, how to construct an interpretable, coarse-graining scheme that preserves the underlying timescales of overall reactions is of crucial importance. Here, we develop a scheme to capture the underlying hierarchical subsets of nodes, and a series of coarse-grained (reduced-dimensional) rate equations between the subsets as a function of time resolution from the original reaction network. Each of the coarse-grained representations guarantees to preserve the underlying slow characteristic timescales in the original network. The crux is the construction of a lumping scheme incorporating a similarity measure in deciphering the underlying timescale hierarchy, which does not rely on the assumption of equilibrium. As an illustrative example, we apply the scheme to four-state Markovian models and Claisen rearrangement of allyl vinyl ether (AVE), and demonstrate that the reduced-dimensional representation accurately reproduces not only the slowest but also the faster timescales of overall reactions although other reduction schemes based on equilibrium assumption well reproduce the slowest timescale but fail to reproduce the second-to-fourth slowest timescales with the same accuracy. Our scheme can be applied not only to the reaction networks but also to networks in other fields, which helps us encompass their hierarchical structures of the complex kinetics over timescales.
Collapse
Affiliation(s)
- Yutaka Nagahata
- The Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo001-0020, Japan
| | - Masato Kobayashi
- The Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo001-0020, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
| | - Mikito Toda
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo001-0020, Japan
- Faculty Division of Natural Sciences, Nara Women’s University, Nara630-8506, Japan
- Graduate School of Information Science, University of Hyogo, Kobe650-0047, Japan
| | - Satoshi Maeda
- The Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo001-0020, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
| | - Tetsuya Taketsugu
- The Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo001-0020, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
| | - Tamiki Komatsuzaki
- The Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo001-0020, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita565-0871, Japan
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki567-0047, Japan
| |
Collapse
|
2
|
Keith AD, Sawyer EB, Choy DCY, Xie Y, Biggs GS, Klein OJ, Brear PD, Wales DJ, Barker PD. Combining experiment and energy landscapes to explore anaerobic heme breakdown in multifunctional hemoproteins. Phys Chem Chem Phys 2024; 26:695-712. [PMID: 38053511 DOI: 10.1039/d3cp03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
To survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe2+ ion via a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds via NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria. HemS, from Yersinia enterocolitica, is the main focus of this work, along with HmuS (Yersinia pestis), ChuS (Escherichia coli) and ShuS (Shigella dysenteriae). We combine experiments, Energy Landscape Theory, and a bioinformatic investigation to place these homologues within a wider phylogenetic context. A subset of these hemoproteins are known to bind certain DNA promoter regions, suggesting not only that they can catalytically degrade heme, but that they are also involved in transcriptional modulation responding to heme flux. Many of the bacterial species responsible for these hemoproteins (including those that produce HemS, ChuS and ShuS) are known to specifically target oxygen-depleted regions of the gastrointestinal tract. A deeper understanding of anaerobic heme breakdown processes exploited by these pathogens could therefore prove useful in the development of future strategies for disease prevention.
Collapse
Affiliation(s)
- Alasdair D Keith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Elizabeth B Sawyer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Desmond C Y Choy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Yuhang Xie
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - George S Biggs
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Oskar James Klein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Paul D Brear
- Department of Biochemistry, University of Cambridge, Sanger Building, Cambridge CB2 1GA, UK
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Paul D Barker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
3
|
Woods EJ, Kannan D, Sharpe DJ, Swinburne TD, Wales DJ. Analysing ill-conditioned Markov chains. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220245. [PMID: 37211032 PMCID: PMC10200351 DOI: 10.1098/rsta.2022.0245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 05/23/2023]
Abstract
Discrete state Markov chains in discrete or continuous time are widely used to model phenomena in the social, physical and life sciences. In many cases, the model can feature a large state space, with extreme differences between the fastest and slowest transition timescales. Analysis of such ill-conditioned models is often intractable with finite precision linear algebra techniques. In this contribution, we propose a solution to this problem, namely partial graph transformation, to iteratively eliminate and renormalize states, producing a low-rank Markov chain from an ill-conditioned initial model. We show that the error induced by this procedure can be minimized by retaining both the renormalized nodes that represent metastable superbasins, and those through which reactive pathways concentrate, i.e. the dividing surface in the discrete state space. This procedure typically returns a much lower rank model, where trajectories can be efficiently generated with kinetic path sampling. We apply this approach to an ill-conditioned Markov chain for a model multi-community system, measuring the accuracy by direct comparison with trajectories and transition statistics. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Esmae J. Woods
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Deepti Kannan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Daniel J. Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Thomas D. Swinburne
- CNRS, CINaM UMR, Aix-Marseille Université, 7325, Campus de Luminy, 13288 Marseille, France
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
4
|
Koskin V, Kells A, Clayton J, Hartmann AK, Annibale A, Rosta E. Variational kinetic clustering of complex networks. J Chem Phys 2023; 158:104112. [PMID: 36922127 DOI: 10.1063/5.0105099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Efficiently identifying the most important communities and key transition nodes in weighted and unweighted networks is a prevalent problem in a wide range of disciplines. Here, we focus on the optimal clustering using variational kinetic parameters, linked to Markov processes defined on the underlying networks, namely, the slowest relaxation time and the Kemeny constant. We derive novel relations in terms of mean first passage times for optimizing clustering via the Kemeny constant and show that the optimal clustering boundaries have equal round-trip times to the clusters they separate. We also propose an efficient method that first projects the network nodes onto a 1D reaction coordinate and subsequently performs a variational boundary search using a parallel tempering algorithm, where the variational kinetic parameters act as an energy function to be extremized. We find that maximization of the Kemeny constant is effective in detecting communities, while the slowest relaxation time allows for detection of transition nodes. We demonstrate the validity of our method on several test systems, including synthetic networks generated from the stochastic block model and real world networks (Santa Fe Institute collaboration network, a network of co-purchased political books, and a street network of multiple cities in Luxembourg). Our approach is compared with existing clustering algorithms based on modularity and the robust Perron cluster analysis, and the identified transition nodes are compared with different notions of node centrality.
Collapse
Affiliation(s)
- Vladimir Koskin
- Department of Chemistry, King's College London, SE1 1DB London, United Kingdom
| | - Adam Kells
- Department of Chemistry, King's College London, SE1 1DB London, United Kingdom
| | - Joe Clayton
- Department of Physics and Astronomy, University College London, WC1E 6BT London, United Kingdom
| | | | - Alessia Annibale
- Department of Mathematics, King's College London, SE11 6NJ London, United Kingdom
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, WC1E 6BT London, United Kingdom
| |
Collapse
|
5
|
Nicy, Chakraborty D, Wales DJ. Energy Landscapes for Base-Flipping in a Model DNA Duplex. J Phys Chem B 2022; 126:3012-3028. [PMID: 35427136 PMCID: PMC9098180 DOI: 10.1021/acs.jpcb.2c00340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/24/2022] [Indexed: 12/31/2022]
Abstract
We explore the process of base-flipping for four central bases, adenine, guanine, cytosine, and thymine, in a deoxyribonucleic acid (DNA) duplex using the energy landscape perspective. NMR imino-proton exchange and fluorescence correlation spectroscopy studies have been used in previous experiments to obtain lifetimes for bases in paired and extrahelical states. However, the difference of almost 4 orders of magnitude in the base-flipping rates obtained by the two methods implies that they are exploring different pathways and possibly different open states. Our results support the previous suggestion that minor groove opening may be favored by distortions in the DNA backbone and reveal links between sequence effects and the direction of opening, i.e., whether the base flips toward the major or the minor groove side. In particular, base flipping along the minor groove pathway was found to align toward the 5' side of the backbone. We find that bases align toward the 3' side of the backbone when flipping along the major groove pathway. However, in some cases for cytosine and thymine, the base flipping along the major groove pathway also aligns toward the 5' side. The sequence effect may be caused by the polar interactions between the flipping-base and its neighboring bases on either of the strands. For guanine flipping toward the minor groove side, we find that the equilibrium constant for opening is large compared to flipping via the major groove. We find that the estimated rates of base opening, and hence the lifetimes of the closed state, obtained for thymine flipping through small and large angles along the major groove differ by 6 orders of magnitude, whereas for thymine flipping through small angles along the minor groove and large angles along the major groove, the rates differ by 3 orders of magnitude.
Collapse
Affiliation(s)
- Nicy
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
| | - Debayan Chakraborty
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - David J. Wales
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
| |
Collapse
|
6
|
Abstract
We calculate transformation pathways between fullerene and octahedral carbon clusters and between a buckyball and its bowl-shaped isomer. The energies and gradients are provided by efficient tight-binding potentials, which are interfaced to our Energy Landscape exploration software. From the global energy landscape, we extract the mechanistic and kinetic parameters as a function of temperature, and compare our results to selected density functional theory (DFT) (PBE/cc-pVTZ) benchmarks. Infrared spectra are calculated to provide data for experimental identification of the clusters and differentiation of their isomers. Our results suggest that the formation of buckyballs from a buckybowl will be suppressed at elevated temperatures (above around 5250 K) due to entropic effects, which may provide useful insight into the detection of cosmic fullerenes.
Collapse
|
7
|
RNA Modeling with the Computational Energy Landscape Framework. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2323:49-66. [PMID: 34086273 DOI: 10.1007/978-1-0716-1499-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The recent advances in computational abilities, such as the enormous speed-ups provided by GPU computing, allow for large scale computational studies of RNA molecules at an atomic level of detail. As RNA molecules are known to adopt multiple conformations with comparable energies, but different two-dimensional structures, all-atom models are necessary to better describe the structural ensembles for RNA molecules. This point is important because different conformations can exhibit different functions, and their regulation or mis-regulation is linked to a number of diseases. Problematically, the energy barriers between different conformational ensembles are high, resulting in long time scales for interensemble transitions. The computational potential energy landscape framework was designed to overcome this problem of broken ergodicity by use of geometry optimization. Here, we describe the algorithms used in the energy landscape explorations with the OPTIM and PATHSAMPLE programs, and how they are used in biomolecular simulations. We present a recent case study of the 5'-hairpin of RNA 7SK to illustrate how the method can be applied to interpret experimental results, and to obtain a detailed description of molecular properties.
Collapse
|
8
|
Röder K. Is the H4 histone tail intrinsically disordered or intrinsically multifunctional? Phys Chem Chem Phys 2021; 23:5134-5142. [PMID: 33624669 DOI: 10.1039/d0cp05405d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structural versatility of histone tails is one of the key elements in the organisation of chromatin, which allows for the compact storage of genomic information. However, this structural diversity also complicates experimental and computational studies. Here, the potential and free energy landscape for the isolated and bound H4 histone tail are explored. The landscapes exhibit a set of distinct structural ensembles separated by high energy barriers, with little difference between isolated and bound tails. This consistency is a desirable feature that facilitates the formation of transient interactions, which are required for the liquid-like chromatin organisation. The existence of multiple, distinct structures on a multifunnel energy landscape is likely to be associated with multifunctionality, i.e. a set of evolved, distinct functions. Contrasting it with previously reported results for other disordered peptides, this type of landscape may be associated with a conformational selection based binding mechanism. Given the similarity to other systems exhibiting similar multifunnel energy landscapes, the disorder in histone tails might be better described in context of multifunctionality.
Collapse
Affiliation(s)
- Konstantin Röder
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
9
|
Chakraborty D, Banerjee A, Wales DJ. Side-Chain Polarity Modulates the Intrinsic Conformational Landscape of Model Dipeptides. J Phys Chem B 2021; 125:5809-5822. [PMID: 34037392 PMCID: PMC8279551 DOI: 10.1021/acs.jpcb.1c02412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
intrinsic conformational preferences of small peptides may
provide additional insight into the thermodynamics and kinetics of
protein folding. In this study, we explore the underlying energy landscapes
of two model peptides, namely, Ac-Ala-NH2 and Ac-Ser-NH2, using geometry-optimization-based tools developed within
the context of energy landscape theory. We analyze not only how side-chain
polarity influences the structural preferences of the dipeptides,
but also other emergent properties of the landscape, including heat
capacity profiles, and kinetics of conformational rearrangements.
The contrasting topographies of the free energy landscape agree with
recent results from Fourier transform microwave spectroscopy experiments,
where Ac-Ala-NH2 was found to exist as a mixture of two
conformers, while Ac-Ser-NH2 remained structurally locked,
despite exhibiting an apparently rich conformational landscape.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Atreyee Banerjee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
10
|
Swinburne TD, Kannan D, Sharpe DJ, Wales DJ. Rare events and first passage time statistics from the energy landscape. J Chem Phys 2020; 153:134115. [PMID: 33032418 DOI: 10.1063/5.0016244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We analyze the probability distribution of rare first passage times corresponding to transitions between product and reactant states in a kinetic transition network. The mean first passage times and the corresponding rate constants are analyzed in detail for two model landscapes and the double funnel landscape corresponding to an atomic cluster. Evaluation schemes based on eigendecomposition and kinetic path sampling, which both allow access to the first passage time distribution, are benchmarked against mean first passage times calculated using graph transformation. Numerical precision issues severely limit the useful temperature range for eigendecomposition, but kinetic path sampling is capable of extending the first passage time analysis to lower temperatures, where the kinetics of interest constitute rare events. We then investigate the influence of free energy based state regrouping schemes for the underlying network. Alternative formulations of the effective transition rates for a given regrouping are compared in detail to determine their numerical stability and capability to reproduce the true kinetics, including recent coarse-graining approaches that preserve occupancy cross correlation functions. We find that appropriate regrouping of states under the simplest local equilibrium approximation can provide reduced transition networks with useful accuracy at somewhat lower temperatures. Finally, a method is provided to systematically interpolate between the local equilibrium approximation and exact intergroup dynamics. Spectral analysis is applied to each grouping of states, employing a moment-based mode selection criterion to produce a reduced state space, which does not require any spectral gap to exist, but reduces to gap-based coarse graining as a special case. Implementations of the developed methods are freely available online.
Collapse
Affiliation(s)
- Thomas D Swinburne
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France
| | - Deepti Kannan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Burke DF, Mantell RG, Pitt CE, Wales DJ. Energy Landscape for the Membrane Fusion Pathway in Influenza A Hemagglutinin From Discrete Path Sampling. Front Chem 2020; 8:575195. [PMID: 33102445 PMCID: PMC7546250 DOI: 10.3389/fchem.2020.575195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 11/22/2022] Open
Abstract
The conformational change associated with membrane fusion for Influenza A Hemagglutinin is investigated with a model based upon pre- and post-fusion structures of the HA2 component. We employ computational methods based on the potential energy landscape framework to obtain an initial path connecting these two end points, which provides the starting point for refinement of a kinetic transition network. Here we employ discrete path sampling, which provides access to the experimental time and length scales via geometry optimization techniques to identify local minima and the transition states that connect them. We then analyse the distinct phases of the predicted pathway in terms of structure and energetics, and compare with available experimental data and previous simulations. Our results provide the foundations for future work, which will address the effect of mutations, changes in pH, and incorporation of additional components, especially the HA1 chain and the fusion peptide.
Collapse
Affiliation(s)
- David F. Burke
- EMBL-EBI, Wellcome Genome Campus, Hinxton, United Kingdom
- David F. Burke
| | | | - Catherine E. Pitt
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: David J. Wales
| |
Collapse
|
12
|
Affiliation(s)
- Francesco Cocina
- Biochemistry Department, University of Zurich, Zurich CH-8057, Switzerland
| | - Andreas Vitalis
- Biochemistry Department, University of Zurich, Zurich CH-8057, Switzerland
| | - Amedeo Caflisch
- Biochemistry Department, University of Zurich, Zurich CH-8057, Switzerland
| |
Collapse
|
13
|
Sharpe DJ, Röder K, Wales DJ. Energy Landscapes of Deoxyxylo- and Xylo-Nucleic Acid Octamers. J Phys Chem B 2020; 124:4062-4068. [PMID: 32336100 PMCID: PMC7304908 DOI: 10.1021/acs.jpcb.0c01420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Artificial
analogues of the natural nucleic acids have attracted
interest as a diverse class of information storage molecules capable
of self-replication. In this study, we use the computational potential
energy landscape framework to investigate the structural and dynamical
properties of xylo- and deoxyxylo-nucleic acids (XyNA and dXyNA),
which are derived from their respective RNA and DNA analogues by inversion
of a single chiral center in the sugar moiety of the nucleotides.
For an octameric XyNA sequence and the analogue dXyNA, we observe
facile conformational transitions between a left-handed helix, which
is the free energy global minimum, and a ladder-type structure with
approximately zero helicity. The competing ensembles are better separated
in the dXyNA, making it a more suitable candidate for a molecular
switch, whereas the XyNA exhibits additional flexibility. Both energy
landscapes exhibit greater frustration than we observe in RNA or DNA,
in agreement with the higher degree of optimization expected from
the principle of minimal frustration in evolved biomolecules.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Konstantin Röder
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
14
|
Chakraborty D, Chebaro Y, Wales DJ. A multifunnel energy landscape encodes the competing α-helix and β-hairpin conformations for a designed peptide. Phys Chem Chem Phys 2020; 22:1359-1370. [PMID: 31854397 DOI: 10.1039/c9cp04778f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depending on the amino acid sequence, as well as the local environment, some peptides have the capability to fold into multiple secondary structures. Conformational switching between such structures is a key element of protein folding and aggregation. Specifically, understanding the molecular mechanism underlying the transition from an α-helix to a β-hairpin is critical because it is thought to be a harbinger of amyloid assembly. In this study, we explore the energy landscape for an 18-residue peptide (DP5), designed by Araki and Tamura to exhibit equal propensities for the α-helical and β-hairpin forms. We find that the degeneracy is encoded in the multifunnel nature of the underlying free energy landscape. In agreement with experiment, we also observe that mutation of tyrosine at position 12 to serine shifts the equilibrium in favor of the α-helix conformation, by altering the landscape topography. The transition from the α-helix to the β-hairpin is a complex stepwise process, and occurs via collapsed coil-like intermediates. Our findings suggest that even a single mutation can tune the emergent features of the landscape, providing an efficient route to protein design. Interestingly, the transition pathways for the conformational switch seem to be minimally perturbed upon mutation, suggesting that there could be universal microscopic features that are conserved among different switch-competent protein sequences.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| | - Yassmine Chebaro
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| |
Collapse
|
15
|
Kang W, Jiang F, Wu YD, Wales DJ. Multifunnel Energy Landscapes for Phosphorylated Translation Repressor 4E-BP2 and Its Mutants. J Chem Theory Comput 2019; 16:800-810. [PMID: 31774674 PMCID: PMC7462351 DOI: 10.1021/acs.jctc.9b01042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Upon phosphorylation of specific sites, eukaryotic translation initiation factor 4E (eIF4E) binding protein 2 (4E-BP2) undergoes a fundamental structural transformation from a disordered state to a four-stranded β-sheet, leading to decreased binding affinity for its partner. This change reflects the significant effects of phosphate groups on the underlying energy landscapes of proteins. In this study, we combine high-temperature molecular dynamics simulations and discrete path sampling to construct energy landscapes for a doubly phosphorylated 4E-BP218-62 and two mutants (a single site mutant D33K and a double mutant Y54A/L59A). The potential and free energy landscapes for these three systems are multifunneled with the folded state and several alternative states lying close in energy, suggesting perhaps a multifunneled and multifunctional protein. Hydrogen bonds between phosphate groups and other residues not only stabilize these low-lying conformations to different extents but also play an important role in interstate transitions. From the energy landscape perspective, our results explain some interesting experimental observations, including the low stability of doubly phosphorylated 4E-BP2 and its moderate binding to eIF4E and the inability of phosphorylated Y54A/L59A to fold.
Collapse
Affiliation(s)
- Wei Kang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
16
|
Xiao S, Sharpe DJ, Chakraborty D, Wales DJ. Energy Landscapes and Hybridization Pathways for DNA Hexamer Duplexes. J Phys Chem Lett 2019; 10:6771-6779. [PMID: 31609632 DOI: 10.1021/acs.jpclett.9b02356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Strand hybridization is not only a fundamental molecular mechanism underlying the biological functions of nucleic acids but is also a key step in the design of efficient nanodevices. Despite recent efforts, the microscopic rules governing the hybridization mechanisms remain largely unknown. In this study, we exploit the energy landscape framework to assess how sequence-specificity modulates the hybridization mechanisms in DNA. We find that GG-tracts hybridize much more rapidly compared to GC-tracts, via either zippering or slithering pathways. For the hybridization of GG-tracts, both zippering and slithering mechanisms appear to be kinetically relevant. In contrast, for the GC-tracts, the zippering mechanism is dominant. Our work reveals that even for the relatively small systems considered, the energy landscapes feature multiple metastable states and kinetic traps, which is at odds with the conventional "all-or-nothing" model of DNA hybridization formulated on the basis of thermodynamic arguments alone. Interestingly, entropic effects are found to play an important role in determining the thermal stability of competing conformational ensembles and in determining the preferred hybridization pathways.
Collapse
Affiliation(s)
- Shiyan Xiao
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - Daniel J Sharpe
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - Debayan Chakraborty
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| |
Collapse
|
17
|
Chakraborty D, Wales DJ. Dynamics of an adenine-adenine RNA conformational switch from discrete path sampling. J Chem Phys 2019; 150:125101. [DOI: 10.1063/1.5070152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
18
|
Röder K, Joseph JA, Husic BE, Wales DJ. Energy Landscapes for Proteins: From Single Funnels to Multifunctional Systems. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800175] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Konstantin Röder
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Jerelle A. Joseph
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Brooke E. Husic
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - David J. Wales
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| |
Collapse
|
19
|
Joseph JA, Chakraborty D, Wales DJ. Energy Landscape for Fold-Switching in Regulatory Protein RfaH. J Chem Theory Comput 2018; 15:731-742. [DOI: 10.1021/acs.jctc.8b00912] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jerelle A. Joseph
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Debayan Chakraborty
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
20
|
Joseph JA, Wales DJ. Intrinsically Disordered Landscapes for Human CD4 Receptor Peptide. J Phys Chem B 2018; 122:11906-11921. [DOI: 10.1021/acs.jpcb.8b08371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jerelle A. Joseph
- Department of Chemistry, University of Cambridge, Lenfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lenfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
21
|
Abstract
A new conformation has recently been reported for ubiquitin (Ub). This invisible conformation (Ub-CR), where the C-terminal tail is retracted, has a key functional role in phosphorylation of the Ser65 residue, a trigger for PINK1 and Parkin dependent mitophagy. Here we calculate the transition mechanism and associated rates for the Ub to Ub-CR pathway in the wild-type protein and a selection of mutants. We predict a cooperative one-step process with a transition state that resembles the Ub configuration, characterized by a loss of all interactions of the C-terminal tail with surrounding residues, and an open ubiquitin scaffold. The calculated observables agree well with reported values, and we make a range of predictions to guide future experiments. In particular, the effect of mutations on the pathway and the corresponding structural ensembles should have observable consequences. This feedback between theory and experiment promises new insight into key cellular processes.
Collapse
Affiliation(s)
- Konstantin Röder
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| |
Collapse
|
22
|
Abstract
A general formulation for constructing addressable atomic clusters is introduced, based on one or more reference structures. By modifying the well depths in a given interatomic potential in favour of nearest-neighbour interactions that are defined in the reference(s), the potential energy landscape can be biased to make a particular permutational isomer the global minimum. The magnitude of the bias changes the resulting potential energy landscape systematically, providing a framework to produce clusters that should self-organise efficiently into the target structure. These features are illustrated for small systems, where all the relevant local minima and transition states can be identified, and for the low-energy regions of the landscape for larger clusters. For a 55-particle cluster, it is possible to design a target structure from a transition state of the original potential and to retain this structure in a doubly addressable landscape. Disconnectivity graphs based on local minima that have no direct connections to a lower minimum provide a helpful way to visualise the larger databases. These minima correspond to the termini of monotonic sequences, which always proceed downhill in terms of potential energy, and we identify them as a class of biminimum. Multiple copies of the target cluster are treated by adding a repulsive term between particles with the same address to maintain distinguishable targets upon aggregation. By tuning the magnitude of this term, it is possible to create assemblies of the target cluster corresponding to a variety of structures, including rings and chains.
Collapse
Affiliation(s)
- David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
23
|
MacKay RS, Robinson JD. Aggregation of Markov flows I: theory. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0232. [PMID: 29555805 PMCID: PMC5869541 DOI: 10.1098/rsta.2017.0232] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 05/29/2023]
Abstract
A Markov flow is a stationary measure, with the associated flows and mean first passage times, for a continuous-time regular jump homogeneous semi-Markov process on a discrete state space. Nodes in the state space can be eliminated to produce a smaller Markov flow which is a factor of the original one. Some improvements to the elimination methods of Wales are given. The main contribution of the paper is to present an alternative, namely a method to aggregate groups of nodes to produce a factor. The method can be iterated to make hierarchical aggregation schemes. The potential benefits are efficient computation, including recomputation to take into account local changes, and insights into the macroscopic behaviour.This article is part of the theme issue 'Hilbert's sixth problem'.
Collapse
Affiliation(s)
- R S MacKay
- Mathematics Institute and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, UK
| | - J D Robinson
- Mathematics Institute and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
24
|
Joseph JA, Röder K, Chakraborty D, Mantell RG, Wales DJ. Exploring biomolecular energy landscapes. Chem Commun (Camb) 2018; 53:6974-6988. [PMID: 28489083 DOI: 10.1039/c7cc02413d] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential energy landscape perspective provides both a conceptual and a computational framework for predicting, understanding and designing molecular properties. In this Feature Article, we highlight some recent advances that greatly facilitate structure prediction and analysis of global thermodynamics and kinetics in proteins and nucleic acids. The geometry optimisation procedures, on which these calculations are based, can be accelerated significantly using local rigidification of selected degrees of freedom, and through implementations on graphics processing units. Results of progressive local rigidification are first summarised for trpzip1, including a systematic analysis of the heat capacity and rearrangement rates. Benchmarks for all the essential optimisation procedures are then provided for a variety of proteins. Applications are then illustrated from a study of how mutation affects the energy landscape for a coiled-coil protein, and for transitions in helix morphology for a DNA duplex. Both systems exhibit an intrinsically multifunnel landscape, with the potential to act as biomolecular switches.
Collapse
Affiliation(s)
- Jerelle A Joseph
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Konstantin Röder
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Debayan Chakraborty
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Department of Chemistry, The University of Texas at Austin, 24th Street Stop A5300, Austin, TX 78712, USA
| | - Rosemary G Mantell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
25
|
Abstract
The aggregation of the Aβ peptide (Aβ1-42) to form fibrils is a key feature of Alzheimer's disease. The mechanism is thought to be a nucleation stage followed by an elongation process. The elongation stage involves the consecutive addition of monomers to one end of the growing fibril. The aggregation process proceeds in a stop-and-go fashion and may involve off-pathway aggregates, complicating experimental and computational studies. Here we present exploration of a well-defined region in the free and potential energy landscapes for the Aβ17-42 pentamer. We find that the ideal aggregation process agrees with the previously reported dock-lock mechanism. We also analyze a large number of additional stable structures located on the multifunnel energy landscape, which constitute kinetic traps. The key contributors to the formation of such traps are misaligned strong interactions, for example the stacking of F19 and F20, as well as entropic contributions. Our results suggest that folding templates for aggregation are a necessity and that aggregation studies could employ such species to obtain a more detailed description of the process.
Collapse
Affiliation(s)
- Konstantin Röder
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| |
Collapse
|
26
|
Abstract
The complex conformational change from B-DNA to Z-DNA requires inversion of helix-handedness. Multiple degrees of freedom are intricately coupled during this transition, and formulating an appropriate reaction coordinate that captures the underlying complexity would be problematic. In this contribution, we adopt an alternative approach, based on the potential energy landscape perspective, to construct a kinetic transition network. Microscopic insight into the B → Z transition is provided in terms of geometrically defined discrete paths consisting of local minima and the transition states that connect them. We find that the inversion of handedness can occur via two competing mechanisms, either involving stretched intermediates, or a B-Z junction, in agreement with previous predictions. The organisation of the free energy landscape further suggests that this process is likely to be slow under physiological conditions. Our results represent a key step towards decoding the more intriguing features of the B → Z transition, such as the role of ionic strength and negative supercoiling in reshaping the landscape.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| |
Collapse
|
27
|
Ballard AJ, Das R, Martiniani S, Mehta D, Sagun L, Stevenson JD, Wales DJ. Energy landscapes for machine learning. Phys Chem Chem Phys 2018; 19:12585-12603. [PMID: 28367548 DOI: 10.1039/c7cp01108c] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Machine learning techniques are being increasingly used as flexible non-linear fitting and prediction tools in the physical sciences. Fitting functions that exhibit multiple solutions as local minima can be analysed in terms of the corresponding machine learning landscape. Methods to explore and visualise molecular potential energy landscapes can be applied to these machine learning landscapes to gain new insight into the solution space involved in training and the nature of the corresponding predictions. In particular, we can define quantities analogous to molecular structure, thermodynamics, and kinetics, and relate these emergent properties to the structure of the underlying landscape. This Perspective aims to describe these analogies with examples from recent applications, and suggest avenues for new interdisciplinary research.
Collapse
Affiliation(s)
- Andrew J Ballard
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Ritankar Das
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Stefano Martiniani
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Dhagash Mehta
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, IN, USA
| | - Levent Sagun
- Mathematics Department, Courant Institute, New York University, NY, USA
| | | | - David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
28
|
Chakraborty D, Wales DJ. Energy Landscape and Pathways for Transitions between Watson-Crick and Hoogsteen Base Pairing in DNA. J Phys Chem Lett 2018; 9:229-241. [PMID: 29240425 DOI: 10.1021/acs.jpclett.7b01933] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The recent discovery that Hoogsteen (HG) base pairs are widespread in DNA across diverse sequences and positional contexts could have important implications for understanding DNA replication and DNA-protein recognition. While evidence is emerging that the Hoogsteen conformation could be a thermodynamically accessible conformation of the DNA duplex and provide a means to expand its functionality, relatively little is known about the molecular mechanism underlying the Watson-Crick (WC) to HG transition. In this Perspective, we describe pathways and kinetics for this transition at an atomic level of detail, using the energy landscape perspective. We show that competition between the duplex conformations results in a double funnel landscape, which explains some recent experimental observations. The interconversion pathways feature a number of intermediates, with a variable number of WC and HG base pairs. The relatively slow kinetics, with possible deviations from two-state behavior, suggest that this conformational switch is likely to be a challenging target for both simulation and experiment.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Chemistry, The University of Texas at Austin , 24th Street Stop A5300, Austin, Texas 78712, United States
| | - David J Wales
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
29
|
Cragnolini T, Chakraborty D, Šponer J, Derreumaux P, Pasquali S, Wales DJ. Multifunctional energy landscape for a DNA G-quadruplex: An evolved molecular switch. J Chem Phys 2017; 147:152715. [DOI: 10.1063/1.4997377] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tristan Cragnolini
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Debayan Chakraborty
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC 13 Rue Pierre et Marie Curie, 75005 Paris, France
- Institut Universitaire de France, Boulevard Saint-Michel, 75005 Paris, France
| | - Samuela Pasquali
- Laboratoire de Biochimie Théorique UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - David J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
30
|
Lee J, Lee IH, Joung I, Lee J, Brooks BR. Finding multiple reaction pathways via global optimization of action. Nat Commun 2017; 8:15443. [PMID: 28548089 PMCID: PMC5458546 DOI: 10.1038/ncomms15443] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/24/2017] [Indexed: 12/25/2022] Open
Abstract
Global searching for reaction pathways is a long-standing challenge in computational chemistry and biology. Most existing approaches perform only local searches due to computational complexity. Here we present a computational approach, Action-CSA, to find multiple diverse reaction pathways connecting fixed initial and final states through global optimization of the Onsager-Machlup action using the conformational space annealing (CSA) method. Action-CSA successfully overcomes large energy barriers via crossovers and mutations of pathways and finds all possible pathways of small systems without initial guesses on pathways. The rank order and the transition time distribution of multiple pathways are in good agreement with those of long Langevin dynamics simulations. The lowest action folding pathway of FSD-1 is consistent with recent experiments. The results show that Action-CSA is an efficient and robust computational approach to study the multiple pathways of complex reactions and large-scale conformational changes.
Collapse
Affiliation(s)
- Juyong Lee
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - In-Ho Lee
- Center for Materials Genome, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Center for In Silico Protein Science, School of Computational Science, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - InSuk Joung
- Center for In Silico Protein Science, School of Computational Science, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Jooyoung Lee
- Center for In Silico Protein Science, School of Computational Science, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
31
|
de Souza VK, Stevenson JD, Niblett SP, Farrell JD, Wales DJ. Defining and quantifying frustration in the energy landscape: Applications to atomic and molecular clusters, biomolecules, jammed and glassy systems. J Chem Phys 2017; 146:124103. [DOI: 10.1063/1.4977794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- V. K. de Souza
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - J. D. Stevenson
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - S. P. Niblett
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - J. D. Farrell
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - D. J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
32
|
Morgan JWR, Mehta D, Wales DJ. Properties of kinetic transition networks for atomic clusters and glassy solids. Phys Chem Chem Phys 2017; 19:25498-25508. [DOI: 10.1039/c7cp03346j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small-world and scale-free properties are analysed for kinetic transition networks of clusters and glassy systems.
Collapse
Affiliation(s)
- John W. R. Morgan
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Dhagash Mehta
- Department of Applied and Computational Mathematics and Statistics
- University of Notre Dame
- Notre Dame
- USA
| | | |
Collapse
|
33
|
Hernández-Rojas J, Calvo F, Niblett S, Wales DJ. Dynamics and thermodynamics of the coronene octamer described by coarse-grained potentials. Phys Chem Chem Phys 2017; 19:1884-1895. [DOI: 10.1039/c6cp07671h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coarse-grained models developed for polycyclic aromatic hydrocarbons based on the Paramonov–Yaliraki potential have been employed to investigate the finite temperature thermodynamics, out-of-equilibrium dynamics, energy landscapes, and rearrangement pathways of the coronene octamer.
Collapse
Affiliation(s)
| | - F. Calvo
- Laboratoire Interdisciplinaire de Physique
- Université Grenoble Alpes and CNRS
- 38402 St Martin d’Hères
- France
| | - S. Niblett
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - D. J. Wales
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
34
|
Path-sampling strategies for simulating rare events in biomolecular systems. Curr Opin Struct Biol 2016; 43:88-94. [PMID: 27984811 DOI: 10.1016/j.sbi.2016.11.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Despite more than three decades of effort with molecular dynamics simulations, long-timescale (ms and beyond) biologically relevant phenomena remain out of reach in most systems of interest. This is largely because important transitions, such as conformational changes and (un)binding events, tend to be rare for conventional simulations (<10μs). That is, conventional simulations will predominantly dwell in metastable states instead of making large transitions in complex biomolecular energy landscapes. In contrast, path sampling approaches focus computing effort specifically on transitions of interest. Such approaches have been in use for nearly 20 years in biomolecular systems and enabled the generation of pathways and calculation of rate constants for ms processes, including large protein conformational changes, protein folding, and protein (un)binding.
Collapse
|
35
|
Morphew D, Chakrabarti D. Supracolloidal reconfigurable polyhedra via hierarchical self-assembly. SOFT MATTER 2016; 12:9633-9640. [PMID: 27858048 DOI: 10.1039/c6sm01615d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Enclosed three-dimensional structures with hollow interiors have been attractive targets for the self-assembly of building blocks across different length scales. Colloidal self-assembly, in particular, has enormous potential as a bottom-up means of structure fabrication exploiting a priori designed building blocks because of the scope for tuning interparticle interactions. Here we use computer simulation study to demonstrate the self-assembly of designer charge-stabilised colloidal magnetic particles into a series of supracolloidal polyhedra, each displaying a remarkable two-level structural hierarchy. The parameter space for design supports thermodynamically stable polyhedra of very different morphologies, namely tubular and hollow spheroidal structures, involving the formation of subunits of four-fold and three-fold rotational symmetry, respectively. The spheroidal polyhedra are chiral, despite having a high degree of rotational symmetry. The dominant pathways for self-assembly into these polyhedra reveal two distinct mechanisms - a growth mechanism via sequential attachment of the subunits for a tubular structure and a staged or hierarchical pathway for a spheroidal polyhedron. These supracolloidal architectures open up in response to an external magnetic field. Our results suggest design rules for synthetic reconfigurable containers at the microscale exploiting a hierarchical self-assembly scheme.
Collapse
Affiliation(s)
- Daniel Morphew
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|
36
|
Weber D, Bellinger D, Engels B. New Algorithms for Global Optimization and Reaction Path Determination. Methods Enzymol 2016; 578:145-67. [PMID: 27497166 DOI: 10.1016/bs.mie.2016.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We present new schemes to improve the convergence of an important global optimization problem and to determine reaction pathways (RPs) between identified minima. Those methods have been implemented into the CAST program (Conformational Analysis and Search Tool). The first part of this chapter shows how to improve convergence of the Monte Carlo with minimization (MCM, also known as Basin Hopping) method when applied to optimize water clusters or aqueous solvation shells using a simple model. Since the random movement on the potential energy surface (PES) is an integral part of MCM, we propose to employ a hydrogen bonding-based algorithm for its improvement. We show comparisons of the results obtained for random dihedral and for the proposed random, rigid-body water molecule movement, giving evidence that a specific adaption of the distortion process greatly improves the convergence of the method. The second part is about the determination of RPs in clusters between conformational arrangements and for reactions. Besides standard approaches like the nudged elastic band method, we want to focus on a new algorithm developed especially for global reaction path search called Pathopt. We started with argon clusters, a typical benchmark system, which possess a flat PES, then stepwise increase the magnitude and directionality of interactions. Therefore, we calculated pathways for a water cluster and characterize them by frequency calculations. Within our calculations, we were able to show that beneath local pathways also additional pathways can be found which possess additional features.
Collapse
Affiliation(s)
- D Weber
- Julius-Maximilians-Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Würzburg, Germany
| | - D Bellinger
- Julius-Maximilians-Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Würzburg, Germany
| | - B Engels
- Julius-Maximilians-Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Würzburg, Germany.
| |
Collapse
|
37
|
Mehta D, Chen J, Chen DZ, Kusumaatmaja H, Wales DJ. Kinetic Transition Networks for the Thomson Problem and Smale's Seventh Problem. PHYSICAL REVIEW LETTERS 2016; 117:028301. [PMID: 27447530 DOI: 10.1103/physrevlett.117.028301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 06/06/2023]
Abstract
The Thomson problem, arrangement of identical charges on the surface of a sphere, has found many applications in physics, chemistry and biology. Here, we show that the energy landscape of the Thomson problem for N particles with N=132, 135, 138, 141, 144, 147, and 150 is single funneled, characteristic of a structure-seeking organization where the global minimum is easily accessible. Algorithmically, constructing starting points close to the global minimum of such a potential with spherical constraints is one of Smale's 18 unsolved problems in mathematics for the 21st century because it is important in the solution of univariate and bivariate random polynomial equations. By analyzing the kinetic transition networks, we show that a randomly chosen minimum is, in fact, always "close" to the global minimum in terms of the number of transition states that separate them, a characteristic of small world networks.
Collapse
Affiliation(s)
- Dhagash Mehta
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Centre for the Subatomic Structure of Matter, Department of Physics, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jianxu Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Halim Kusumaatmaja
- Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
38
|
Das R, Wales DJ. Energy landscapes for a machine-learning prediction of patient discharge. Phys Rev E 2016; 93:063310. [PMID: 27415390 DOI: 10.1103/physreve.93.063310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 11/07/2022]
Abstract
The energy landscapes framework is applied to a configuration space generated by training the parameters of a neural network. In this study the input data consists of time series for a collection of vital signs monitored for hospital patients, and the outcomes are patient discharge or continued hospitalisation. Using machine learning as a predictive diagnostic tool to identify patterns in large quantities of electronic health record data in real time is a very attractive approach for supporting clinical decisions, which have the potential to improve patient outcomes and reduce waiting times for discharge. Here we report some preliminary analysis to show how machine learning might be applied. In particular, we visualize the fitting landscape in terms of locally optimal neural networks and the connections between them in parameter space. We anticipate that these results, and analogues of thermodynamic properties for molecular systems, may help in the future design of improved predictive tools.
Collapse
Affiliation(s)
- Ritankar Das
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
39
|
Fačkovec B, Vanden-Eijnden E, Wales DJ. Markov state modeling and dynamical coarse-graining via discrete relaxation path sampling. J Chem Phys 2016; 143:044119. [PMID: 26233119 DOI: 10.1063/1.4926940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A method is derived to coarse-grain the dynamics of complex molecular systems to a Markov jump process (MJP) describing how the system jumps between cells that fully partition its state space. The main inputs are relaxation times for each pair of cells, which are shown to be robust with respect to positioning of the cell boundaries. These relaxation times can be calculated via molecular dynamics simulations performed in each cell separately and are used in an efficient estimator for the rate matrix of the MJP. The method is illustrated through applications to Sinai billiards and a cluster of Lennard-Jones discs.
Collapse
Affiliation(s)
- B Fačkovec
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - E Vanden-Eijnden
- Courant Institute, New York University, 251 Mercer Street, New York, New York 10012, USA
| | - D J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| |
Collapse
|
40
|
Chakraborty D, Sengupta N, Wales DJ. Conformational Energy Landscape of the Ritonavir Molecule. J Phys Chem B 2016; 120:4331-40. [PMID: 27123749 DOI: 10.1021/acs.jpcb.5b12272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Conformational polymorphism of ritonavir, a well-known pharmaceutical drug, is intricately linked to its efficacy in the treatment of acquired immunodeficiency syndrome (AIDS). Polymorphic transition from the crystalline form I to form II leads to the loss of bioactivity. The constituent ritonavir molecules adopt a trans configuration about the carbamate torsion angle in the form I crystal, and a cis configuration in the form II crystal. Investigating the energetics and mechanistic features of conformational transitions at the single molecule level is a key step toward decoding the complex features of the solid state polymorphism. In this work, we employ the energy landscape framework to investigate the conformational transitions of an isolated ritonavir molecule. The landscape is explored using discrete path sampling (DPS) and visualized in terms of disconnectivity graphs. We identify two distinct funnels corresponding to the two molecular forms that are identified by crystallography. The two regions can be reliably distinguished using the carbamate torsion angle, and the corresponding interconversion rates are predicted to follow Arrhenius behavior. The results provide mechanistic insight into pathways for cis ↔ trans interconversion at the molecular level and may also help in elucidating the polymorphic transitions in the crystal state.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Neelanjana Sengupta
- Physical Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhaba Road, Pune 411008, India
| | - David J Wales
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
41
|
Carr JM, Mazauric D, Cazals F, Wales DJ. Energy landscapes and persistent minima. J Chem Phys 2016; 144:054109. [DOI: 10.1063/1.4941052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joanne M. Carr
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Dorian Mazauric
- Inria Sophia Antipolis Méditerranée, 2004 route des Lucioles, F-06902 Sophia Antipolis, France
| | - Frédéric Cazals
- Inria Sophia Antipolis Méditerranée, 2004 route des Lucioles, F-06902 Sophia Antipolis, France
| | - David J. Wales
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
42
|
Hernández-Rojas J, Chakrabarti D, Wales DJ. Self-assembly of colloidal magnetic particles: energy landscapes and structural transitions. Phys Chem Chem Phys 2016; 18:26579-26585. [DOI: 10.1039/c6cp03085h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of colloidal magnetic particles is of particular interest for the rich variety of structures it produces and the potential for these systems to be reconfigurable.
Collapse
Affiliation(s)
| | - D. Chakrabarti
- School of Chemistry
- University of Birmingham
- Birmingham B15 2TT
- UK
| | - D. J. Wales
- University Chemical Laboratories
- Cambridge CB2 1EW
- UK
| |
Collapse
|
43
|
Nagahata Y, Maeda S, Teramoto H, Horiyama T, Taketsugu T, Komatsuzaki T. Deciphering Time Scale Hierarchy in Reaction Networks. J Phys Chem B 2015; 120:1961-71. [DOI: 10.1021/acs.jpcb.5b09941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yutaka Nagahata
- Graduate
School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Maeda
- Department
of Chemistry, Faculty of Science, Hokkaido University, Kita 10,
Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Hiroshi Teramoto
- Graduate
School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0812, Japan
- Molecule
and Life Nonlinear Sciences Laboratory, Research Institute for Electronic
Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Takashi Horiyama
- Graduate
School of Science and Engineering, Saitama University, Shimo-Ookubo
255, Sakura-ku, Saitama 338-8570, Japan
| | - Tetsuya Taketsugu
- Department
of Chemistry, Faculty of Science, Hokkaido University, Kita 10,
Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Tamiki Komatsuzaki
- Graduate
School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0812, Japan
- Molecule
and Life Nonlinear Sciences Laboratory, Research Institute for Electronic
Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
44
|
Yildirim I, Chakraborty D, Disney MD, Wales DJ, Schatz GC. Computational investigation of RNA CUG repeats responsible for myotonic dystrophy 1. J Chem Theory Comput 2015; 11:4943-58. [PMID: 26500461 PMCID: PMC4606397 DOI: 10.1021/acs.jctc.5b00728] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 01/02/2023]
Abstract
Despite the importance of the knowledge of molecular hydration entropy (ΔShyd) in chemical and biological processes, the exact calculation of ΔShyd is very difficult, because of the complexity in solute–water interactions. Although free-energy perturbation (FEP) methods have been employed quite widely in the literature, the poor convergent behavior of the van der Waals interaction term in the potential function limited the accuracy and robustness. In this study, we propose a new method for estimating ΔShyd by means of combining the FEP approach and the scaled particle theory (or information theory) to separately calculate the electrostatic solute–water interaction term (ΔSelec) and the hydrophobic contribution approximated by the cavity formation entropy (ΔScav), respectively. Decomposition of ΔShyd into ΔScav and ΔSelec terms is found to be very effective with a substantial accuracy enhancement in ΔShyd estimation, when compared to the conventional full FEP calculations. ΔScav appears to dominate over ΔSelec in magnitude, even in the case of polar solutes, implying that the major contribution to the entropic cost for hydration comes from the formation of a solvent-excluded volume. Our hybrid scaled particle theory and FEP method is thus found to enhance the accuracy of ΔShyd prediction by effectively complementing the conventional full FEP method.
Collapse
Affiliation(s)
- Ilyas Yildirim
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry, University of Cambridge, Cambridge, United Kingdom CB2 1EW
| | - Debayan Chakraborty
- Department
of Chemistry, University of Cambridge, Cambridge, United Kingdom CB2 1EW
| | - Matthew D. Disney
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - David J. Wales
- Department
of Chemistry, University of Cambridge, Cambridge, United Kingdom CB2 1EW
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
45
|
Chekmarev SF. Equilibration of Protein States: A Time Dependent Free-Energy Disconnectivity Graph. J Phys Chem B 2015; 119:8340-8. [PMID: 26068182 DOI: 10.1021/acs.jpcb.5b04336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The process of equilibration of protein states in a three-stranded antiparallel β-sheet miniprotein is studied using a time-dependent free energy disconnectivity graph. To determine the rates of transitions, the molecular dynamics simulation results of a recent work (Kalgin, I. V.; J. Phys. Chem. B 2013, 117, 6092) are employed. The vertices of the graph are the free energies of characteristic states of the protein, and the edges are the transition state free energies. To determine the latter, the "complete" partition function (Eyring, 1935) is used, which includes the translational partition function corresponding to the ballistic motion of the system along the reaction coordinate. The distance along the reaction coordinate that enters the translational partition function is taken to be proportional to the observation time and thus measures the number of representative points that cross the transition state surface during given time. As the time increases, the free energy barriers between the clusters of characteristic conformations (native-like, helical, and β-sheet conformations of different degree of organization) decrease and (local) equilibrium between the clusters is established. With time, these clusters are grouped into larger clusters, extending the equilibrium to a larger portion of protein states.
Collapse
Affiliation(s)
- Sergei F Chekmarev
- †Institute of Thermophysics, SB RAS, 630090 Novosibirsk, Russia.,‡Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
46
|
Chebaro Y, Ballard AJ, Chakraborty D, Wales DJ. Intrinsically disordered energy landscapes. Sci Rep 2015; 5:10386. [PMID: 25999294 PMCID: PMC4441119 DOI: 10.1038/srep10386] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such 'intrinsically disordered' landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an α-helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.
Collapse
Affiliation(s)
- Yassmine Chebaro
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - Andrew J Ballard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - Debayan Chakraborty
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| |
Collapse
|
47
|
Cazals F, Dreyfus T, Mazauric D, Roth CA, Robert CH. Conformational ensembles and sampled energy landscapes: Analysis and comparison. J Comput Chem 2015; 36:1213-31. [DOI: 10.1002/jcc.23913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Frédéric Cazals
- Inria 2004 route des Lucioles, BP 93; F-06902 Sophia-Antipolis; FRANCE
| | - Tom Dreyfus
- Inria 2004 route des Lucioles, BP 93; F-06902 Sophia-Antipolis; FRANCE
| | - Dorian Mazauric
- Inria 2004 route des Lucioles, BP 93; F-06902 Sophia-Antipolis; FRANCE
| | | | - Charles H. Robert
- CNRS Laboratory of Theoretical Biochemistry (LBT) Institut de Biologie Physico-Chimique 13; rue Pierre et Marie Curie 75005 Paris
| |
Collapse
|
48
|
Wales DJ. Perspective: Insight into reaction coordinates and dynamics from the potential energy landscape. J Chem Phys 2015; 142:130901. [DOI: 10.1063/1.4916307] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- D. J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
49
|
|
50
|
Cao P, Yoon G, Tao W, Eom K, Park HS. The role of binding site on the mechanical unfolding mechanism of ubiquitin. Sci Rep 2015; 5:8757. [PMID: 25736913 PMCID: PMC4348633 DOI: 10.1038/srep08757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
We apply novel atomistic simulations based on potential energy surface exploration to investigate the constant force-induced unfolding of ubiquitin. At the experimentally-studied force clamping level of 100 pN, we find a new unfolding mechanism starting with the detachment between β5 and β3 involving the binding site of ubiquitin, the Ile44 residue. This new unfolding pathway leads to the discovery of new intermediate configurations, which correspond to the end-to-end extensions previously seen experimentally. More importantly, it demonstrates the novel finding that the binding site of ubiquitin can be responsible not only for its biological functions, but also its unfolding dynamics. We also report in contrast to previous single molecule constant force experiments that when the clamping force becomes smaller than about 300 pN, the number of intermediate configurations increases dramatically, where almost all unfolding events at 100 pN involve an intermediate configuration. By directly calculating the life times of the intermediate configurations from the height of the barriers that were crossed on the potential energy surface, we demonstrate that these intermediate states were likely not observed experimentally due to their lifetimes typically being about two orders of magnitude smaller than the experimental temporal resolution.
Collapse
Affiliation(s)
- Penghui Cao
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - Gwonchan Yoon
- 1] Department of Mechanical Engineering, Boston University, Boston, MA 02215 [2] Department of Mechanical Engineering, Korea University, Seoul 136-701, South Korea
| | - Weiwei Tao
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Harold S Park
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| |
Collapse
|