1
|
Shen Y, Zhang S, Su Y, Qu Z, Ren H. Controlling the repair mechanisms of oxetanes through functional group substitution. Phys Chem Chem Phys 2023; 25:14511-14519. [PMID: 37190991 DOI: 10.1039/d3cp01019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Intersystem crossing (ISC) plays a key role in the photolysis processes of oxetanes formed by benzophenone (BP)-like and thymine structures. In this work, we systematically explored the photophysical processes of oxetanes and ring-splitting products and investigated the effect of substituents on the repair mechanisms of oxetanes. The regioselectivity of oxetanes (head-to-head, HH and head-to-tail, HT) and the electron-donating and electron-withdrawing substituents, including CH3, OCH3 and NO2, were considered. It was found that the substituents influence the ISC rates of these compounds more by changing their spin-orbit coupling (SOC) coefficients rather than energy gaps. The SOC coefficients of HH-oxetanes are more affected by these groups than HT-oxetanes and products, and they have greater ISC rates on the whole. Besides, the insertion of substituents can alter the radiative and nonradiative decay rates, thereby transforming the photoinduced cycloreversion mechanisms of oxetanes. The ring-splitting reactions of non-substituted oxetanes could occur via two pathways of singlet and triplet manifolds. Furthermore, oxetanes with NO2 at the X site have the largest ISC rates but hardly undergo repair processes, while the introduction of electron-donating substituents can effectively promote the repair of oxetanes. The singlet ring-splitting reactions of HH-oxetanes are more inclined to occur after introducing CH3 and OCH3 at two sites. However, HT-oxeatnes with CH3 are more likely to undergo triplet repair processes and OCH3-substituted structures tend to originate cycloreversion in the singlet manifolds. Moreover, the introduction of CH3 and OCH3 at the Y site rather than the X site can more significantly accelerate the repair processes of HH-oxetanes. Contrarily, HT-oxetanes with electron-donating groups at the X site exhibit faster repair rates than those at the Y site. We hope this work can provide valuable insights into BP-like drugs and photosensitive DNA repair.
Collapse
Affiliation(s)
- Yan Shen
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Shaoqin Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Yingli Su
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Zexing Qu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Haisheng Ren
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Du L, Wang J, Qiu Y, Liang R, Lu P, Chen X, Phillips DL, Winter AH. Generation and direct observation of a triplet arylnitrenium ion. Nat Commun 2022; 13:3458. [PMID: 35710806 PMCID: PMC9203820 DOI: 10.1038/s41467-022-31091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Nitrenium ions are important reactive intermediates in both chemistry and biology. Although singlet nitrenium ions are well-characterized by direct methods, the triplet states of nitrenium ions have never been directly detected. Here, we find that the excited state of the photoprecursor partitions between heterolysis to generate the singlet nitrenium ion and intersystem crossing (ISC) followed by a spontaneous heterolysis process to generate the triplet p-iodophenylnitrenium ion (np). The triplet nitrenium ion undergoes ISC to generate the ground singlet state, which ultimately undergoes proton and electron transfer to generate a long-lived radical cation that further generates the reduced p-iodoaniline. Ab Initio calculations were performed to map out the potential energy surfaces to better understand the excited state reactivity channels show that an energetically-accessible singlet-triplet crossing lies along the N-N stretch coordinate and that the excited triplet state is unbound and spontaneously eliminates ammonia to generate the triplet nitrenium ion. These results give a clearer picture of the photophysical properties and reactivity of two different spin states of a phenylnitrenium ion and provide the first direct glimpse of a triplet nitrenium ion. Nitrenium ions are highly electrophilic reactive intermediates of formula R−N−R+, nitrogen analogue of carbenes. Here the authors report the detection of a triplet nitrenium ion using time-resolved spectroscopic methods and ab initio computations, allowing a glimpse at the properties and behavior of this important class of intermediates.
Collapse
Affiliation(s)
- Lili Du
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, P.R. China.,Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Juanjuan Wang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, 100875, Beijing, P.R. China
| | - Yunfan Qiu
- Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, IA, 50011, USA
| | - Runhui Liang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Penglin Lu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, 100875, Beijing, P.R. China.
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China. .,Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, IA, 50011, USA.
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, IA, 50011, USA.
| |
Collapse
|
3
|
Blasco-Brusola A, Vayá I, Miranda MA. Regioselectivity in the adiabatic photocleavage of DNA-based oxetanes. Org Biomol Chem 2020; 18:9117-9123. [PMID: 33150924 DOI: 10.1039/d0ob01974g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Direct absorption of UVB light by DNA may induce formation of cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4) photoproducts. The latter arise from the rearrangement of unstable oxetane intermediates, which have also been proposed to be the electron acceptor species in the photoenzymatic repair of this type of DNA damage. In the present work, direct photolysis of oxetanes composed of substituted uracil (Ura) or thymine (Thy) derivatives and benzophenone (BP) have been investigated by means of transient absorption spectroscopy from the femtosecond to the microsecond time-scales. The results showed that photoinduced oxetane cleavage takes place through an adiabatic process leading to the triplet excited BP and the ground state nucleobase. This process was markedly affected by the oxetane regiochemistry (head-to-head, HH, vs. head-to-tail, HT) and by the nucleobase substitution; it was nearly quantitative for all investigated HH-oxetanes while it became strongly influenced by the substitution at positions 1 and 5 for the HT-isomers. The obtained results clearly confirm the generality of the adiabatic photoinduced cleavage of BP/Ura or Thy oxetanes, as well as its dependence on the regiochemistry, supporting the involvement of triplet exciplexes. As a matter of fact, when formation of this species was favored by keeping together the Thy and BP units after splitting by means of a linear linker, a transient absorption at ∼400 nm, ascribed to the exciplex, was detected.
Collapse
Affiliation(s)
- Alejandro Blasco-Brusola
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.
| | - Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.
| |
Collapse
|
4
|
Blasco-Brusola A, Navarrete-Miguel M, Giussani A, Roca-Sanjuán D, Vayá I, Miranda MA. Regiochemical memory in the adiabatic photolysis of thymine-derived oxetanes. A combined ultrafast spectroscopic and CASSCF/CASPT2 computational study. Phys Chem Chem Phys 2020; 22:20037-20042. [PMID: 32870202 DOI: 10.1039/d0cp03084h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The photoinduced cycloreversion of oxetanes has been thoroughly investigated in connection with the photorepair of the well-known DNA (6-4) photoproducts. In the present work, the direct photolysis of the two regioisomers arising from the irradiation of benzophenone (BP) and 1,3-dimethylthymine (DMT), namely the head-to-head (HH-1) and head-to-tail (HT-1) oxetane adducts, has been investigated by combining ultrafast spectroscopy and theoretical multiconfigurational quantum chemistry analysis. Both the experimental and computational results agree with the involvement of an excited triplet exciplex 3[BPDMT]* for the photoinduced oxetane cleavage to generate 3BP* and DMT through an adiabatic photochemical reaction. The experimental signature of 3[BPDMT]* is the appearance of an absorption band at ca. 400 nm, detected by femtosecond transient absorption spectroscopy. Its formation is markedly regioselective, as it is more efficient and proceeds faster for HH-1 (∼2.8 ps) than for HT-1 (∼6.3 ps). This is in line with the theoretical analysis, which predicts an energy barrier to reach the triplet exciplex for HT-1, in contrast with a less hindered profile for HH-1. Finally, the more favorable adiabatic cycloreversion of HH-1 compared to that of HT-1 is explained by its lower probability to reach the intersystem crossing with the ground state, which would induce a radiationless deactivation process leading either to a starting adduct or to a dissociated BP and DMT.
Collapse
Affiliation(s)
- Alejandro Blasco-Brusola
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Miriam Navarrete-Miguel
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Angelo Giussani
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| |
Collapse
|
5
|
Ma J, Zhang X, Phillips DL. Time-Resolved Spectroscopic Observation and Characterization of Water-Assisted Photoredox Reactions of Selected Aromatic Carbonyl Compounds. Acc Chem Res 2019; 52:726-737. [PMID: 30742408 DOI: 10.1021/acs.accounts.8b00619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In recent years, unusual and efficient self-photoredox reactions were detected for selected benzophenone derivatives (BPs) and anthraquinone derivatives (AQs) in aqueous environments by Wan and co-workers, where the carbonyl undergoes reduction to the corresponding alcohol and a side-chain alcohol group undergoes oxidation to the corresponding carbonyl. To unravel the photoredox reaction mechanisms of these types of BPs and AQs in aqueous environments, we have utilized a combination of time-resolved spectroscopy techniques such as femtosecond transient absorption, nanosecond transient absorption, and nanosecond time-resolved resonance Raman spectroscopy to detect and characterize the electronic absorption and vibrational spectra of the intermediates and transient species from the femtosecond to microsecond time region after they are generated in the photoredox reactions. With the assistance of density functional theory calculations to simulate the electronic absorption and Raman spectra, the structural and kinetic information on the key reactive intermediates is described. Furthermore, the reaction pathways were calculated by finding the transition states connecting with the reactant and product complexes to better understand the photoredox reaction mechanism. In this Account, we summarize some of our time-resolved spectroscopic observations and characterization of water-assisted photoredox reactions of selected BPs and AQs. In the strong hydrogen-donor solvent isopropanol, the commonly studied photoreduction reaction for aromatic carbonyls via an intermolecular hydrogen atom tranfer process was observed for BPs and AQs. The photoredox reactions for the investigated BPs and AQs in aqueous environments occur on the triplet excited-state surface. Under moderately acidic aqueous conditions, the photoredox reactions for BPs and AQs are triggered by a proton transfer (PT) pathway. In neutral aqueous solutions, AQs may also undergo proton-coupled electron transfer (PCET) leading to the photoredox reaction, while BPs generate the ketyl radical species. Both BPs and AQs prefer the photohydration reaction in high-proton-concentration aqueous solutions (pH 0). The PT and PCET processes were found to offer more possibilities for the aromatic carbonyl compounds to lead to new photochemical reactions like the unusual photoredox reactions associated with BPs and AQs described here. Clear characterization of the photophysical pathways and the photochemical reactions of representative aromatic carbonyl compounds in aqueous environments not only provides fundamental information to better understand the photochemistry of carbonyl-containing compounds but also will facilitate the development of applications of these systems, like photochemical synthesis, drugs, and photolabile protecting groups. In addition, the importance of water molecules in the photochemical reactions of interest here may also lead to further understanding of how water influences the photochemistry of related carbonyl-containing compounds in aqueous environments.
Collapse
Affiliation(s)
- Jiani Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Xiting Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
6
|
Ma J, Su T, Li MD, Du W, Huang J, Guan X, Phillips DL. How and When Does an Unusual and Efficient Photoredox Reaction of 2-(1-Hydroxyethyl) 9,10-Anthraquinone Occur? A Combined Time-Resolved Spectroscopic and DFT Study. J Am Chem Soc 2012; 134:14858-68. [DOI: 10.1021/ja304441n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiani Ma
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R.
China
| | - Tao Su
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R.
China
| | - Ming-De Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R.
China
| | - Wei Du
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R.
China
| | - Jinqing Huang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R.
China
| | - Xiangguo Guan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R.
China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R.
China
| |
Collapse
|
7
|
Chan CTL, Cheng CCW, Ho KYF, Kwok WM. Femtosecond broadband time-resolved fluorescence and transient absorption study of the intramolecular charge transfer state of methyl 4-dimethylaminobenzoate. Phys Chem Chem Phys 2011; 13:16306-13. [DOI: 10.1039/c1cp21627a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
|