1
|
Ji J, Carpentier B, Chakraborty A, Nangia S. An Affordable Topography-Based Protocol for Assigning a Residue's Character on a Hydropathy (PARCH) Scale. J Chem Theory Comput 2024; 20:1656-1672. [PMID: 37018141 PMCID: PMC10902853 DOI: 10.1021/acs.jctc.3c00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 04/06/2023]
Abstract
The hydropathy of proteins or quantitative assessment of protein-water interactions has been a topic of interest for decades. Most hydropathy scales use a residue-based or atom-based approach to assign fixed numerical values to the 20 amino acids and categorize them as hydrophilic, hydroneutral, or hydrophobic. These scales overlook the protein's nanoscale topography, such as bumps, crevices, cavities, clefts, pockets, and channels, in calculating the hydropathy of the residues. Some recent studies have included protein topography in determining hydrophobic patches on protein surfaces, but these methods do not provide a hydropathy scale. To overcome the limitations in the existing methods, we have developed a Protocol for Assigning a Residue's Character on the Hydropathy (PARCH) scale that adopts a holistic approach to assigning the hydropathy of a residue. The parch scale evaluates the collective response of the water molecules in the protein's first hydration shell to increasing temperatures. We performed the parch analysis of a set of well-studied proteins that include the following─enzymes, immune proteins, and integral membrane proteins, as well as fungal and virus capsid proteins. Since the parch scale evaluates every residue based on its location, a residue may have very different parch values inside a crevice versus a surface bump. Thus, a residue can have a range of parch values (or hydropathies) dictated by the local geometry. The parch scale calculations are computationally inexpensive and can compare hydropathies of different proteins. The parch analysis can affordably and reliably aid in designing nanostructured surfaces, identifying hydrophilic and hydrophobic patches, and drug discovery.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Arindam Chakraborty
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
2
|
Amezcua M, Setiadi J, Ge Y, Mobley DL. An overview of the SAMPL8 host-guest binding challenge. J Comput Aided Mol Des 2022; 36:707-734. [PMID: 36229622 PMCID: PMC9596595 DOI: 10.1007/s10822-022-00462-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
The SAMPL series of challenges aim to focus the community on specific modeling challenges, while testing and hopefully driving progress of computational methods to help guide pharmaceutical drug discovery. In this study, we report on the results of the SAMPL8 host–guest blind challenge for predicting absolute binding affinities. SAMPL8 focused on two host–guest datasets, one involving the cucurbituril CB8 (with a series of common drugs of abuse) and another involving two different Gibb deep-cavity cavitands. The latter dataset involved a previously featured deep cavity cavitand (TEMOA) as well as a new variant (TEETOA), both binding to a series of relatively rigid fragment-like guests. Challenge participants employed a reasonably wide variety of methods, though many of these were based on molecular simulations, and predictive accuracy was mixed. As in some previous SAMPL iterations (SAMPL6 and SAMPL7), we found that one approach to achieve greater accuracy was to apply empirical corrections to the binding free energy predictions, taking advantage of prior data on binding to these hosts. Another approach which performed well was a hybrid MD-based approach with reweighting to a force matched QM potential. In the cavitand challenge, an alchemical method using the AMOEBA-polarizable force field achieved the best success with RMSE less than 1 kcal/mol, while another alchemical approach (ATM/GAFF2-AM1BCC/TIP3P/HREM) had RMSE less than 1.75 kcal/mol. The work discussed here also highlights several important lessons; for example, retrospective studies of reference calculations demonstrate the sensitivity of predicted binding free energies to ethyl group sampling and/or guest starting pose, providing guidance to help improve future studies on these systems.
Collapse
Affiliation(s)
- Martin Amezcua
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Jeffry Setiadi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yunhui Ge
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA. .,Department of Chemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Ansari N, Rizzi V, Parrinello M. Water regulates the residence time of Benzamidine in Trypsin. Nat Commun 2022; 13:5438. [PMID: 36114175 PMCID: PMC9481606 DOI: 10.1038/s41467-022-33104-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/01/2022] [Indexed: 12/11/2022] Open
Abstract
The process of ligand-protein unbinding is crucial in biophysics. Water is an essential part of any biological system and yet, many aspects of its role remain elusive. Here, we simulate with state-of-the-art enhanced sampling techniques the binding of Benzamidine to Trypsin which is a much studied and paradigmatic ligand-protein system. We use machine learning methods to determine efficient collective coordinates for the complex non-local network of water. These coordinates are used to perform On-the-fly Probability Enhanced Sampling simulations, which we adapt to calculate also the ligand residence time. Our results, both static and dynamic, are in good agreement with experiments. We find that the presence of a water molecule located at the bottom of the binding pocket allows via a network of hydrogen bonds the ligand to be released into the solution. On a finer scale, even when unbinding is allowed, another water molecule further modulates the exit time.
Collapse
Affiliation(s)
- Narjes Ansari
- Italian Institute of Technology, Via E. Melen 83, 16152, Genova, Italy
| | - Valerio Rizzi
- Italian Institute of Technology, Via E. Melen 83, 16152, Genova, Italy
| | | |
Collapse
|
4
|
Suating P, Ernst NE, Alagbe BD, Skinner HA, Mague JT, Ashbaugh HS, Gibb BC. On the Nature of Guest Complexation in Water: Triggered Wetting-Water-Mediated Binding. J Phys Chem B 2022; 126:3150-3160. [PMID: 35438501 PMCID: PMC9059121 DOI: 10.1021/acs.jpcb.2c00628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/18/2022] [Indexed: 11/30/2022]
Abstract
The complexity of macromolecular surfaces means that there are still many open questions regarding how specific areas are solvated and how this might affect the complexation of guests. Contributing to the identification and classification of the different possible mechanisms of complexation events in aqueous solution, and as part of the recent SAMPL8 exercise, we report here on the synthesis and conformational properties of TEEtOA 2, a cavitand with conformationally flexible ethyl groups at its portal. Using a combination of ITC and NMR spectroscopy, we report the binding affinities of a series of carboxylates to 2 and compare it to a related cavitand TEMOA 1. Additionally, we report MD simulations revealing how the wetting of the pocket of 2 is controlled by the conformation of its rim ethyl groups and, correspondingly, a novel triggered wetting, guest complexation mechanism, whereby the approaching guest opens up the pocket of the host, inducing its wetting and ultimately allows the formation of a hydrated host-guest complex (H·G·H2O). A general classification of complexation mechanisms is also suggested.
Collapse
Affiliation(s)
- Paolo Suating
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Nicholas E. Ernst
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Busayo D. Alagbe
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hannah A. Skinner
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Joel T. Mague
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Henry S. Ashbaugh
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
5
|
Kubik S. When Molecules Meet in Water-Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water. ChemistryOpen 2022; 11:e202200028. [PMID: 35373466 PMCID: PMC8977507 DOI: 10.1002/open.202200028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Molecular recognition processes in water differ from those in organic solvents in that they are mediated to a much greater extent by solvent effects. The hydrophobic effect, for example, causes molecules that only weakly interact in organic solvents to stay together in water. Such water-mediated interactions can be very efficient as demonstrated by many of the synthetic receptors discussed in this review, some of which have substrate affinities matching or even surpassing those of natural binders. However, in spite of considerable success in designing such receptors, not all factors determining their binding properties in water are fully understood. Existing concepts still provide plausible explanations why the reorganization of water molecules often causes receptor-substrate interactions in water to be strongly exothermic rather than entropically favored as predicted by the classical view of the hydrophobic effect.
Collapse
Affiliation(s)
- Stefan Kubik
- Technische Universität KaiserslauternFachbereich Chemie – Organische ChemieErwin-Schrödinger-Straße 5467663KaiserslauternGermany
| |
Collapse
|
6
|
Debnath J, Parrinello M. Computing Rates and Understanding Unbinding Mechanisms in Host-Guest Systems. J Chem Theory Comput 2022; 18:1314-1319. [PMID: 35200023 DOI: 10.1021/acs.jctc.1c01075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The long time scale associated with ligand residence times renders their computation challenging. Therefore, the influence of factors like solvation and steric hindrance on residence times is not fully understood. Here, we demonstrate in a set of model host-guest systems that the recently developed Gaussian mixture based enhanced sampling allows residence times to be computed and enables an understanding of their unbinding mechanism. We observe that guest unbinding often proceeds via a series of intermediate states that can be labeled by the number of water molecules present in the binding cavity. In several cases the residence time is correlated to the water trapping times in the cavity.
Collapse
Affiliation(s)
- Jayashrita Debnath
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.,Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | |
Collapse
|
7
|
Alagbe BD, Gibb BC, Ashbaugh HS. Evolution of the Free Energy Landscapes of n-Alkane Guests Bound within Supramolecular Complexes. J Phys Chem B 2021; 125:7299-7310. [PMID: 34170690 PMCID: PMC8279555 DOI: 10.1021/acs.jpcb.1c03640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Confinement within nanoscale spaces can dramatically alter the ensemble of conformations flexible species explore. For example, chaperone complexes take advantage of confinement to fold misfolded proteins, while viral capsids transport genomic materials in tight packings. Here we examine the free energy landscapes of n-alkanes confined within supramolecular dimeric complexes of deep-cavity cavitand octa-acid, which have been experimentally demonstrated to force these chains with increasing length to adopt extended, helical, hairpin, and spinning top conformational motifs, using molecular simulations. Alkanes up to n-docosane in both vacuum and water predominantly exhibit a free energy minimum for elongated conformations with a majority of trans dihedrals. Within harmonically sealed cavitand dimers, however, the free energy landscapes as a function of the end-to-end distance between their terminal methyl units exhibit minima that evolve with the length of the alkane. Distinct free energy basins are observed between the helical and hairpin motifs and between the hairpin and chicane motifs whose relative stability changes with the number of carbons in the bound guest. These changes are reminiscent of two state-like protein folding, although the observed alkane conformations confined are more insensitive to temperature perturbation than proteins are. While the chicane motif within the harmonically sealed dimers has not been observed experimentally, this conformation relaxes to the observed spinning top motif once the harmonic restraints are released for the complexes in aqueous solution, indicating that these motifs are related to one another. We do not observe distinct minima between the confined extended and helical motifs, suggesting these conformers are part of a larger linear motif family whose population of gauche dihedral angles grows in proportion to the number of carbons in the chain to ultimately form a helix that fits the alkane within the complex.
Collapse
Affiliation(s)
- Busayo D Alagbe
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Henry S Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
8
|
Ashbaugh HS, Gibb BC, Suating P. Cavitand Complexes in Aqueous Solution: Collaborative Experimental and Computational Studies of the Wetting, Assembly, and Function of Nanoscopic Bowls in Water. J Phys Chem B 2021; 125:3253-3268. [PMID: 33651614 PMCID: PMC8040017 DOI: 10.1021/acs.jpcb.0c11017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Water is the dominant liquid on Earth. Despite this, the main focus of supramolecular chemistry research has been on binding and assembly events in organic solvents. This arose because it is more straightforward to synthesize organic-media-soluble hosts and because of the relative simplicity of organic solvents compared to water. Nature, however, relies on water as a solvent, and spurred by this fact, supramolecular chemists have recently been making forays into the aqueous domain to understand water-mediated non-covalent interactions. These studies can benefit from the substantial understanding of the hydrophobic effect and electrostatic interactions developed by physical chemists. Nearly 20 years ago, the Gibb group first synthesized a class of water-soluble host molecules, the deep-cavity cavitands, that possess non-polar pockets that readily bind non-polar moieties in aqueous solution and are capable of assembling into a wide range of complexes with distinct stoichiometries. As such, these amphipathic host species are ideal platforms for studying the role of negatively curved features on guest complexation and the structural requirements for guided assembly processes driven by the hydrophobic effect. Here we review the collaborative experimental and computational investigations between Gibb and Ashbaugh over the past 10 years exploring questions including the following: How does water wet/solvate the non-polar surfaces of non-polar pockets? How does this wetting control the binding of non-polar guests? How does wetting affect the binding of anionic species? How does the nature and size of a guest size impact the assembly of cavitand hosts into multimeric capsular complexes? What are the conformational motifs of guests packed within the confines of capsular complexes? How might the electrostatic environment engendered by hosts impact the properties and reactivity of internalized guests?
Collapse
Affiliation(s)
- Henry S. Ashbaugh
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Paolo Suating
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
9
|
Rizzi V, Bonati L, Ansari N, Parrinello M. The role of water in host-guest interaction. Nat Commun 2021; 12:93. [PMID: 33397926 PMCID: PMC7782548 DOI: 10.1038/s41467-020-20310-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
One of the main applications of atomistic computer simulations is the calculation of ligand binding free energies. The accuracy of these calculations depends on the force field quality and on the thoroughness of configuration sampling. Sampling is an obstacle in simulations due to the frequent appearance of kinetic bottlenecks in the free energy landscape. Very often this difficulty is circumvented by enhanced sampling techniques. Typically, these techniques depend on the introduction of appropriate collective variables that are meant to capture the system's degrees of freedom. In ligand binding, water has long been known to play a key role, but its complex behaviour has proven difficult to fully capture. In this paper we combine machine learning with physical intuition to build a non-local and highly efficient water-describing collective variable. We use it to study a set of host-guest systems from the SAMPL5 challenge. We obtain highly accurate binding free energies and good agreement with experiments. The role of water during the binding process is then analysed in some detail.
Collapse
Affiliation(s)
- Valerio Rizzi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092, Zurich, Switzerland
- Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, Via G. Buffi 13, 6900, Lugano, Switzerland
| | - Luigi Bonati
- Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, Via G. Buffi 13, 6900, Lugano, Switzerland
- Department of Physics, ETH Zurich, 8092, Zurich, Switzerland
| | - Narjes Ansari
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092, Zurich, Switzerland
- Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, Via G. Buffi 13, 6900, Lugano, Switzerland
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092, Zurich, Switzerland.
- Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, Via G. Buffi 13, 6900, Lugano, Switzerland.
- Italian Institute of Technology, Via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
10
|
Amezcua M, El Khoury L, Mobley DL. SAMPL7 Host-Guest Challenge Overview: assessing the reliability of polarizable and non-polarizable methods for binding free energy calculations. J Comput Aided Mol Des 2021; 35:1-35. [PMID: 33392951 PMCID: PMC8121194 DOI: 10.1007/s10822-020-00363-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
The SAMPL challenges focus on testing and driving progress of computational methods to help guide pharmaceutical drug discovery. However, assessment of methods for predicting binding affinities is often hampered by computational challenges such as conformational sampling, protonation state uncertainties, variation in test sets selected, and even lack of high quality experimental data. SAMPL blind challenges have thus frequently included a component focusing on host-guest binding, which removes some of these challenges while still focusing on molecular recognition. Here, we report on the results of the SAMPL7 blind prediction challenge for host-guest affinity prediction. In this study, we focused on three different host-guest categories-a familiar deep cavity cavitand series which has been featured in several prior challenges (where we examine binding of a series of guests to two hosts), a new series of cyclodextrin derivatives which are monofunctionalized around the rim to add amino acid-like functionality (where we examine binding of two guests to a series of hosts), and binding of a series of guests to a new acyclic TrimerTrip host which is related to previous cucurbituril hosts. Many predictions used methods based on molecular simulations, and overall success was mixed, though several methods stood out. As in SAMPL6, we find that one strategy for achieving reasonable accuracy here was to make empirical corrections to binding predictions based on previous data for host categories which have been studied well before, though this can be of limited value when new systems are included. Additionally, we found that alchemical free energy methods using the AMOEBA polarizable force field had considerable success for the two host categories in which they participated. The new TrimerTrip system was also found to introduce some sampling problems, because multiple conformations may be relevant to binding and interconvert only slowly. Overall, results in this challenge tentatively suggest that further investigation of polarizable force fields for these challenges may be warranted.
Collapse
Affiliation(s)
- Martin Amezcua
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Léa El Khoury
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
Tang D, Dwyer T, Bukannan H, Blackmon O, Delpo C, Barnett JW, Gibb BC, Ashbaugh HS. Pressure Induced Wetting and Dewetting of the Nonpolar Pocket of Deep-Cavity Cavitands in Water. J Phys Chem B 2020; 124:4781-4792. [PMID: 32403924 DOI: 10.1021/acs.jpcb.0c02568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrophobic interactions drive the binding of nonpolar ligands to the oily pockets of proteins and supramolecular species in aqueous solution. As such, the wetting of host pockets is expected to play a critical role in determining the thermodynamics of guest binding. Here we use molecular simulations to examine the impact of pressure on the wetting and dewetting of the nonpolar pockets of a series of deep-cavity cavitands in water. The portals to the cavitand pockets are functionalized with both nonpolar (methyl) and polar (hydroxyl) groups oriented pointing either upward or inward toward the pocket. We find wetting of the pocket is favored by the hydroxyl groups and dewetting is favored by the methyl groups. The distribution of waters in the pocket is found to exhibit a two-state-like equilibrium between wet and dry states with a free energy barrier between the two states. Moreover, we demonstrate that the pocket hydration of the cavitands can be collapsed onto a unified adsorption isotherm by assuming the effective pressures within each cavitand pocket differ by a shift pressure that depends on the chemical identity and number of functional groups placed about the portal. These observations support the development of a two-state capillary evaporation model that accurately describes the equilibrium between states and naturally gives rise to the effective shift pressures observed from simulation. This work demonstrates that the hydration of host pockets can be tuned following simple design rules that in turn are expected to impact the thermodynamics of guest complexation.
Collapse
Affiliation(s)
- Du Tang
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Tobias Dwyer
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Alaska 72701, United States
| | - Hussain Bukannan
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Odella Blackmon
- Department of Chemistry, William Carey University, Hattiesburg, Mississippi 39401, United States
| | - Courtney Delpo
- Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - J Wesley Barnett
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Henry S Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
12
|
Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution. Nat Chem 2020; 12:589-594. [PMID: 32424255 DOI: 10.1038/s41557-020-0458-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/11/2020] [Indexed: 11/08/2022]
Abstract
There are many open questions regarding the hydration of solvent-exposed non-polar tracts and pockets in proteins. Although water is predicted to de-wet purely repulsive surfaces and evacuate crevices, the extent of de-wetting is unclear when ubiquitous van der Waals interactions are in play. The structural simplicity of synthetic supramolecular hosts imbues them with considerable potential to address this issue. To this end, here we detail a combination of densimetry and molecular dynamics simulations of three cavitands, coupled with calorimetric studies of their complexes with short-chain carboxylates. Our results reveal the range of wettability possible within the ostensibly identical cavitand pockets-which differ only in the presence and/or position of the methyl groups that encircle the portal to their non-polar pockets. The results demonstrate the ability of macrocycles to template water cavitation within their binding sites and show how the orientation of methyl groups can trigger the drying of non-polar pockets in liquid water, which suggests new avenues to control guest complexation.
Collapse
|
13
|
Rizzi A, Jensen T, Slochower DR, Aldeghi M, Gapsys V, Ntekoumes D, Bosisio S, Papadourakis M, Henriksen NM, de Groot BL, Cournia Z, Dickson A, Michel J, Gilson MK, Shirts MR, Mobley DL, Chodera JD. The SAMPL6 SAMPLing challenge: assessing the reliability and efficiency of binding free energy calculations. J Comput Aided Mol Des 2020; 34:601-633. [PMID: 31984465 DOI: 10.1007/s10822-020-00290-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Approaches for computing small molecule binding free energies based on molecular simulations are now regularly being employed by academic and industry practitioners to study receptor-ligand systems and prioritize the synthesis of small molecules for ligand design. Given the variety of methods and implementations available, it is natural to ask how the convergence rates and final predictions of these methods compare. In this study, we describe the concept and results for the SAMPL6 SAMPLing challenge, the first challenge from the SAMPL series focusing on the assessment of convergence properties and reproducibility of binding free energy methodologies. We provided parameter files, partial charges, and multiple initial geometries for two octa-acid (OA) and one cucurbit[8]uril (CB8) host-guest systems. Participants submitted binding free energy predictions as a function of the number of force and energy evaluations for seven different alchemical and physical-pathway (i.e., potential of mean force and weighted ensemble of trajectories) methodologies implemented with the GROMACS, AMBER, NAMD, or OpenMM simulation engines. To rank the methods, we developed an efficiency statistic based on bias and variance of the free energy estimates. For the two small OA binders, the free energy estimates computed with alchemical and potential of mean force approaches show relatively similar variance and bias as a function of the number of energy/force evaluations, with the attach-pull-release (APR), GROMACS expanded ensemble, and NAMD double decoupling submissions obtaining the greatest efficiency. The differences between the methods increase when analyzing the CB8-quinine system, where both the guest size and correlation times for system dynamics are greater. For this system, nonequilibrium switching (GROMACS/NS-DS/SB) obtained the overall highest efficiency. Surprisingly, the results suggest that specifying force field parameters and partial charges is insufficient to generally ensure reproducibility, and we observe differences between seemingly converged predictions ranging approximately from 0.3 to 1.0 kcal/mol, even with almost identical simulations parameters and system setup (e.g., Lennard-Jones cutoff, ionic composition). Further work will be required to completely identify the exact source of these discrepancies. Among the conclusions emerging from the data, we found that Hamiltonian replica exchange-while displaying very small variance-can be affected by a slowly-decaying bias that depends on the initial population of the replicas, that bidirectional estimators are significantly more efficient than unidirectional estimators for nonequilibrium free energy calculations for systems considered, and that the Berendsen barostat introduces non-negligible artifacts in expanded ensemble simulations.
Collapse
Affiliation(s)
- Andrea Rizzi
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, 10065, USA.
| | - Travis Jensen
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - David R Slochower
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Matteo Aldeghi
- Max Planck Institute for Biophysical Chemistry, Computational Biomolecular Dynamics Group, Göttingen, Germany
| | - Vytautas Gapsys
- Max Planck Institute for Biophysical Chemistry, Computational Biomolecular Dynamics Group, Göttingen, Germany
| | - Dimitris Ntekoumes
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Stefano Bosisio
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Michail Papadourakis
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Niel M Henriksen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Atomwise, 717 Market St Suite 800, San Francisco, CA, 94103, USA
| | - Bert L de Groot
- Max Planck Institute for Biophysical Chemistry, Computational Biomolecular Dynamics Group, Göttingen, Germany
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Alex Dickson
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Julien Michel
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, California, 92697, USA.
| | - John D Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
14
|
de Oliveira DM, Ben-Amotz D. Cavity Hydration and Competitive Binding in Methylated β-Cyclodextrin. J Phys Chem Lett 2019; 10:2802-2805. [PMID: 31067060 DOI: 10.1021/acs.jpclett.9b00939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Raman multivariate curve resolution (Raman-MCR) spectroscopy is used to measure the vibrational spectrum of water molecules in the cavity of an aqueous methylated β-cyclodextrin (Me-β-CD), as well as to quantify the competitive expulsion of those waters by benzene. The Me-β-CD cavity is found to contain 5-6 water molecules whose structure is remarkably similar to that of bulk water, although slightly more tetrahedral and with fewer weak hydrogen bonds. The binding constant of benzene to Me-β-CD, obtained using Raman-MCR, is found to be similar to that of benzene to β-CD (previously determined by other means). The competitive displacement of water by benzene in Me-β-CD is quantified by explicitly including the release of cavity-bound water molecules in the measured equilibrium constant.
Collapse
Affiliation(s)
| | - Dor Ben-Amotz
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
15
|
Wang K, Cai X, Yao W, Tang D, Kataria R, Ashbaugh HS, Byers LD, Gibb BC. Electrostatic Control of Macrocyclization Reactions within Nanospaces. J Am Chem Soc 2019; 141:6740-6747. [DOI: 10.1021/jacs.9b02287] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kaiya Wang
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Xiaoyang Cai
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Wei Yao
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Du Tang
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Rhea Kataria
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Henry S. Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Larry D Byers
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
16
|
Islam N, Flint M, Rick SW. Water hydrogen degrees of freedom and the hydrophobic effect. J Chem Phys 2019; 150:014502. [DOI: 10.1063/1.5053239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Naeyma Islam
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Mahalia Flint
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA
| | - Steven W. Rick
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA
| |
Collapse
|
17
|
Rizzi A, Murkli S, McNeill JN, Yao W, Sullivan M, Gilson MK, Chiu MW, Isaacs L, Gibb BC, Mobley DL, Chodera JD. Overview of the SAMPL6 host-guest binding affinity prediction challenge. J Comput Aided Mol Des 2018; 32:937-963. [PMID: 30415285 PMCID: PMC6301044 DOI: 10.1007/s10822-018-0170-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/07/2018] [Indexed: 10/27/2022]
Abstract
Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against binding data to biological macromolecules is frustrated by several challenges, such as slow conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, host-guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight binding affinities. Here, we present an overview of the SAMPL6 host-guest binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from ten participating groups employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach that consistently provided superior results across all host-guest systems and statistical metrics. Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host-guest systems in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison to previous rounds of the host-guest binding free energy challenge highlights an overall improvement in the correlation obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states), may be required to further enhance predictive accuracy.
Collapse
Affiliation(s)
- Andrea Rizzi
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, 10065, USA
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - John N McNeill
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Wei Yao
- Department of Chemistry, Tulane University, Louisiana, LA, 70118, USA
| | - Matthew Sullivan
- Department of Chemistry, Tulane University, Louisiana, LA, 70118, USA
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael W Chiu
- Qualcomm Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, Louisiana, LA, 70118, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, California, 92697, USA.
| | - John D Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
18
|
Jordan JH, Gibb CLD, Wishard A, Pham T, Gibb BC. Ion-Hydrocarbon and/or Ion-Ion Interactions: Direct and Reverse Hofmeister Effects in a Synthetic Host. J Am Chem Soc 2018; 140:4092-4099. [PMID: 29533064 PMCID: PMC10668597 DOI: 10.1021/jacs.8b00196] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A combination of 1H NMR spectroscopy, DLS, and turbidity measurements reveal that polarizable anions engender both the Hofmeister and reverse Hofmeister effects in positand 2. Host 2 possesses two principal and distinctly different binding sites: a "soft" nonpolar pocket and a "hard" crown of ammonium cations. NMR spectroscopy reveals that anion affinity to both sites is comparable, with each site showing characteristic selectivities. NMR spectroscopy also reveals that anions competitively bind to the pocket and induce the Hofmeister effect in host-guest binding at very low concentrations (∼2 mM). Furthermore, the suite of techniques utilized demonstrates that anion binding to both sites leads to charge attenuation, aggregation, and finally precipitation (the reverse Hofmeister effect). Anion-induced precipitation generally correlated with affinity, and comparisons between the free host and its adamantane carboxylate (Ada-CO2-) complex reveals that the reverse Hofmeister effect is attenuated by blocking anion binding/charge attenuation at the nonpolar pocket.
Collapse
Affiliation(s)
- Jacobs H. Jordan
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Corinne L. D. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Anthony Wishard
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Thu Pham
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
19
|
Murray J, Kim K, Ogoshi T, Yao W, Gibb BC. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem Soc Rev 2018; 46:2479-2496. [PMID: 28338130 DOI: 10.1039/c7cs00095b] [Citation(s) in RCA: 402] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This tutorial review summarizes the continuing exploration of three prominent water-soluble hosts: cucurbiturils, pillar[n]arenes and deep-cavity cavitands. As we describe, these hosts are revealing how orchestrating the hydrophobic effect can lead to a broad range of properties and applications, from: nano-reactors, supramolecular polymers, stimuli-responsive biointerfaces, switches, and novel purification devices. We also describe how their study is also revealing more details about the properties of water and aqueous solutions.
Collapse
Affiliation(s)
- James Murray
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea.
| | | | | | | | | |
Collapse
|
20
|
Sullivan MR, Yao W, Tang D, Ashbaugh HS, Gibb BC. The Thermodynamics of Anion Complexation to Nonpolar Pockets. J Phys Chem B 2018; 122:1702-1713. [PMID: 29373793 PMCID: PMC10668596 DOI: 10.1021/acs.jpcb.7b12259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol-1. Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.
Collapse
Affiliation(s)
- Matthew R. Sullivan
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Wei Yao
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Du Tang
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Henry S Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
21
|
Chakraborty D, Chattaraj PK. Host-guest interactions between octa acid and cations/nucleobases. J Comput Chem 2018; 39:161-175. [PMID: 29105789 DOI: 10.1002/jcc.25097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 11/12/2022]
Abstract
The nature of host-guest interaction in between octa acid cavitand (OA) and some representative cationic guests (Li+ , Na+ , K+ , Be+2 , Mg+2 , Ca+2 , Li3 O+ , Na3 O+ , K3 O+ ) as well as heterocyclic moieties like [adenine (A), guanine (G), cytosine (C), thymine (T), uracil (U), and tetrathiafulvalene (TTF)] has been examined with the aid of density functional theory (DFT)-based computations. Thermochemical results indicate that all the guests bind with OA in a thermodynamically favorable fashion at 298.15 K temperature and one atmospheric pressure. OA exhibits high selectivity in binding the lighter cations/metal cluster cations as compared to the heavier congeners along each given series. Moreover, OA exhibits enhanced affinity as well as selectivity in binding A/G/TTF molecules as compared to C/T/U. Noncovalent interaction and energy decomposition analyses reveal that in addition to the van der Waals interaction, significant contribution from electrostatic as well as orbital interactions dictate the outcome in all the host-guest complexes. Time dependent DFT calculations have been carried out to assess the role of the guests in tuning the electronic properties as well as absorption spectrum of OA. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Debdutta Chakraborty
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
22
|
Abstract
This review focuses on papers published since 2000 on the topic of the properties of solutes in water. More specifically, it evaluates the state of the art of our understanding of the complex relationship between the shape of a hydrophobe and the hydrophobic effect. To highlight this, we present a selection of references covering both empirical and molecular dynamics studies of small (molecular-scale) solutes. These include empirical studies of small molecules, synthetic hosts, crystalline monolayers, and proteins, as well as in silico investigations of entities such as idealized hard and soft spheres, small solutes, hydrophobic plates, artificial concavity, molecular hosts, carbon nanotubes and spheres, and proteins.
Collapse
Affiliation(s)
- Matthew B Hillyer
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118;
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118;
| |
Collapse
|
23
|
Tang D, Barnett JW, Gibb BC, Ashbaugh HS. Guest Controlled Nonmonotonic Deep Cavity Cavitand Assembly State Switching. J Phys Chem B 2017; 121:10717-10725. [PMID: 29099596 DOI: 10.1021/acs.jpcb.7b09021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Octa-acid (OA) and tetra-endo-methyl octa-acid (TEMOA) are water-soluble, deep-cavity cavitands with nanometer-sized nonpolar pockets that readily bind complementary guests, such as n-alkanes. Experimentally, OA exhibits a progression of 1:1 to 2:2 to 2:1 host/guest complexes (X:Y where X is the number of hosts and Y is the number of guests) with increasing alkane chain length from methane to tetradecane. Differing from OA only by the addition of four methyl groups ringing the portal of the pocket, TEMOA exhibits a nonmonotonic progression of assembly states from 1:1 to 2:2 to 1:1 to 2:1 with increasing guest length. Here we present a systematic molecular simulation study to parse the molecular and thermodynamic determinants that distinguish the succession of assembly stoichiometries observed for these similar hosts. Potentials of mean force between hosts and guests, determined via umbrella sampling, are used to characterize association free energies. These free energies are subsequently used in a reaction network model to predict the equilibrium distributions of assemblies. Our models accurately reproduce the experimentally observed trends, showing that TEMOA's endo-methyl units constrict the opening of the binding pocket, limiting the conformations available to bound guests and disrupting the balance between monomeric complexes and dimeric capsules. The success of our simulations demonstrate their utility at interpreting the impact of even simple chemical modifications on supramolecular assembly and highlight their potential to aid bottom-up design.
Collapse
Affiliation(s)
- Du Tang
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| | - J Wesley Barnett
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| | - Bruce C Gibb
- Department of Chemistry, Tulane University , New Orleans, Louisiana 70118, United States
| | - Henry S Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| |
Collapse
|
24
|
Abstract
Binding free energy calculations based on molecular simulations provide predicted affinities for biomolecular complexes. These calculations begin with a detailed description of a system, including its chemical composition and the interactions among its components. Simulations of the system are then used to compute thermodynamic information, such as binding affinities. Because of their promise for guiding molecular design, these calculations have recently begun to see widespread applications in early-stage drug discovery. However, many hurdles remain in making them a robust and reliable tool. In this review, we highlight key challenges of these calculations, discuss some examples of these challenges, and call for the designation of standard community benchmark test systems that will help the research community generate and evaluate progress. In our view, progress will require careful assessment and evaluation of new methods, force fields, and modeling innovations on well-characterized benchmark systems, and we lay out our vision for how this can be achieved.
Collapse
Affiliation(s)
- David L Mobley
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, California 92697;
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Center for Drug Discovery Innovation, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
25
|
Barnett JW, Gibb BC, Ashbaugh HS. Succession of Alkane Conformational Motifs Bound within Hydrophobic Supramolecular Capsular Assemblies. J Phys Chem B 2016; 120:10394-10402. [PMID: 27603416 DOI: 10.1021/acs.jpcb.6b06496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
n-Alkane encapsulation experiments within dimeric octa-acid cavitand capsules in water reveal a succession of packing motifs from extended, to helical, to hairpin, to spinning top structures with increasing chain length. Here, we report a molecular simulation study of alkane conformational preferences within these host-guest assemblies to uncover the factors stabilizing distinct conformers. The simulated alkane conformers follow the trends inferred from 1H NMR experiments, while guest proton chemical shifts evaluated from Gauge Invariant Atomic Orbital calculations provide further evidence our simulations capture guest packing within these assemblies. Analysis of chain length and dihedral distributions indicates that packing under confinement to minimize nonpolar guest and host interior contact with water largely drives the transitions. Mean intramolecular distance maps and transfer free energy differences suggest the extended and helical motifs are members of a larger family of linear guest structures, for which the guest gauche population increases with increasing chain length to accommodate the chains within the complex. Breaks observed between the helical/hairpin and hairpin/spinning top motifs, on the other hand, indicate the hairpin and spinning top conformations are distinct from the linear family. Our results represent the first bridging of empirical and simulation data for flexible guests encapsulated within confined nanospaces, and constitute an effective strategy by which guest packing motifs within artificial or natural compartments can be rationalized and/or predicted a priori.
Collapse
Affiliation(s)
- J Wesley Barnett
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| | - Bruce C Gibb
- Department of Chemistry, Tulane University , New Orleans, Louisiana 70118, United States
| | - Henry S Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| |
Collapse
|
26
|
Milić J, Zalibera M, Pochorovski I, Trapp N, Nomrowski J, Neshchadin D, Ruhlmann L, Boudon C, Wenger OS, Savitsky A, Lubitz W, Gescheidt G, Diederich F. Paramagnetic Molecular Grippers: The Elements of Six-State Redox Switches. J Phys Chem Lett 2016; 7:2470-2477. [PMID: 27300355 DOI: 10.1021/acs.jpclett.6b01094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of semiquinone-based resorcin[4]arene cavitands expands the toolbox of switchable molecular grippers by introducing the first paramagnetic representatives. The semiquinone (SQ) states were generated electrochemically, chemically, and photochemically. We analyzed their electronic, conformational, and binding properties by cyclic voltammetry, ultraviolet/visible (UV/vis) spectroelectrochemistry, electron paramagnetic resonance (EPR) and transient absorption spectroscopy, in conjunction with density functional theory (DFT) calculations. The utility of UV/vis spectroelectrochemistry and EPR spectroscopy in evaluating the conformational features of resorcin[4]arene cavitands is demonstrated. Guest binding properties were found to be enhanced in the SQ state as compared to the quinone (Q) or the hydroquinone (HQ) states of the cavitands. Thus, these paramagnetic SQ intermediates open the way to six-state redox switches provided by two conformations (open and closed) in three redox states (Q, SQ, and HQ) possessing distinct binding ability. The switchable magnetic properties of these molecular grippers and their responsiveness to electrical stimuli has the potential for development of efficient molecular devices.
Collapse
Affiliation(s)
- Jovana Milić
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Michal Zalibera
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology , Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Igor Pochorovski
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Nils Trapp
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Julia Nomrowski
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Dmytro Neshchadin
- Institute of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology , Stremayrgasse 9/Z2, 8010 Graz, Austria
| | - Laurent Ruhlmann
- Université de Strasbourg, Laboratoire d'Électrochimie et Chimie Physique du Corps Solide, Institut de Chimie de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Corinne Boudon
- Université de Strasbourg, Laboratoire d'Électrochimie et Chimie Physique du Corps Solide, Institut de Chimie de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Oliver S Wenger
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology , Stremayrgasse 9/Z2, 8010 Graz, Austria
| | - François Diederich
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
27
|
Abstract
On the basis of many literature measurements, a critical overview is given on essential noncovalent interactions in synthetic supramolecular complexes, accompanied by analyses with selected proteins. The methods, which can be applied to derive binding increments for single noncovalent interactions, start with the evaluation of consistency and additivity with a sufficiently large number of different host-guest complexes by applying linear free energy relations. Other strategies involve the use of double mutant cycles, of molecular balances, of dynamic combinatorial libraries, and of crystal structures. Promises and limitations of these strategies are discussed. Most of the analyses stem from solution studies, but a few also from gas phase. The empirically derived interactions are then presented on the basis of selected complexes with respect to ion pairing, hydrogen bonding, electrostatic contributions, halogen bonding, π-π-stacking, dispersive forces, cation-π and anion-π interactions, and contributions from the hydrophobic effect. Cooperativity in host-guest complexes as well as in self-assembly, and entropy factors are briefly highlighted. Tables with typical values for single noncovalent free energies and polarity parameters are in the Supporting Information.
Collapse
Affiliation(s)
- Frank Biedermann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hans-Jörg Schneider
- FR Organische Chemie der Universität des Saarlandes , D-66041 Saarbrücken, Germany
| |
Collapse
|
28
|
Gibb BC. From steroids to aqueous supramolecular chemistry: an autobiographical career review. Beilstein J Org Chem 2016; 12:684-701. [PMID: 27340461 PMCID: PMC4902062 DOI: 10.3762/bjoc.12.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/30/2016] [Indexed: 01/12/2023] Open
Abstract
The focus of my group's research is aqueous supramolecular chemistry; we try to understand how chemical entities interact with water and consequently how they interact with each other. This personal history recounts my career experiences that led to his involvement with this fascinating area of science.
Collapse
Affiliation(s)
- Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
29
|
Chakraborty D, Pan S, Chattaraj PK. Encapsulation of small gas molecules and rare gas atoms inside the octa acid cavitand. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1876-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Yen TH, Soong CY. Hybrid Cassie-Wenzel model for droplets on surfaces with nanoscale roughness. Phys Rev E 2016; 93:022805. [PMID: 26986392 DOI: 10.1103/physreve.93.022805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 06/05/2023]
Abstract
Several models have been developed to predict the contact angle of a droplet sitting on a roughened surface; however, no such model has been developed for substrates with nanoscale surface structures. In this paper we propose a hybrid Cassie-Wenzel model, which considers two factors attributed to the breakdown of macroscopic predictions, including the width of the wall-fluid depletion region and the coexistence of Cassie and Wenzel states in cases where the wall-fluid interface presents nanoscale structures. At the molecular scale, the parameter of surface roughness can be corrected by treating the wall-fluid interface as a hybrid Cassie-Wenzel state in which the fraction in the Wenzel state depends on fluid density within the cavities. A more general model developed using data fitted to fluid density is able to account for deviating tendencies induced by nanoscale surface features. A comparison of predicted results obtained in this study with those from previous works demonstrates that the proposed hybrid Cassie-Wenzel model is applicable to the evaluation of wettability in a wide range of substrates with nanoscale surface structures, corresponding to a Cassie state, a Wenzel state, and a mixed state. More importantly, the present work provides a quantitative approach to the estimation of wettability even amidst nanoscale effects, which can have a significant influence in cases with surface features at the molecular scale.
Collapse
Affiliation(s)
- Tsu-Hsu Yen
- Department of Marine Science, Chinese Naval Academy, Zuoying, Kaohsiung 81300, Taiwan, Republic of China
| | - Chyi-Yeou Soong
- Department of Aerospace and Systems Engineering, Feng Chia University, Seatwen, Taichung 40724, Taiwan, Republic of China
| |
Collapse
|
31
|
Sokkalingam P, Shraberg J, Rick SW, Gibb BC. Binding Hydrated Anions with Hydrophobic Pockets. J Am Chem Soc 2015; 138:48-51. [PMID: 26702712 DOI: 10.1021/jacs.5b10937] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a combination of isothermal titration calorimetry and quantum and molecular dynamics calculations, we demonstrate that relatively soft anions have an affinity for hydrophobic concavity. The results are consistent with the anions remaining partially hydrated upon binding, and suggest a novel strategy for anion recognition.
Collapse
Affiliation(s)
- Punidha Sokkalingam
- Department of Chemistry, Tulane University , New Orleans, Louisiana 70118, United States
| | - Joshua Shraberg
- Department of Chemistry, University of New Orleans , New Orleans, Louisiana 70148, United States
| | - Steven W Rick
- Department of Chemistry, University of New Orleans , New Orleans, Louisiana 70148, United States
| | - Bruce C Gibb
- Department of Chemistry, Tulane University , New Orleans, Louisiana 70118, United States
| |
Collapse
|
32
|
Abstract
This review focuses on molecular containers formed by assembly processes driven by the hydrophobic effect, and summarizes the progress made in the field over the last ten years. This small but growing facet of supramolecular chemistry discusses three classes of molecules used by researchers to investigate how self-assembly can be applied to form discrete, mono-dispersed, and structurally well-defined supramolecular entities. The approaches demonstrate the importance of preorganization of arrays of rigid moieties to define a specific form predisposed to bind, fold, or assemble. As the examples demonstrate, studying these systems and their properties is teaching us how to control supramolecular chemistry in water, shedding light on aspects of aqueous solutions chemistry, and illustrating novel applications that harness the unique properties of the hydrophobic effect.
Collapse
Affiliation(s)
- Jacobs H Jordan
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.
| | | |
Collapse
|
33
|
Gibb CLD, Oertling EE, Velaga S, Gibb BC. Thermodynamic Profiles of Salt Effects on a Host–Guest System: New Insight into the Hofmeister Effect. J Phys Chem B 2015; 119:5624-38. [DOI: 10.1021/acs.jpcb.5b01708] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Corinne L. D. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Estelle E. Oertling
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Santhosh Velaga
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
34
|
BEDAM binding free energy predictions for the SAMPL4 octa-acid host challenge. J Comput Aided Mol Des 2015; 29:315-25. [PMID: 25726024 DOI: 10.1007/s10822-014-9795-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
The binding energy distribution analysis method (BEDAM) protocol has been employed as part of the SAMPL4 blind challenge to predict the binding free energies of a set of octa-acid host-guest complexes. The resulting predictions were consistently judged as some of the most accurate predictions in this category of the SAMPL4 challenge in terms of quantitative accuracy and statistical correlation relative to the experimental values, which were not known at the time the predictions were made. The work has been conducted as part of a hands-on graduate class laboratory session. Collectively the students, aided by automated setup and analysis tools, performed the bulk of the calculations and the numerical and structural analysis. The success of the experiment confirms the reliability of the BEDAM methodology and it shows that physics-based atomistic binding free energy estimation models, when properly streamlined and automated, can be successfully employed by non-specialists.
Collapse
|
35
|
Sullivan MR, Gibb BC. Differentiation of small alkane and alkyl halide constitutional isomers via encapsulation. Org Biomol Chem 2015; 13:1869-77. [PMID: 25504155 DOI: 10.1039/c4ob02357a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previously we have demonstrated that host 1 is capable of hydrocarbon gas separation by selective sequestration of butane from a mixture with propane in the headspace above a solution of the host (C. L. D. Gibb, B. C. Gibb, J. Am. Chem. Soc., 2006, 128, 16498-16499). Expanding on the idea of using this host as a means to affect guest discrimination, we report here on NMR studies of the binding of constitutional isomers of two classes of small molecules: hexanes and chloropentanes. Our results indicate that even with these relatively straightforward classes of molecules, guest binding is complicated. Overall, host 1 displays a preference to bind guests with a X-C(R2)-C(R2)-Me (X = Cl or Me) structure, and more generally, a preference for branched guests rather than highly flexible, unbranched derivatives. The complexity of binding of these isomers is magnified when considering molecular differentiation between pairs of guests. In such cases, different guests demonstrated different propensities to self-sort; some self-sort exclusively, while others show very little propensity to do so. However, whereas the pool of guests reveals some general correlations between binding strength and structure, no obvious relationship between structure and degree of self-sorting was observed.
Collapse
|
36
|
Ou SC, Patel S. Electrostatic contribution from solvent in modulating single-walled carbon nanotube association. J Chem Phys 2014; 141:114906. [PMID: 25240371 PMCID: PMC4187323 DOI: 10.1063/1.4892566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/28/2014] [Indexed: 11/14/2022] Open
Abstract
We perform all-atom molecular dynamics simulations to compute the potential of mean force (PMF) between two (10,10) single-walled carbon nanotubes solvated in pure nonpolarizable SPC/E and polarizable TIP4P-FQ water, at various temperatures. In general, the reversible work required to bring two nanotubes from a dissociated state (free energy reference) to contact state (free energy minimum) is more favorable and less temperature-dependent in TIP4P-FQ than in SPC/E water models. In contrast, molecular properties and behavior of water such as the spatially-resolved water number density (intertube, intratube, or outer regions), for TIP4P-FQ are more sensitive to temperature than SPC/E. Decomposition of the solvent-induced PMF into different spatial regions suggests that TIP4P-FQ has stronger temperature dependence; the opposing destabilizing/stabilizing contributions from intertube water and more distal water balance each other and suppress the temperature dependence of total association free energy. Further investigation of hydrogen bonding network in intertube water reveals that TIP4P-FQ retains fewer hydrogen bonds than SPC/E, which correlates with the lower water number density in this region. This reduction of hydrogen bonds affects the intertube water dipoles. As the intertube volume decreases, TIP4P-FQ dipole moment approaches the gas phase value; the distribution of dipole magnitude also becomes narrower due to less average polarization/perturbation from other water molecules. Our results imply that the reduction of water under confinement may seem trivial, but underlying effects to structure and free energetics are non-negligible.
Collapse
Affiliation(s)
- Shu-Ching Ou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
37
|
Biedermann F, Nau WM, Schneider HJ. Neues zum hydrophoben Effekt - Studien mit supramolekularen Komplexen zeigen hochenergetisches Wasser als nichtkovalente Bindungstriebkraft. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310958] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Biedermann F, Nau WM, Schneider HJ. The hydrophobic effect revisited--studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew Chem Int Ed Engl 2014; 53:11158-71. [PMID: 25070083 DOI: 10.1002/anie.201310958] [Citation(s) in RCA: 429] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 01/14/2023]
Abstract
Traditional descriptions of the hydrophobic effect on the basis of entropic arguments or the calculation of solvent-occupied surfaces must be questioned in view of new results obtained with supramolecular complexes. In these studies, it was possible to separate hydrophobic from dispersive interactions, which are strongest in aqueous systems. Even very hydrophobic alkanes associate significantly only in cavities containing water molecules with an insufficient number of possible hydrogen bonds. The replacement of high-energy water in cavities by guest molecules is the essential enthalpic driving force for complexation, as borne out by data for complexes of cyclodextrins, cyclophanes, and cucurbiturils, for which complexation enthalpies of up to -100 kJ mol(-1) were reached for encapsulated alkyl residues. Water-box simulations were used to characterize the different contributions from high-energy water and enabled the calculation of the association free enthalpies for selected cucurbituril complexes to within a 10% deviation from experimental values. Cavities in artificial receptors are more apt to show the enthalpic effect of high-energy water than those in proteins or nucleic acids, because they bear fewer or no functional groups in the inner cavity to stabilize interior water molecules.
Collapse
Affiliation(s)
- Frank Biedermann
- ISIS-Institut de Science et d'Ingénierie Supramoléculaires, 67083 Strasbourg (France).
| | | | | |
Collapse
|
39
|
Wanjari PP, Gibb BC, Ashbaugh HS. Simulation optimization of spherical non-polar guest recognition by deep-cavity cavitands. J Chem Phys 2014; 139:234502. [PMID: 24359375 DOI: 10.1063/1.4844215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biomimetic deep-cavity cavitand hosts possess unique recognition and encapsulation properties that make them capable of selectively binding a range of non-polar guests within their hydrophobic pocket. Adamantane based derivatives which snuggly fit within the pocket of octa-acid deep cavity cavitands exhibit some of the strongest host binding. Here we explore the roles of guest size and attractiveness on optimizing guest binding to form 1:1 complexes with octa-acid cavitands in water. Specifically we simulate the water-mediated interactions of the cavitand with adamantane and a range of simple Lennard-Jones guests of varying diameter and attractive well-depth. Initial simulations performed with methane indicate hydrated methanes preferentially reside within the host pocket, although these guests frequently trade places with water and other methanes in bulk solution. The interaction strength of hydrophobic guests increases with increasing size from sizes slightly smaller than methane to Lennard-Jones guests comparable in size to adamantane. Over this guest size range the preferential guest binding location migrates from the bottom of the host pocket upwards. For guests larger than adamantane, however, binding becomes less favorable as the minimum in the potential-of-mean force shifts to the cavitand face around the portal. For a fixed guest diameter, the Lennard-Jones well-depth is found to systematically shift the guest-host potential-of-mean force to lower free energies, however, the optimal guest size is found to be insensitive to increasing well-depth. Ultimately our simulations show that adamantane lies within the optimal range of guest sizes with significant attractive interactions to match the most tightly bound Lennard-Jones guests studied.
Collapse
Affiliation(s)
- Piyush P Wanjari
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA
| | - Henry S Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
40
|
Sure R, Antony J, Grimme S. Blind prediction of binding affinities for charged supramolecular host-guest systems: achievements and shortcomings of DFT-D3. J Phys Chem B 2014; 118:3431-40. [PMID: 24588346 DOI: 10.1021/jp411616b] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Association free energies ΔGa are calculated for two different types of host-guest systems, the rigid cucurbit[7]uril (CB7) and the basket shaped octa-acid (OA), and a number of charged guest molecules each by quantum chemical methods from first principles in the context of a recent blind test challenge (SAMPL4). For CB7, the overall agreement between theory and experiment is excellent. In comparison with all other submitted calculated relative ΔGa,rel values for this part of the blind test, our results ranked on top. Modeling the binding free energy in the case of the OA host mainly suffers from the problem that the binding situation is undefined with respect to the charge state and due to its intrinsic flexibility the host-guest complex is not represented well by a single configuration, but qualitative features of the binding process such as the proper binding orientation and the order of magnitude of ΔGa are represented in accord with the experimental expectations even though an accurate ranking is not possible.
Collapse
Affiliation(s)
- Rebecca Sure
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn , Beringstr. 4, D-53115 Bonn, Germany
| | | | | |
Collapse
|
41
|
Pochorovski I, Knehans T, Nettels D, Müller AM, Schweizer WB, Caflisch A, Schuler B, Diederich F. Experimental and computational study of BODIPY dye-labeled cavitand dynamics. J Am Chem Soc 2014; 136:2441-9. [PMID: 24490940 DOI: 10.1021/ja4104292] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the distance distribution and dynamics between moieties attached to the walls of a resorcin[4]arene cavitand, which is switchable between an expanded kite and a contracted vase form, might enable the use of this molecular system for the study of fundamental distance-dependent interactions. Toward this goal, a combined experimental and molecular dynamics (MD) simulation study on donor/acceptor borondipyrromethene (BODIPY) dye-labeled cavitands present in the vase and kite forms was performed. Direct comparison between anisotropy decays calculated from MD simulations with experimental fluorescence anisotropy data showed excellent agreement, indicating that the simulations provide an accurate representation of the dynamics of the system. Distance distributions between the BODIPY dyes were established by comparing time-resolved Förster resonance energy transfer experiments and MD simulations. Fluorescence intensity decay curves emulated on the basis of the MD trajectories showed good agreement with the experimental data, suggesting that the simulations present an accurate picture of the distance distributions and dynamics in this molecular system and provide an important tool for understanding the behavior of extended molecular systems and designing future applications.
Collapse
Affiliation(s)
- Igor Pochorovski
- Laboratorium für Organische Chemie, ETH Zürich , Hönggerberg, HCI, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gibb CLD, Gibb BC. Binding of cyclic carboxylates to octa-acid deep-cavity cavitand. J Comput Aided Mol Des 2013; 28:319-25. [PMID: 24218290 DOI: 10.1007/s10822-013-9690-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/05/2013] [Indexed: 11/26/2022]
Abstract
As part of the fourth statistical assessment of modeling of proteins and ligands (sampl.eyesopen.com) prediction challenge, the strength of association of nine guests (1-9) binding to octa-acid host was determined by a combination of (1)H NMR and isothermal titration calorimetry. Association constants in sodium tetraborate buffered (pH 9.2) aqueous solution ranged from 5.39 × 10(2) M(-1) in the case of benzoate 1, up to 3.82 × 10(5) M(-1) for trans-4-methylcyclohexanoate 7. Overall, the free energy difference between the free energies of complexation of these weakest and strongest binding guests was ΔΔG° = 3.88 kcal mol(-1). Based on a multitude of previous studies, the anticipated order of strength of binding was close to that which was actually obtained. However, the binding of guest 3 (4-ethylbenzoate) was considerably stronger than initially estimated.
Collapse
Affiliation(s)
- Corinne L D Gibb
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | | |
Collapse
|
43
|
Biedermann F, Vendruscolo M, Scherman OA, De Simone A, Nau WM. Cucurbit[8]uril and Blue-Box: High-Energy Water Release Overwhelms Electrostatic Interactions. J Am Chem Soc 2013; 135:14879-88. [DOI: 10.1021/ja407951x] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Frank Biedermann
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany,
| | - Michele Vendruscolo
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Oren A. Scherman
- Melville
Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Alfonso De Simone
- Division
of Molecular Biosciences, Imperial College London, London, SW7 2AZ, U.K
| | - Werner M. Nau
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany,
| |
Collapse
|
44
|
Ren P, Chun J, Thomas DG, Schnieders MJ, Marucho M, Zhang J, Baker NA. Biomolecular electrostatics and solvation: a computational perspective. Q Rev Biophys 2012; 45:427-91. [PMID: 23217364 PMCID: PMC3533255 DOI: 10.1017/s003358351200011x] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.
Collapse
Affiliation(s)
- Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin
| | | | | | | | - Marcelo Marucho
- Department of Physics and Astronomy, The University of Texas at San Antonio
| | - Jiajing Zhang
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Nathan A. Baker
- To whom correspondence should be addressed. Pacific Northwest National Laboratory, PO Box 999, MSID K7-29, Richland, WA 99352. Phone: +1-509-375-3997,
| |
Collapse
|
45
|
Gibb CLD, Gibb BC. The Thermodynamics of Molecular Recognition. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Gibb BC. Supramolecular Assembly and Binding in Aqueous Solution: Useful Tips Regarding the Hofmeister and Hydrophobic Effects. Isr J Chem 2011. [DOI: 10.1002/ijch.201100058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Gibb CLD, Gibb BC. Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes. J Am Chem Soc 2011; 133:7344-7. [PMID: 21524086 DOI: 10.1021/ja202308n] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
For over 120 years it has been appreciated that certain salts (kosmotropes) cause the precipitation of proteins, while others (chaotropes) increase their solubility. The cause of this "Hofmeister effect" is still unclear, especially with the original concept that kosmotropic anions "make" water structure and chaotropes "break" it being countered by recent studies suggesting otherwise. Here, we present the first direct evidence that chaotropic anions have an affinity for hydrophobic concavity and that it is competition between a convex hydrophobe and the anion for a binding site that leads to the apparent weakening of the hydrophobic effect by chaotropes. In combination, these results suggest that chaotropes primarily induce protein solubilization by direct binding to concavity in the molten globule state of a protein.
Collapse
Affiliation(s)
- Corinne L D Gibb
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA
| | | |
Collapse
|
48
|
Abstract
An improved synthesis of a water-soluble deep-cavity cavitand (octa-acid, 1) is presented. Previously (Gibb, C. L. D. & Gibb, B. C., J. Am. Chem. Soc., 2004, 126, 11408-11409) we documented access to host 1 in eight (non-linear) steps starting from resorcinol; a synthesis that required four steps involving chromatographic purification. Here we reveal a modified synthesis of host 1. Consisting of seven (non-linear) steps, this new synthesis involves only one chromatographic step, and avoids a minor impurity observed in the original approach. This improved synthesis will therefore be useful for the laboratories that are investigating the properties of these types of host.
Collapse
Affiliation(s)
- Simin Liu
- Department of Chemistry, University of New Orleans New Orleans, LA 70148, USA
| | | | | | | |
Collapse
|
49
|
Laughrey Z, Gibb BC. Water-soluble, self-assembling container molecules: an update. Chem Soc Rev 2011; 40:363-86. [DOI: 10.1039/c0cs00030b] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Liu S, Gibb BC. Solvent denaturation of supramolecular capsules assembled via the hydrophobic effect. Chem Commun (Camb) 2011; 47:3574-6. [DOI: 10.1039/c1cc10122f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|