1
|
Olson JS. Kinetic mechanisms for O 2 binding to myoglobins and hemoglobins. Mol Aspects Med 2021; 84:101024. [PMID: 34544605 DOI: 10.1016/j.mam.2021.101024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 11/29/2022]
Abstract
Antonini and Brunori's 1971 book "Hemoglobin and Myoglobin in Their Reactions with Ligands" was a truly remarkable publication that summarized almost 100 years of research on O2 binding to these globins. Over the ensuing 50 years, ultra-fast laser photolysis techniques, high-resolution and time resolved X-ray crystallography, molecular dynamics simulations, and libraries of recombinant myoglobin (Mb) and hemoglobin (Hb) variants have provided structural interpretations of O2 binding to these proteins. The resultant mechanisms provide quantitative descriptions of the stereochemical factors that govern overall affinity, including proximal and distal steric restrictions that affect iron reactivity and favorable positive electrostatic interactions that preferentially stabilize bound O2. The pathway for O2 uptake and release by Mb and subunits of Hb has been mapped by screening libraries of site-directed mutants in laser photolysis experiments. O2 enters mammalian Mb and the α and β subunits of human HbA through a channel created by upward and outward rotation of the distal His at the E7 helical position, is non-covalently captured in the interior of the distal cavity, and then internally forms a bond with the heme Fe(II) atom. O2 dissociation is governed by disruption of hydrogen bonding interactions with His (E7), breakage of the Fe(II)-O2 bond, and then competition between rebinding and escape through the E7-gate. The structural features that govern the rates of both the individual steps and overall reactions have been determined and provide the framework for: (1) defining the physiological functions of specific globins and their evolution; (2) understanding the clinical features of hemoglobinopathies; and (3) designing safer and more efficient acellular hemoglobin-based oxygen carriers (HBOCs) for transfusion therapy, organ preservation, and other commercially relevant O2 transport and storage processes.
Collapse
Affiliation(s)
- John S Olson
- Department of Biosciences, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
2
|
Marchetti M, Ronda L, Percudani R, Bettati S. Immobilization of Allantoinase for the Development of an Optical Biosensor of Oxidative Stress States. SENSORS 2019; 20:s20010196. [PMID: 31905788 PMCID: PMC6983136 DOI: 10.3390/s20010196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/04/2023]
Abstract
Allantoin, the natural end product of purine catabolism in mammals, is non-enzymatically produced from the scavenging of reactive oxygen species through the degradation of uric acid. Levels of allantoin in biological fluids are sensitively influenced by the presence of free radicals, making this molecule a candidate marker of acute oxidative stress in clinical analyses. With this aim, we exploited allantoinase—the enzyme responsible for allantoin hydrolization in plants and lower organisms—for the development of a biosensor exploiting a fast enzymatic-chemical assay for allantoin quantification. Recombinant allantoinase was entrapped in a wet nanoporous silica gel matrix and its structural properties, function, and stability were characterized through fluorescence spectroscopy and circular dichroism measurements, and compared to the soluble enzyme. Physical immobilization in silica gel minimally influences the structure and the catalytic efficiency of entrapped allantoinase, which can be reused several times and stored for several months with good activity retention. These results, together with the relative ease of the sol-gel preparation and handling, make the encapsulated allantoinase a good candidate for the development of an allantoin biosensor.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Centro Interdipartimentale Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.M.); (S.B.)
| | - Luca Ronda
- Centro Interdipartimentale Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.M.); (S.B.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-905502
| | - Riccardo Percudani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Via Parco Area delle Scienze 11/A, 43124 Parma, Italy;
| | - Stefano Bettati
- Centro Interdipartimentale Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.M.); (S.B.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
3
|
Abbruzzetti S, Spyrakis F, Bidon-Chanal A, Luque FJ, Viappiani C. Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:10686-701. [PMID: 23733145 DOI: 10.1039/c3cp51149a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of cavities and tunnels in the interior of proteins, in conjunction with the structural plasticity arising from the coupling to the thermal fluctuations of the protein scaffold, has profound consequences on the pathways followed by ligands moving through the protein matrix. In this perspective we discuss how quantitative analysis of experimental rebinding kinetics from laser flash photolysis, trapping of unstable conformational states by embedding proteins within the nanopores of silica gels, and molecular simulations can synergistically converge to gain insight into the migration mechanism of ligands. We show how the evaluation of the free energy landscape for ligand diffusion based on the outcome of computational techniques can assist the definition of sound reaction schemes, leading to a comprehensive understanding of the broad range of chemical events and time scales that encompass the transport of small ligands in hemeproteins.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, viale delle Scienze 7A, 43124, Parma, Italy
| | | | | | | | | |
Collapse
|
4
|
Tertiary and quaternary effects in the allosteric regulation of animal hemoglobins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1860-72. [PMID: 23523886 DOI: 10.1016/j.bbapap.2013.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 12/16/2022]
Abstract
In the last decade, protein allostery has experienced a major resurgence, boosted by the extension of the concept to systems of increasing complexity and by its exploitation for the development of drugs. Expansion of the field into new directions has not diminished the key role of hemoglobin as a test molecule for theory and experimental validation of allosteric models. Indeed, the diffusion of hemoglobins in all kingdoms of life and the variety of functions and of quaternary assemblies based on a common tertiary fold indicate that this superfamily of proteins is ideally suited for investigating the physical and molecular basis of allostery and firmly maintains its role as a main player in the field. This review is an attempt to briefly recollect common and different strategies adopted by metazoan hemoglobins, from monomeric molecules to giant complexes, exploiting homotropic and heterotropic allostery to increase their functional dynamic range. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
5
|
Ronda L, Bettati S, Henry ER, Kashav T, Sanders JM, Royer WE, Mozzarelli A. Tertiary and quaternary allostery in tetrameric hemoglobin from Scapharca inaequivalvis. Biochemistry 2013; 52:2108-17. [PMID: 23458680 DOI: 10.1021/bi301620x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The clam Scapharca inaequivalvis possesses two cooperative oxygen binding hemoglobins in its red cells: a homodimeric HbI and a heterotetrameric A2B2 HbII. Each AB dimeric half of HbII is assembled in a manner very similar to that of the well-studied HbI. This study presents crystal structures of HbII along with oxygen binding data both in the crystalline state and in wet nanoporous silica gels. Despite very similar ligand-linked structural transitions observed in HbI and HbII crystals, HbII in the crystal or encapsulated in silica gels apparently exhibits minimal cooperativity in oxygen binding, in contrast with the full cooperativity exhibited by HbI crystals. However, oxygen binding curves in the crystal indicate the presence of a significant functional inequivalence of A and B chains. When this inequivalence is taken into account, both crystal and R state gel functional data are consistent with the conservation of a tertiary contribution to cooperative oxygen binding, quantitatively similar to that measured for HbI, and are in keeping with the structural information. Furthermore, our results indicate that to fully express cooperative ligand binding, HbII requires quaternary transitions hampered by crystal lattice and gel encapsulation, revealing greater complexity in cooperative function than the direct communication across a dimeric interface observed in HbI.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Pharmacy, University of Parma , Parco Area delle Scienze, 23/A, 43124 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Ronda L, Merlino A, Bettati S, Verde C, Balsamo A, Mazzarella L, Mozzarelli A, Vergara A. Role of tertiary structures on the Root effect in fish hemoglobins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1885-93. [PMID: 23376186 DOI: 10.1016/j.bbapap.2013.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Many fish hemoglobins exhibit a marked dependence of oxygen affinity and cooperativity on proton concentration, called Root effect. Both tertiary and quaternary effects have been evoked to explain the allosteric regulation brought about by protons in fish hemoglobins. However, no general rules have emerged so far. We carried out a complementary crystallographic and microspectroscopic characterization of ligand binding to crystals of deoxy-hemoglobin from the Antarctic fish Trematomus bernacchii (HbTb) at pH6.2 and pH8.4. At low pH ligation has negligible structural effects, correlating with low affinity and absence of cooperativity in oxygen binding. At high pH, ligation causes significant changes at the tertiary structural level, while preserving structural markers of the T state. These changes mainly consist in a marked displacement of the position of the switch region CD corner towards an R-like position. The functional data on T-state crystals validate the relevance of the crystallographic observations, revealing that, differently from mammalian Hbs, in HbTb a significant degree of cooperativity in oxygen binding is due to tertiary conformational changes, in the absence of the T-R quaternary transition. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Pharmacy, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Jones EM, Balakrishnan G, Spiro TG. Heme reactivity is uncoupled from quaternary structure in gel-encapsulated hemoglobin: a resonance Raman spectroscopic study. J Am Chem Soc 2012; 134:3461-71. [PMID: 22263778 PMCID: PMC3307588 DOI: 10.1021/ja210126j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Encapsulation of hemoglobin (Hb) in silica gel preserves structure and function but greatly slows protein motion, thereby providing access to intermediates along the allosteric pathway that are inaccessible in solution. Resonance Raman (RR) spectroscopy with visible and ultraviolet laser excitation provides probes of heme reactivity and of key tertiary and quaternary contacts. These probes were monitored in gels after deoxygenation of oxyHb and after CO binding to deoxyHb, which initiate conformational change in the R-T and T-R directions, respectively. The spectra establish that quaternary structure change in the gel takes a week or more but that the evolution of heme reactivity, as monitored by the Fe-histidine stretching vibration, ν(FeHis), is completed within two days, and is therefore uncoupled from the quaternary structure. Within each quaternary structure, the evolving ν(FeHis) frequencies span the full range of values between those previously associated with the high- and low-affinity end states, R and T. This result supports the tertiary two-state (TTS) model, in which the Hb subunits can adopt high- and low-affinity tertiary structures, r and t, within each quaternary state. The spectra also reveal different tertiary pathways, involving the breaking and reformation of E and F interhelical contacts in the R-T direction but not the T-R direction. In the latter, tertiary motions are restricted by the T quaternary contacts.
Collapse
Affiliation(s)
- Eric M. Jones
- Department of Chemistry, University of Washington, Box 351700, Seattle Washington 98195-1700 USA
| | - Gurusamy Balakrishnan
- Department of Chemistry, University of Washington, Box 351700, Seattle Washington 98195-1700 USA
| | - Thomas G. Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle Washington 98195-1700 USA
| |
Collapse
|
8
|
Bettati S, Viappiani C, Mozzarelli A. Hemoglobin, an “evergreen” red protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1317-24. [DOI: 10.1016/j.bbapap.2009.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
|