1
|
Gouilleux B, Moussallieh FM, Lesot P. Anisotropic 1 H STD-NMR Spectroscopy: Exploration of Enantiomer-Polypeptide Interactions in Chiral Oriented Environments. Chemphyschem 2023; 24:e202200508. [PMID: 36196851 DOI: 10.1002/cphc.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2022] [Indexed: 11/07/2022]
Abstract
We explore and report for the first time the use of 1 H saturation transfer difference NMR experiments (STD-NMR) in weakly aligning chiral anisotropic media to identify the hydrogen sites of enantiomers of small chiral molecules interacting with the side-chain of poly-γ-benzyl-l-glutamate (PBLG), a helically chiral polypeptide polymer. The first experimental results obtained on three model mono-stereogenic compounds outcomes are highly promising and demonstrate the possibility to track down possible differences of spatial position of enantiomers at the vicinity of the polymer side-chain. Anisotropic STD experiments appear to be well suited for rapid screening of chiral analytes that bind favorably to orienting polymeric systems, while providing new insights into the mechanism of enantio-discrimination without resorting to the time-consuming determination of molecular order parameters.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15, rue du Doyen Georges Poitou, 91405, Orsay cedex, France
| | - Francois-Marie Moussallieh
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15, rue du Doyen Georges Poitou, 91405, Orsay cedex, France
| | - Philippe Lesot
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15, rue du Doyen Georges Poitou, 91405, Orsay cedex, France.,Centre National de la Recherche Scientifique (CNRS), 3, rue Michel Ange, 75016, Paris, France
| |
Collapse
|
2
|
Schmidt S, Zehe M, Holzgrabe U. Characterization of binding properties of ephedrine derivatives to human alpha-1-acid glycoprotein. Eur J Pharm Sci 2023; 181:106333. [PMID: 36402307 DOI: 10.1016/j.ejps.2022.106333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Most drugs, especially those with acidic or neutral moieties, are bound to the plasma protein albumin, whereas basic drugs are preferentially bound to human alpha-1-acid glycoprotein (AGP). The protein binding of the long-established drugs ephedrine and pseudoephedrine, which are used in the treatment of hypotension and colds, has so far only been studied with albumin. Since in a previous study a stereoselective binding of ephedrine and pseudoephedrine to serum but not to albumin was observed, the aim of this study was to check whether the enantioselective binding behavior of ephedrine and pseudoephedrine, in addition to the derivatives methylephedrine and norephedrine, is due to AGP and to investigate the influence of their different substituents and steric arrangement. Discontinuous ultrafiltration was used for the determination of protein binding. Characterization of ligand-protein interactions of the drugs was obtained by saturation transfer difference nuclear magnetic resonance spectroscopy. Docking experiments were performed to analyze possible ligand-protein interactions. The more basic the ephedrine derivative is, the higher is the affinity to AGP. There was no significant difference in the binding properties between the individual enantiomers and the diastereomers of ephedrine and pseudoephedrine.
Collapse
Affiliation(s)
- Sebastian Schmidt
- Institute for Pharmacy and Food Chemistry, Am Hubland, Wuerzburg D-97074, Germany
| | - Markus Zehe
- Institute for Pharmacy and Food Chemistry, Am Hubland, Wuerzburg D-97074, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, Am Hubland, Wuerzburg D-97074, Germany.
| |
Collapse
|
3
|
Revisiting Chiral Recognition Mechanism on Chicken Alpha 1-Acid Glycoprotein: Location of Chiral Binding Sites and Insight into Chiral Binding Mechanism. SEPARATIONS 2021. [DOI: 10.3390/separations8060073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chiral stationary phases based on chicken alpha 1-acid glycoprotein (cAGP) have been used for enantioseparations of various compounds. However, the chiral binding sites and mechanism have not been clarified yet. Based on chromatographic properties of native and W26-modified cAGP columns and docking simulations of studied compounds into the generated model structure of cAGP, the chiral binding sites were located on cAGP and the chiral binding mechanism was discussed. On cAGP, there existed a binding cavity lined with H25, W26, Y47, R128, T129, D161 and E168, which contribute electrostatic or hydrogen bonding interactions. Benzoin and chlorpheniramine enantiomers interacted with cAGP at almost the same sites a little away from W26, while propranolol enantiomers docked, slightly shifting toward H25 and W26. Furthermore, in addition to hydrophobic interactions, ionic interactions between amino groups of chlorpheniramine enantiomers and a carboxy group of D161 or E168 played an important role in the chiral recognition, while hydrophobic interactions and hydrogen bonding interactions worked for the chiral recognition of benzoin and propranolol enantiomers.
Collapse
|
4
|
Yu H, Li C, Wang X, Duan J, Yang N, Xie L, Yuan Y, Li S, Bi C, Yang B, Li Y. Techniques and Strategies for Potential Protein Target Discovery and Active Pharmaceutical Molecule Screening in a Pandemic. J Proteome Res 2020; 19:4242-4258. [PMID: 32957788 PMCID: PMC7640955 DOI: 10.1021/acs.jproteome.0c00372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 12/12/2022]
Abstract
Viruses remain a major challenge in the fierce fight against diseases. There have been many pandemics caused by various viruses throughout the world over the years. Recently, the global outbreak of COVID-19 has had a catastrophic impact on human health and the world economy. Antiviral drug treatment has become another essential means to overcome pandemics in addition to vaccine development. How to quickly find effective drugs that can control the development of a pandemic is a hot issue that still needs to be resolved in medical research today. To accelerate the development of drugs, it is necessary to target the key target proteins in the development of the pandemic, screen active molecules, and develop reliable methods for the identification and characterization of target proteins based on the active ingredients of drugs. This article discusses key target proteins and their biological mechanisms in the progression of COVID-19 and other major epidemics. We propose a model based on these foundations, which includes identifying potential core targets, screening potential active molecules of core targets, and verifying active molecules. This article summarizes the related innovative technologies and methods. We hope to provide a reference for the screening of drugs related to pandemics and the development of new drugs.
Collapse
Affiliation(s)
| | | | | | - Jingyi Duan
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Na Yang
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Lijuan Xie
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yu Yuan
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Shanze Li
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Chenghao Bi
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Bin Yang
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yubo Li
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| |
Collapse
|
5
|
Ding F, Peng W, Peng YK, Liu BQ. Estimating the potential toxicity of chiral diclofop-methyl: Mechanistic insight into the enantioselective behavior. Toxicology 2020; 438:152446. [DOI: 10.1016/j.tox.2020.152446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
|
6
|
Chiral recognition of propranolol enantiomers by chiral ionic liquid: A quantum chemical calculation analysis. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Unione L, Galante S, Díaz D, Cañada FJ, Jiménez-Barbero J. NMR and molecular recognition. The application of ligand-based NMR methods to monitor molecular interactions. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00138a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
NMR allows the monitoring of molecular recognition processes in solution. Nowadays, a plethora of NMR methods are available to deduce the key features of the interaction from both the ligand or the receptor points of view.
Collapse
Affiliation(s)
- Luca Unione
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| | - Silvia Galante
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| | - Dolores Díaz
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| | - F. Javier Cañada
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| |
Collapse
|
8
|
Lopes P, Kataky R. Chiral interactions of the drug propranolol and α1-acid-glycoprotein at a micro liquid-liquid interface. Anal Chem 2012; 84:2299-304. [PMID: 22250754 DOI: 10.1021/ac2029425] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The investigation of chiral interactions of drugs with plasma proteins is of fundamental importance for drug efficacy and toxicity studies. In this paper, we demonstrate a simple liquid-liquid interface procedure for investigating chiral interactions. Chiral discrimination of the enantiomers of a basic drug, propranolol, was achieved at a micro liquid-liquid interface, using α(1)-acid-glycoprotein (AGP) as a chiral acute phase plasma protein. When the protein is added to an aqueous phase containing the enantiomers of propranalol hydrochloride, the binding of (S)- and (R)-propranolol hydrochloride to the protein results in a decrease in the cyclic voltammetry (CV) and differential pulse voltammetry (DPV) current responses corresponding to the decrease in transfer of propranolol at an aqueous-1,2-dichloroethane interface. This decrease is a consequence of the complexation of the drug and the protein. The complex drug-protein does not transfer across the interface nor changes the transfer potential of the uncomplexed form of propranolol enantiomers. The bound concentration of propranolol enantiomers in the presence of AGP was found to be greater for (S)-propranolol than (R)-propranolol for solutions containing constant concentrations of AGP (50 μM). Scatchard analysis yielded association constants of 2.7 and 1.3 × 10(5) M(-1) for (S)- and (R)-propranolol, respectively.
Collapse
Affiliation(s)
- Paula Lopes
- Durham University, Department of Chemistry, South Road, Durham, DH1 3LE, UK
| | | |
Collapse
|
9
|
Cruz JR, Larive CK. Determination of the binding epitope of lidocaine with AGP: minimizing the effects of nonspecific binding in saturation transfer difference experiments. Anal Bioanal Chem 2012; 402:337-47. [DOI: 10.1007/s00216-011-5358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
10
|
Jin XL, Wei X, Qi FM, Yu SS, Zhou B, Bai S. Characterization of hydroxycinnamic acid derivatives binding to bovine serum albumin. Org Biomol Chem 2012; 10:3424-31. [DOI: 10.1039/c2ob25237f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Liu S, Meng L, Moremen KW, Prestegard JH. Nuclear magnetic resonance structural characterization of substrates bound to the alpha-2,6-sialyltransferase, ST6Gal-I. Biochemistry 2009; 48:11211-9. [PMID: 19845399 DOI: 10.1021/bi9015154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The alpha-2,6-sialyltransferase (ST6Gal-I) is a key enzyme that regulates the distribution of sialic acid-containing molecules on mammalian cell surfaces. However, the fact that its native form is membrane-bound and glycosylated has made structural characterization by X-ray crystallography of this eukaryotic protein difficult. Its large size ( approximately 40 kDa for just the catalytic domain) also poses a challenge for complete structure determination by nuclear magnetic resonance (NMR). However, even without complete structure determination, there are NMR strategies that can return targeted information about select regions of the protein, including information about the active site as seen from the perspective of its bound ligands. Here, in a continuation of a previous study, a spin-labeled mimic of a glycan acceptor ligand is used to identify additional amino acids located in the protein active site. In addition, the spin-labeled donor is used to characterize the relative placement of the two bound ligands. The ligand conformation and protein-ligand contact surfaces are studied by transferred nuclear Overhauser effects (trNOEs) and saturation transfer difference (STD) experiments. The data afforded by the methods mentioned above lead to a geometric model of the bound substrates that in many ways carries an imprint of the ST6Gal-I binding site.
Collapse
Affiliation(s)
- Shan Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|