1
|
Downey JP, Lakey PSJ, Shiraiwa M, Abbatt JPD. Ozone Loss on Painted Surfaces: Dependence on Relative Humidity, Aging, and Exposure to Reactive SVOCs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12073-12081. [PMID: 38923518 DOI: 10.1021/acs.est.4c02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Ozone and its oxidation products result in negative health effects when inhaled. Despite painted surfaces being the most abundant surface in indoor spaces, surface loss remains one of the largest uncertainties in the indoor ozone budget. Here, ozone uptake coefficients (γO3) on painted surfaces were measured in a flow-through reactor where 79% of the inner surfaces were removable painted glass sheets. Flat white paint initially had a high uptake coefficient (8.3 × 10-6) at 20% RH which plateaued to 1.1 × 10-6 as the paint aged in an indoor office over weeks. Increasing the RH from 0 to 75% increased γO3 by a factor of 3.0, and exposure to 134 ppb of α-terpineol for 1 h increased γO3 by a factor of 1.6 at 20% RH. RH also increases α-terpineol partitioning to paint, further increasing ozone loss, but the type of paint (flat, eggshell, satin, semigloss) had no significant effect. A kinetic multilayer model captures the dependence of γO3 on RH and the presence of α-terpineol, indicating the reacto-diffusive depth for O3 is 1 to 2 μm. Given the similarity of the kinetics on aged surfaces across many paint types and the sustained reactivity during aging, these results suggest a mechanism for catalytic loss.
Collapse
Affiliation(s)
- Jillian P Downey
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Butman JL, Thomson RJ, Geiger FM. Unanticipated Hydrophobicity Increases of Squalene and Human Skin Oil Films Upon Ozone Exposure. J Phys Chem B 2022; 126:9417-9423. [PMID: 36331532 DOI: 10.1021/acs.jpcb.2c04849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The C-H and O-H oscillators on the surfaces of thin films of human-derived skin oil and squalene are probed under ambient conditions (300 K, 1 atm total pressure, 40% RH) using second-order vibrational spectroscopy and contact angle goniometry before and after exposure to ppb amounts of ozone. Skin oil and squalene are found to produce different vibrational sum frequency generation spectra in the C-H stretching region, while exposure to ozone results in surface spectra for both materials that is consistent with a loss of C-H oscillators. The measured contact angles show that the hydrophobicity of the films increases following exposure to ozone, consistent with the reduction in C═C···H2O ("πH") bonding interactions that is expected from C═C double bond loss due to ozonolysis and indicating that the polar functional groups formed point toward the films' interiors. Implications for heterogeneous indoor chemistry are discussed.
Collapse
Affiliation(s)
- Jana L Butman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Huang L, Frank ES, Shrestha M, Riahi S, Tobias DJ, Grassian VH. Heterogeneous Interactions of Prevalent Indoor Oxygenated Organic Compounds on Hydroxylated SiO 2 Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6623-6630. [PMID: 33945687 DOI: 10.1021/acs.est.1c00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oxygenated organic compounds (OOCs) are widely found in indoor environments and come from either the direct emissions from indoor activities or the subsequent oxidation of nonoxygenated OCs. Adsorption and partitioning of OCs on surfaces are significant processes in indoor chemistry, yet these interactions specifically involving OOCs are still poorly understood. In this study, we investigate the interactions of three prevalent indoor OOCs (dihydromyrcenol, α-terpineol, and linalool) on an indoor surface proxy (hydroxylated SiO2) by combining vibrational spectroscopy with ab initio molecular dynamics simulations. The adsorption of these compounds on the SiO2 surface is driven by π hydrogen bonding and O-H hydrogen bonding interactions, with O-H hydrogen bonding interactions being stronger. The results of kinetic measurements suggest that indoor surfaces play a significant role in the removal of these OOCs, especially under moderate and low air exchange. Additionally, indoor surfaces can also serve as a reservoir of OOCs due to their much slower desorption kinetics when compared to other indoor relevant organic compounds such as limonene. Overall, the results gleaned by experiment and theoretical simulations provide a molecular representation of the interaction of OOCs on indoor relevant surfaces as well as implications of these interactions for indoor air chemistry.
Collapse
Affiliation(s)
- Liubin Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Elianna S Frank
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Mona Shrestha
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Saleh Riahi
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
von Domaros M, Liu Y, Butman JL, Perlt E, Geiger FM, Tobias DJ. Molecular Orientation at the Squalene/Air Interface from Sum Frequency Generation Spectroscopy and Atomistic Modeling. J Phys Chem B 2021; 125:3932-3941. [DOI: 10.1021/acs.jpcb.0c11158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael von Domaros
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Yangdongling Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jana L. Butman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eva Perlt
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Douglas J. Tobias
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
5
|
Inoue KI, Takada C, Wang L, Morita A, Ye S. In Situ Monitoring of the Unsaturated Phospholipid Monolayer Oxidation in Ambient Air by HD-SFG Spectroscopy. J Phys Chem B 2020; 124:5246-5250. [PMID: 32478516 DOI: 10.1021/acs.jpcb.0c03408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pulmonary surfactant monolayer is indispensable for the respiratory system. Recently, it was reported that some unsaturated lipids of the pulmonary surfactants are oxidized by low-level ozone in ambient air. However, the molecular-level understanding of the reaction mechanism is still limited due to technical difficulties. We applied heterodyne-detected sum frequency generation (HD-SFG) spectroscopy to probe the reaction process of an unsaturated phospholipid monolayer (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine, POPC), which is one of the major lipids in the pulmonary surfactant, under low-level ozone (30 ± 5 ppb). The HD-SFG spectroscopy realized the accurate peak assignments of the spectra and the identification of molecular species with high sensitivity, which were impossible with previous measurements. The time-resolved spectra indicated that the C═C moiety in the unsaturated alkyl chain is selectively oxidized by ozone with a time constant of 22 ± 3 min by first-order reaction kinetics. Furthermore, it was revealed for the first time that the reaction product of the POPC monolayer under low-level ozone is not the carboxylic form but the aldehyde form based on the vibrational spectroscopy results. The present study has deepened our molecular-level understanding of the oxidation mechanism of unsaturated lipids that are widely found in many biological systems.
Collapse
Affiliation(s)
- Ken-Ichi Inoue
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Chunji Takada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Lin Wang
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Akihiro Morita
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
6
|
Angulo Milhem S, Verriele M, Nicolas M, Thevenet F. Does the ubiquitous use of essential oil-based products promote indoor air quality? A critical literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14365-14411. [PMID: 32162221 DOI: 10.1007/s11356-020-08150-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Essential oils are frequently used as natural fragrances in housecleaning products and air fresheners marketed as green and healthy. However, these substances are volatile and reactive chemical species. This review focuses on the impact of essential oil-based household products on indoor air quality. First, housecleaning products containing essential oils are explored in terms of composition and existing regulations. Specific insight is provided regarding terpenes in fragranced housecleaning products, air fresheners, and pure essential oils. Second, experimental methodologies for terpene monitoring, from sampling to experimental chambers and analytical methods, are addressed, emphasizing the experimental issues in monitoring terpenes in indoor air. Third, the temporal dynamics of terpene emissions reported in the literature are discussed. Despite experimental discrepancies, essential oil-based products are significant sources of terpenes in indoor air, inducing a high exposure of occupants to terpenes. Finally, the fate of terpenes is explored from sorptive and reactive points of view. In addition to terpene deposition on surfaces, indoor oxidants may induce homogeneous and heterogeneous reactions, resulting in secondary pollutants, such as formaldehyde and secondary organic aerosols. Overall, essential oil-based products can negatively impact indoor air quality; therefore, standard protocols and real-scale approaches are needed to explore the indoor physics and chemistry of terpenes, from emissions to reactivity.
Collapse
Affiliation(s)
- Shadia Angulo Milhem
- IMT Lille Douai, SAGE, Université de Lille, 59000, Lille, France
- Centre Scientifique et Technique du Bâtiment (CSTB), 38000, Grenoble, France
| | - Marie Verriele
- IMT Lille Douai, SAGE, Université de Lille, 59000, Lille, France
| | - Melanie Nicolas
- Centre Scientifique et Technique du Bâtiment (CSTB), 38000, Grenoble, France
| | | |
Collapse
|
7
|
Upshur MA, Vega MM, Bé AG, Chase HM, Zhang Y, Tuladhar A, Chase ZA, Fu L, Ebben CJ, Wang Z, Martin ST, Geiger FM, Thomson RJ. Synthesis and surface spectroscopy of α-pinene isotopologues and their corresponding secondary organic material. Chem Sci 2019; 10:8390-8398. [PMID: 31803417 PMCID: PMC6844218 DOI: 10.1039/c9sc02399b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/21/2019] [Indexed: 12/02/2022] Open
Abstract
The synthesis and surface-specific spectroscopic analysis of α-pinene isotopologues and their corresponding secondary organic material is reported.
Atmospheric aerosol–cloud interactions remain among the least understood processes within the climate system, leaving large uncertainties in the prediction of future climates. In particular, the nature of the surfaces of aerosol particles formed from biogenic terpenes, such as α-pinene, is poorly understood despite the importance of surface phenomena in their formation, growth, radiative properties, and ultimate fate. Herein we report the coupling of a site-specific deuterium labeling strategy with vibrational sum frequency generation (SFG) spectroscopy to probe the surface C–H oscillators in α-pinene-derived secondary organic aerosol material (SOM) generated in an atmospheric flow tube reactor. Three α-pinene isotopologues with methylene bridge, bridgehead methine, allylic, and vinyl deuteration were synthesized and their vapor phase SFG spectra were compared to that of unlabeled α-pinene. Subsequent analysis of the SFG spectra of their corresponding SOM revealed that deuteration of the bridge methylene C–H oscillators present on the cyclobutane ring in α-pinene leads to a considerable signal intensity decrease (ca. 30–40%), meriting speculation that the cyclobutane moiety remains largely intact within the surface bound species present in the SOM formed upon α-pinene oxidation. These insights provide further clues as to the complexity of aerosol particle surfaces, and establish a framework for future investigations of the heterogeneous interactions between precursor terpenes and particle surfaces that lead to aerosol particle growth under dynamically changing conditions in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Marvin M Vega
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Ariana Gray Bé
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Hilary M Chase
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Yue Zhang
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA
| | - Aashish Tuladhar
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Zizwe A Chase
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Carlena J Ebben
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Zheming Wang
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Scot T Martin
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA.,Department of Earth and Planetary Sciences , Harvard University , Cambridge , MA 02138 , USA
| | - Franz M Geiger
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Regan J Thomson
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| |
Collapse
|
8
|
Ma Y, Hou J, Hao W, Liu J, Meng L, Lu Z. Influence of riboflavin on the oxidation kinetics of unsaturated fatty acids at the air/aqueous interface revealed by sum frequency generation vibrational spectroscopy. Phys Chem Chem Phys 2019; 20:17199-17207. [PMID: 29900453 DOI: 10.1039/c8cp00975a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Riboflavin, a common nutrient also known as vitamin B2, is known to potentially play important roles in preventing lipid peroxidations. However, the detailed antioxidant mechanisms, especially the influence of riboflavin on lipid oxidations at biological interfaces, have not yet been fully explored. In the current study, the effect of riboflavin molecules on the oxidation kinetics of monounsaturated cis-11-eicosenoic acid (EA) at the air/water interface was systematically investigated using sum frequency generation vibrational spectroscopy (SFG-VS). It was discovered that the oxidation rates of the interfacial EA molecules can be reduced by about two to three times in the presence of riboflavin in the aqueous subphase. Further SFG-VS measurements under the protection of nitrogen purging gas showed that more tightly packed and ordered monolayer structures were formed by the surface adsorption of riboflavin molecules, making the C[double bond, length as m-dash]C bonds less accessible to the gas phase oxidative species. These results suggested that the antioxidant mechanism for riboflavin in the vicinity of biomembranes may not necessarily involve other reducing agents. They also show the great importance of interfacial molecular structures in biologically relevant chemical reactions.
Collapse
Affiliation(s)
- Yingxue Ma
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
9
|
Liu Y, Chase HM, Geiger FM. Partially (resp. fully) reversible adsorption of monoterpenes (resp. alkanes and cycloalkanes) to fused silica. J Chem Phys 2019; 150:074701. [DOI: 10.1063/1.5083585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yangdongling Liu
- Department of Chemistry, Northwestern University, Evanston,
Illinois 60208, USA
| | - Hilary M. Chase
- Department of Chemistry, Northwestern University, Evanston,
Illinois 60208, USA
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, Evanston,
Illinois 60208, USA
| |
Collapse
|
10
|
Chase HM, Ho J, Upshur MA, Thomson RJ, Batista VS, Geiger FM. Unanticipated Stickiness of α-Pinene. J Phys Chem A 2017; 121:3239-3246. [PMID: 28100048 DOI: 10.1021/acs.jpca.6b12653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adsorption of α-pinene to solid surfaces is an important primary step during the chemical conversion of this common terpene over mesoporous materials, as well as during the formation of atmospheric aerosols. We provide evidence of tight and loose physisorbed states of α-pinene bound on amorphous SiO2 as determined by their adsorption entropy, enthalpy, and binding free energies characterized by computational modeling and vibrational sum frequency generation (SFG) spectroscopy. We find that adsorption is partially (40-60%) irreversible over days at 294-342 K and 1 ATM total pressure of helium, which is supported by molecular dynamics (MD) simulations. The distribution of α-pinene orientation remains invariant with temperature and partial pressure of α-pinene. Using the Redlich-Peterson adsorption model in conjunction with a van't Hoff analysis of adsorption isotherms recorded for up to 2.6 Torr α-pinene in 1 ATM total pressure of helium, we obtain ΔS°ads, ΔH°ads, and ΔG°ads values of -57 (±7) J mol-1 K-1, -39 (±2) kJ mol-1, and -22 (±5) kJ mol-1, respectively, associated with the reversibly bound population of α-pinene. These values are in good agreement with density functional theory (DFT)-corrected force field calculations based on configurational sampling from MD simulations. Our findings are expected to have direct implications on the conversion of terpenes by silica-based catalysts and for the synthesis of secondary organic aerosol (SOA) in atmospheric chambers and flow tubes.
Collapse
Affiliation(s)
- Hilary M Chase
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Junming Ho
- Agency for Science, Technology and Research, Institute of High Performance Computing , 1 Fusionopolis Way #16-16 Connexis North, Singapore 138632
| | - Mary Alice Upshur
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Regan J Thomson
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Victor S Batista
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Franz M Geiger
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Kearns PM, O'Brien DB, Massari AM. Optical Interference Enhances Nonlinear Spectroscopic Sensitivity: When Light Gives You Lemons, Model Lemonade. J Phys Chem Lett 2016; 7:62-68. [PMID: 26654548 DOI: 10.1021/acs.jpclett.5b01958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Optical interference effects can be a nuisance in spectroscopy, especially in nonlinear experiments in which multiple incoming and outgoing beams are present. Vibrational sum frequency generation is particularly susceptible to interference effects because it is often applied to planar, layered materials, driving many of its practitioners to great lengths to avoid signal generation from multiple interfaces. In this perspective, we take a positive view of this metaphorical "lemon" and demonstrate how optical interference can be used as a tool to extract subtle changes in interfacial vibrational spectra. Specifically, we use small frequency shifts at a buried interface in an organic field-effect transistor to determine the fractional charge per molecule during device operation. The transfer matrix approach to nonlinear signal modeling is general and readily applied to complex layered samples that are increasingly popular in modern studies. More importantly, we show that a failure to consider interference effects can lead to erroneous interpretations of nonlinear data.
Collapse
Affiliation(s)
- Patrick M Kearns
- Department of Chemistry, University of Minnesota-Twin Cities , 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Daniel B O'Brien
- Department of Chemistry, University of Minnesota-Twin Cities , 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Aaron M Massari
- Department of Chemistry, University of Minnesota-Twin Cities , 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Chase HM, Rudshteyn B, Psciuk BT, Upshur MA, Strick BF, Thomson RJ, Batista VS, Geiger FM. Assessment of DFT for Computing Sum Frequency Generation Spectra of an Epoxydiol and a Deuterated Isotopologue at Fused Silica/Vapor Interfaces. J Phys Chem B 2015; 120:1919-27. [DOI: 10.1021/acs.jpcb.5b09769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hilary M. Chase
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin Rudshteyn
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brian T. Psciuk
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Mary Alice Upshur
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin F. Strick
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J. Thomson
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Victor S. Batista
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Franz M. Geiger
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Qiao L, Ge A, Liang Y, Ye S. Oxidative Degradation of the Monolayer of 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (POPC) in Low-Level Ozone. J Phys Chem B 2015; 119:14188-99. [DOI: 10.1021/acs.jpcb.5b08985] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Qiao
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| | - Aimin Ge
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| | - Yimin Liang
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| | - Shen Ye
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
14
|
Chase HM, Psciuk BT, Strick BL, Thomson RJ, Batista VS, Geiger FM. Beyond local group modes in vibrational sum frequency generation. J Phys Chem A 2015; 119:3407-14. [PMID: 25774902 DOI: 10.1021/acs.jpca.5b02208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We combine deuterium labeling, density functional theory calculations, and experimental vibrational sum frequency generation spectroscopy into a form of "counterfactual-enabled molecular spectroscopy" for producing reliable vibrational mode assignments in situations where local group mode approximations are insufficient for spectral interpretation and vibrational mode assignments. We demonstrate the method using trans-β-isoprene epoxydiol (trans-β-IEPOX), a first-generation product of isoprene relevant to atmospheric aerosol formation, and one of its deuterium-labeled isotopologues at the vapor/silica interface. We use our method to determine that the SFG responses that we obtain from trans-β-IEPOX are almost exclusively due to nonlocal modes involving multiple C-H groups oscillating at the same frequency as one vibrational mode. We verify our assignments using deuterium labeling and use DFT calculations to predict SFG spectra of additional isotopologues that have not yet been synthesized. Finally, we use our new insight to provide a viable alternative to molecular orientation analysis methods that rely on local mode approximations in cases where the local mode approximation is not applicable.
Collapse
Affiliation(s)
- Hilary M Chase
- †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Brian T Psciuk
- ‡Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Benjamin L Strick
- †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J Thomson
- †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Victor S Batista
- ‡Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Franz M Geiger
- †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Shrestha M, Zhang Y, Upshur MA, Liu P, Blair SL, Wang HF, Nizkorodov SA, Thomson RJ, Martin ST, Geiger FM. On Surface Order and Disorder of α-Pinene-Derived Secondary Organic Material. J Phys Chem A 2015; 119:4609-17. [DOI: 10.1021/jp510780e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mona Shrestha
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yue Zhang
- School of Engineering and Applied Sciences & Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Mary Alice Upshur
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Pengfei Liu
- School of Engineering and Applied Sciences & Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Sandra L. Blair
- Department
of Chemistry, University of California, 1102 Natural Sciences 2, Irvine, California 92697, United States
| | - Hong-fei Wang
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovative Boulevard, Richland, Washington 99354, United States
| | - Sergey A. Nizkorodov
- Department
of Chemistry, University of California, 1102 Natural Sciences 2, Irvine, California 92697, United States
| | - Regan J. Thomson
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Scot T. Martin
- School of Engineering and Applied Sciences & Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Franz M. Geiger
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Rissanen MP, Kurtén T, Sipilä M, Thornton JA, Kangasluoma J, Sarnela N, Junninen H, Jørgensen S, Schallhart S, Kajos MK, Taipale R, Springer M, Mentel TF, Ruuskanen T, Petäjä T, Worsnop DR, Kjaergaard HG, Ehn M. The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. J Am Chem Soc 2014; 136:15596-606. [PMID: 25283472 DOI: 10.1021/ja507146s] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prompt formation of highly oxidized organic compounds in the ozonolysis of cyclohexene (C6H10) was investigated by means of laboratory experiments together with quantum chemical calculations. The experiments were performed in borosilicate glass flow tube reactors coupled to a chemical ionization atmospheric pressure interface time-of-flight mass spectrometer with a nitrate ion (NO3(-))-based ionization scheme. Quantum chemical calculations were performed at the CCSD(T)-F12a/VDZ-F12//ωB97XD/aug-cc-pVTZ level, with kinetic modeling using multiconformer transition state theory, including Eckart tunneling corrections. The complementary investigation methods gave a consistent picture of a formation mechanism advancing by peroxy radical (RO2) isomerization through intramolecular hydrogen shift reactions, followed by sequential O2 addition steps, that is, RO2 autoxidation, on a time scale of seconds. Dimerization of the peroxy radicals by recombination and cross-combination reactions is in competition with the formation of highly oxidized monomer species and is observed to lead to peroxides, potentially diacyl peroxides. The molar yield of these highly oxidized products (having O/C > 1 in monomers and O/C > 0.55 in dimers) from cyclohexene ozonolysis was determined as (4.5 ± 3.8)%. Fully deuterated cyclohexene and cis-6-nonenal ozonolysis, as well as the influence of water addition to the system (either H2O or D2O), were also investigated in order to strengthen the arguments on the proposed mechanism. Deuterated cyclohexene ozonolysis resulted in a less oxidized product distribution with a lower yield of highly oxygenated products and cis-6-nonenal ozonolysis generated the same monomer product distribution, consistent with the proposed mechanism and in agreement with quantum chemical modeling.
Collapse
Affiliation(s)
- Matti P Rissanen
- Department of Physics, University of Helsinki , P.O. Box 64, Helsinki, 00014, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li Z, Weeraman CN, Gibbs-Davis JM. Following the azide-alkyne cycloaddition at the silica/solvent interface with sum frequency generation. Chemphyschem 2014; 15:2247-51. [PMID: 24800780 DOI: 10.1002/cphc.201402161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Indexed: 11/10/2022]
Abstract
The Cu(I) -catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) has arisen as one of the most useful chemical transformations for introducing complexity onto surfaces and materials owing to its functional-group tolerance and high yield. However, methods for monitoring such reactions in situ at the widely used silica/solvent interface are hampered by challenges associated with probing such buried interfaces. Using the surface-specific technique broadband sum frequency generation (SFG), we monitored the reaction of a benzyl azide monolayer in real time at the silica/methanol interface. A strong peak at 2096 cm(-1) assigned to the azides was observed for the first time by SFG. Using a cyano-substituted alkyne, the decrease of the azide peak and the increase of the cyano peak (2234 cm(-1) ) were probed simultaneously. From the kinetic analysis, the reaction order with respect to copper was determined to be 2.1, suggesting that CuAAC on the surface follows a similar mechanism as in solution.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2 (Canada)
| | | | | |
Collapse
|
18
|
Walter SR, Young KL, Holland JG, Gieseck RL, Mirkin CA, Geiger FM. Counting the number of magnesium ions bound to the surface-immobilized thymine oligonucleotides that comprise spherical nucleic acids. J Am Chem Soc 2013; 135:17339-48. [PMID: 24156735 DOI: 10.1021/ja406551k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Label-free studies carried out under aqueous phase conditions quantify the number of Mg(2+) ions binding to surface-immobilized T40 sequences, the subsequent reordering of DNA on the surface, and the consequences of Mg(2+) binding for DNA-DNA interactions. Second harmonic generation measurements indicate that, within error, 18-20 Mg(2+) ions are bound to the T40 strand at saturation and that the metal-DNA interaction is associated with a near 30% length contraction of the strand. Structural reordering, evaluated using vibrational sum frequency generation, atomic force microscopy, and dynamic light scattering, is attributed to increased charge screening as the Mg(2+) ions bind to the negatively charged DNA, reducing repulsive Coulomb forces between nucleotides and allowing the DNA single strands to collapse or coil upon themselves. The impact of Mg(2+) binding on DNA hybridization and duplex stability is assessed with spherical nucleic acid (SNA) gold nanoparticle conjugates in order to determine an optimal working range of Mg(2+) concentrations for DNA-DNA interactions in the absence of NaCl. The findings are consistent with a charge titration effect in which, in the absence of NaCl, (1) hybridization does not occur at room temperature if an average of 17.5 or less Mg(2+) ions are bound per T40 strand, which is not reached until the bulk Mg(2+) concentration approaches 0.5 mM; (2) hybridization proceeds, albeit with low duplex stability having an average Tm of 31(3)°C, if an average of 17.5-18.0 Mg(2+) ions are bound; and (3) highly stable duplexes having a Tm of 64(2)°C form if 18.5-19.0 Mg(2+) ions are bound, corresponding to saturation of the T40 strand.
Collapse
Affiliation(s)
- Stephanie R Walter
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | | | | | |
Collapse
|
19
|
Shrestha M, Zhang Y, Ebben CJ, Martin ST, Geiger FM. Vibrational sum frequency generation spectroscopy of secondary organic material produced by condensational growth from α-pinene ozonolysis. J Phys Chem A 2013; 117:8427-36. [PMID: 23876044 DOI: 10.1021/jp405065d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Secondary organic material (SOM) was produced in a flow tube from α-pinene ozonolysis, and collected particles were analyzed spectroscopically via a nonlinear coherent vibrational spectroscopic technique, namely sum frequency generation (SFG). The SOM precursor α-pinene was injected into the flow tube reactor at concentrations ranging from 0.125 ± 0.01 ppm to 100 ± 3 ppm. The oxidant ozone was varied from 0.15 ± 0.02 to 194 ± 2 ppm. The residence time was 38 ± 1 s. The integrated particle number concentrations, studied using a scanning mobility particle sizer (SMPS), varied from no particles produced up to (1.26 ± 0.02) × 10(7) cm(-3) for the matrix of reaction conditions. The mode diameters of the aerosols increased from 7.7 nm (geometric standard deviation (gsd), 1.0) all the way to 333.8 nm (gsd, 1.9). The corresponding volume concentrations were as high as (3.0 ± 0.1) × 10(14) nm(3) cm(-3). The size distributions indicated access to different particle growth stages, namely condensation, coagulation, or combination of both, depending on reaction conditions. For filter collection and subsequent spectral analysis, reaction conditions were selected that gave a mode diameter of 63 ± 3 nm and 93 ± 3 nm, respectively, and an associated mass concentration of 12 ± 2 μg m(-3) and (1.2 ± 0.1) × 10(3) μg m(-3) for an assumed density of 1200 kg m(-3). Teflon filters loaded with 24 ng to 20 μg of SOM were analyzed by SFG. The SFG spectra obtained from particles formed under condensational and coagulative growth conditions were found to be quite similar, indicating that the distribution of SFG-active C-H oscillators is similar for particles prepared under both conditions. The spectral features of these flow-tube particles agreed with those prepared in an earlier study that employed the Harvard Environmental Chamber. The SFG intensity was found to increase linearly with the number of particles, consistent with what is expected from SFG signal production from particles, while it decreased at higher mass loadings of 10 and 20 μg, consistent with the notion that SFG probes the top surface of the SOM material following the complete coverage of the filter. The linear increase in SFG intensity with particle density also supports the notion that the average number of SFG active oscillators per particle is constant for a given particle size, that the particles are present on the collection filters in a random array, and that the particles are not coalesced. The limit of detection of SFG intensity was established as 24 ng of mass on the filter, corresponding to a calculated density of about 100 particles in the laser spot. As established herein, the technique is applicable for detecting low particle number or mass concentrations in ambient air. The related implication is that SFG is useful for short collection times and would therefore provide increased temporal resolution in a locally evolving atmospheric environment.
Collapse
Affiliation(s)
- Mona Shrestha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
20
|
Kleber J, Laß K, Friedrichs G. Quantitative Time-Resolved Vibrational Sum Frequency Generation Spectroscopy as a Tool for Thin Film Kinetic Studies: New Insights into Oleic Acid Monolayer Oxidation. J Phys Chem A 2013; 117:7863-75. [DOI: 10.1021/jp404087s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Joscha Kleber
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße
1, D-24118 Kiel, Germany
| | - Kristian Laß
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße
1, D-24118 Kiel, Germany
| | - Gernot Friedrichs
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße
1, D-24118 Kiel, Germany
| |
Collapse
|
21
|
Dilbeck CW, Finlayson-Pitts BJ. Heterogeneous oxidation of a phosphocholine on synthetic sea salt by ozone at room temperature. Phys Chem Chem Phys 2012; 15:1990-2002. [PMID: 23258195 DOI: 10.1039/c2cp43665e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ozonolysis of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) adsorbed on salt mixtures as models for sea-salt particles was studied in real time using diffuse reflection infrared Fourier transform spectrometry (DRIFTS) at room temperature with and without added water vapor. The salt substrates were a mixture of MgCl(2)·6H(2)O with NaCl or a commercially available synthetic sea salt. Ozone concentrations ranged from (0.25 to 3.9) × 10(13) molecules cm(-3) (0.1-1.6 ppm). The major products identified by FTIR and confirmed using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry were the secondary ozonide (SOZ) and a phospholipid aldehyde and carboxylic acid formed by scission of the double bond. The reaction probabilities for the two substrates were similar, γ = (6-7) × 10(-7), with an estimated overall uncertainty of a factor of two. The presence of water vapor decreased the yield of SOZ relative to the products formed by C[double bond, length as m-dash]C scission, but also increased the availability of the double bond for reaction, particularly on the less hygroscopic commercial sea-salt substrate. Thus, water not only affects the mechanisms and products, but also the structure of the phospholipid on the salt in a manner that affects its reactivity. The results of these studies suggest that the reactivity and products of oxidation of unsaturated phospholipids on sea-salt particles in air will be very sensitive to the nature and phase of the substrate, the amount of water present, and whether there is phase separation between the organics and the inorganic salt mixture.
Collapse
Affiliation(s)
- Christopher W Dilbeck
- Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025, USA
| | | |
Collapse
|
22
|
Jubb AM, Hua W, Allen HC. Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy. Annu Rev Phys Chem 2012; 63:107-30. [PMID: 22224702 DOI: 10.1146/annurev-physchem-032511-143811] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chemistry that occurs at surfaces has been an intense area of study for many years owing to its complexity and importance in describing a wide range of physical phenomena. The vapor/water interface is particularly interesting from an environmental chemistry perspective as this surface plays host to a wide range of chemistries that influence atmospheric and geochemical interactions. The application of vibrational sum frequency generation (VSFG), an inherently surface-specific, even-order nonlinear optical spectroscopy, enables the direct interrogation of various vapor/aqueous interfaces to elucidate the behavior and reaction of chemical species within the surface regime. In this review we discuss the application of VSFG to the study of a variety of atmospherically important systems at the vapor/aqueous interface. Chemical systems presented include inorganic ionic solutions prevalent in aqueous marine aerosols, small molecular solutes, and long-chain fatty acids relevant to fat-coated aerosols. The ability of VSFG to probe both the organization and reactions that may occur for these systems is highlighted. A future perspective toward the application of VSFG to the study of environmental interfaces is also provided.
Collapse
Affiliation(s)
- Aaron M Jubb
- Department of Chemistry, The Ohio State University, Columbus, 43210, USA.
| | | | | |
Collapse
|
23
|
Walse SS, Karaca H. Remediation of fungicide residues on fresh produce by use of gaseous ozone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:6961-6969. [PMID: 21790162 DOI: 10.1021/es2006868] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ozone fumigation was explored as a means for degrading organic fungicide residues on fresh produce. Fungicides sorbed onto model abiotic glass surfaces or onto grape berries were fumigated separately in a flow-through chamber. Gaseous ozone at a constant concentration of 150 ± 10 ppmv (μL·L(-1)) selectively oxidized fungicides sorbed to model surfaces. Over 140 min, boscalid and iprodione levels did not change significantly based on a single-factor analysis of variance (ANOVA) at the 95% level of confidence (p = 0.05); however, pseudo-first-order losses resulted in observable rate constants of ozonolysis, k(ozonolysis) (min(-1)), of 0.0233 ± 0.0029 (t(1/2) ≈ 29.7 min), 0.0168 ± 0.0028 (t(1/2) ≈ 41.3 min), and 0.0127 ± 0.0010 (t(1/2) ≈ 54.6 min) for fenhexamid, cyprodinil, and pyrimethanil, respectively. The relative degradation of fungicides on berries at gaseous ozone concentrations of 900 ± 12 ppmv (μL·L(-1)) over 2 h was similar to that on glass; decreases in residue concentration were observed for only fenhexamid (∼ 64%), cyprodinil (∼ 38%), and pyrimethanil (∼ 35%) with corresponding k(ozonolysis) (min(-1)) of 0.0085 ± 0.0021 (t(1/2) ≈ 81.5 min), 0.0039 ± 0.0008 (t(1/2) ≈ 177.7 min), and 0.0036 ± 0.0007 (t(1/2) ≈ 192.5 min). Heterogeneous rate constants of gaseous ozone reacting with a sorbed fungicide, k(O(3)) (M(-1)·min(-1)), were calculated for both surfaces and indicate losses proceed ∼ 15-fold slower on grapes. The kinetics and mechanism of fungicide removal, supported by gas chromatography- and liquid chromatography-mass spectrometry product analyses, is discussed in the context of facilitating compliance with maximum residue level (MRL) tolerances for fresh produce.
Collapse
Affiliation(s)
- Spencer S Walse
- Agricultural Research Service, United States Department of Agriculture, 9611 South Riverbend Avenue, Parlier, California 93648, USA.
| | | |
Collapse
|
24
|
Springs M, Wells JR, Morrison GC. Reaction rates of ozone and terpenes adsorbed to model indoor surfaces. INDOOR AIR 2011; 21:319-327. [PMID: 21204992 DOI: 10.1111/j.1600-0668.2010.00707.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
UNLABELLED Reaction rates and reaction probabilities have been quantified on model indoor surfaces for the reaction of ozone with two monoterpenes (Δ(3) -carene and d-limonene). Molar surface loadings were obtained by performing breakthrough experiments in a plug-flow reactor (PFR) packed with beads of glass, polyvinylchloride or zirconium silicate. Reaction rates and probabilities were determined by equilibrating the PFR with both the terpene and the ozone and measuring the ozone consumption rate. To mimic typical indoor conditions, temperatures of 20, 25, and 30°C were used in both types of experiments along with a relative humidity ranging from 10% to 80%. The molar surface loading decreased with increased relative humidity, especially on glass, suggesting that water competed with the terpenes for adsorption sites. The ozone reactivity experiments indicate that higher surface loadings correspond with higher ozone uptake. The reaction probability for Δ(3) -carene with ozone ranged from 2.9 × 10(-6) to 3.0 × 10(-5) while reaction probabilities for d-limonene ranged from 2.8 × 10(-5) to 3.0 × 10(-4) . These surface reaction probabilities are roughly 10-100 times greater than the corresponding gas-phase values. Extrapolation of these results to typical indoor conditions suggests that surface conversion rates may be substantial relative to gas-phase rates, especially for lower volatility terpenoids. PRACTICAL IMPLICATIONS At present, it is unclear how important heterogeneous reactions will be in influencing indoor concentrations of terpenes, ozone and their reaction products. We observe that surface reaction probabilities were 10 to 100 times greater than their corresponding gas-phase values. Thus indoor surfaces do enhance effective reaction rates and adsorption of terpenes will increase ozone flux to otherwise low-reactivity surfaces. Extrapolation of these results to typical indoor conditions suggests that surface conversion rates may be substantial relative to gas-phase rates, especially for lower volatility terpenoids.
Collapse
Affiliation(s)
- M Springs
- Missouri University of Science & Technology, Rolla, MO, USA
| | | | | |
Collapse
|
25
|
Lu JW, Morris JR. Gas–Surface Scattering Dynamics of CO2, NO2, and O3in Collisions with Model Organic Surfaces. J Phys Chem A 2011; 115:6194-201. [DOI: 10.1021/jp111395z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Shu S, Morrison GC. Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:4285-4292. [PMID: 21517064 DOI: 10.1021/es200194e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.
Collapse
Affiliation(s)
- Shi Shu
- Department of Civil, Agriculture, and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401, USA
| | | |
Collapse
|
27
|
Frederick MT, Achtyl JL, Knowles KE, Weiss EA, Geiger FM. Surface-Amplified Ligand Disorder in CdSe Quantum Dots Determined by Electron and Coherent Vibrational Spectroscopies. J Am Chem Soc 2011; 133:7476-81. [DOI: 10.1021/ja200466z] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Matthew T. Frederick
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jennifer L. Achtyl
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Kathryn E. Knowles
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Emily A. Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
28
|
Azam MS, Fenwick SL, Gibbs-Davis JM. Orthogonally reactive SAMs as a general platform for bifunctional silica surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:741-750. [PMID: 21166385 DOI: 10.1021/la1041647] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report the synthesis and self-assembly of azide and amine trimethoxysilanes that result in mixed monolayers on silica. The amine and azide functional groups can be independently reacted with acid chlorides and terminal alkynes, respectively. Consequently, these orthogonally reactive monolayers represent a general starting point for making bifunctional surfaces. Using X-ray photoelectron spectroscopy, we determined the azide/amine surface ratio as well as the reactivity of the azide and amine functional groups in the mixed self-assembled monolayer (SAM). Significantly, the surface azide/amine ratio was much lower than the azide/amine ratio in the self-assembly mixture. After determining the self-assembly mixture composition that would afford 1:1 azide-amine mixed monolayers, we demonstrated their subsequent functionalization. The resulting bifunctional surface has a similar functional group ratio to the azide/amine precursor SAM demonstrating the generality of this approach.
Collapse
Affiliation(s)
- Md Shafiul Azam
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | | | | |
Collapse
|
29
|
Buchbinder AM, Weitz E, Geiger FM. When the Solute Becomes the Solvent: Orientation, Ordering, and Structure of Binary Mixtures of 1-Hexanol and Cyclohexane over the (0001) α-Al2O3 Surface. J Am Chem Soc 2010; 132:14661-8. [DOI: 10.1021/ja1068504] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Avram M. Buchbinder
- Department of Chemistry and the Institute for Catalysis in Energy Processes, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Eric Weitz
- Department of Chemistry and the Institute for Catalysis in Energy Processes, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Franz M. Geiger
- Department of Chemistry and the Institute for Catalysis in Energy Processes, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| |
Collapse
|
30
|
Tyrode E, Niga P, Johnson M, Rutland MW. Molecular structure upon compression and stability toward oxidation of Langmuir films of unsaturated fatty acids: a vibrational sum frequency spectroscopy study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14024-14031. [PMID: 20666467 DOI: 10.1021/la102189z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Vibrational sum frequency spectroscopy (VSFS) has been used to determine the stability toward oxidation in air of a series of unsaturated fatty acids, measuring as a function of time the changes in the chemical structure and conformational order of films spread on a Langmuir trough. The fatty acids studied consisted of a 20-carbon backbone with increasing numbers of cis double bonds in the chain: 11c-eicosenoic acid (20:1 EA, omega-9), 11c,14c-eicosadienoic acid (20:2 EA, omega-6), and 11c,14c,17c-eicosatrienoic acid (20:3 EA, omega-3). Measurements at constant surface pressure show that double bonds are lost from the surface region and that drops in intensity of the vinyl CH stretch are detectable within a few minutes of spreading the monolayer. The results are consistent with the fatty acid peroxidation free radical mechanism. The sum frequency spectra also reveal that what remains on the surface is conformationally more disordered with a larger number of gauche defects. The oxidation kinetics are found to be strongly dependent on the packing density of the monolayer, being more stable at higher pressures. Oxidation can be avoided by purging the system in an inert atmosphere. Finally, the molecular structure upon compression was tracked in unoxidized monolayers. The results suggest that the packing and orientation of the double bond sections of all three unsaturated fatty acids show remarkable similarities, with the direction of the double bonds approximately parallel to each other irrespective of the number of unsaturations in the chain, with the 20:3 EA probably forming "iron-angle" structures. The possibility of unsaturated chains in a "hairpin" configuration is discarded for area per molecules smaller than approximately 50 A(2), which corresponds to the lowest surface pressure measured with VSFS.
Collapse
Affiliation(s)
- Eric Tyrode
- Division of Surface and Corrosion Science, Department of Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | | | | | | |
Collapse
|
31
|
Wei Q, Tajima K, Tong Y, Ye S, Hashimoto K. Surface-Segregated Monolayers: A New Type of Ordered Monolayer for Surface Modification of Organic Semiconductors. J Am Chem Soc 2009; 131:17597-604. [DOI: 10.1021/ja9057053] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingshuo Wei
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan, PRESTO, Japan Science and Technology Agency (JST), and HASHIMOTO Light Energy Conversion Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Japan
| | - Keisuke Tajima
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan, PRESTO, Japan Science and Technology Agency (JST), and HASHIMOTO Light Energy Conversion Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Japan
| | - Yujin Tong
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan, PRESTO, Japan Science and Technology Agency (JST), and HASHIMOTO Light Energy Conversion Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Japan
| | - Shen Ye
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan, PRESTO, Japan Science and Technology Agency (JST), and HASHIMOTO Light Energy Conversion Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Japan
| | - Kazuhito Hashimoto
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan, PRESTO, Japan Science and Technology Agency (JST), and HASHIMOTO Light Energy Conversion Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Japan
| |
Collapse
|
32
|
Stokes GY, Chen EH, Buchbinder AM, Paxton WF, Keeley A, Geiger FM. Atmospheric Heterogeneous Stereochemistry. J Am Chem Soc 2009; 131:13733-7. [DOI: 10.1021/ja904206t] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Grace Y. Stokes
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Ehow H. Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Avram M. Buchbinder
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Walter F. Paxton
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Alison Keeley
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| |
Collapse
|
33
|
Stokes GY, Chen EH, Walter SR, Geiger FM. Two Reactivity Modes in the Heterogeneous Cyclohexene Ozonolysis under Tropospherically Relevant Ozone-Rich and Ozone-Limited Conditions. J Phys Chem A 2009; 113:8985-93. [DOI: 10.1021/jp904104s] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Grace Y. Stokes
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, Illinois 60208
| | - Ehow H. Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, Illinois 60208
| | - Stephanie R. Walter
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, Illinois 60208
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, Illinois 60208
| |
Collapse
|
34
|
Hayes PL, Chen EH, Achtyl JL, Geiger FM. An Optical Voltmeter for Studying Cetyltrimethylammonium Interacting with Fused Silica/Aqueous Interfaces at High Ionic Strength. J Phys Chem A 2009; 113:4269-80. [DOI: 10.1021/jp810891v] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Patrick L. Hayes
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Ehow H. Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Jennifer L. Achtyl
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| |
Collapse
|
35
|
Finlayson-Pitts BJ. Reactions at surfaces in the atmosphere: integration of experiments and theory as necessary (but not necessarily sufficient) for predicting the physical chemistry of aerosols. Phys Chem Chem Phys 2009; 11:7760-79. [DOI: 10.1039/b906540g] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|