1
|
Höfling F, Dietrich S. Structure of liquid-vapor interfaces: Perspectives from liquid state theory, large-scale simulations, and potential grazing-incidence x-ray diffraction. J Chem Phys 2024; 160:104107. [PMID: 38469908 DOI: 10.1063/5.0186955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Grazing-incidence x-ray diffraction (GIXRD) is a scattering technique that allows one to characterize the structure of fluid interfaces down to the molecular scale, including the measurement of surface tension and interface roughness. However, the corresponding standard data analysis at nonzero wave numbers has been criticized as to be inconclusive because the scattering intensity is polluted by the unavoidable scattering from the bulk. Here, we overcome this ambiguity by proposing a physically consistent model of the bulk contribution based on a minimal set of assumptions of experimental relevance. To this end, we derive an explicit integral expression for the background scattering, which can be determined numerically from the static structure factors of the coexisting bulk phases as independent input. Concerning the interpretation of GIXRD data inferred from computer simulations, we extend the model to account also for the finite sizes of the bulk phases, which are unavoidable in simulations. The corresponding leading-order correction beyond the dominant contribution to the scattered intensity is revealed by asymptotic analysis, which is characterized by the competition between the linear system size and the x-ray penetration depth in the case of simulations. Specifically, we have calculated the expected GIXRD intensity for scattering at the planar liquid-vapor interface of Lennard-Jones fluids with truncated pair interactions via extensive, high-precision computer simulations. The reported data cover interfacial and bulk properties of fluid states along the whole liquid-vapor coexistence line. A sensitivity analysis shows that our findings are robust with respect to the detailed definition of the mean interface position. We conclude that previous claims of an enhanced surface tension at mesoscopic scales are amenable to unambiguous tests via scattering experiments.
Collapse
Affiliation(s)
- F Höfling
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 6, 14195 Berlin, Germany
- Zuse Institut Berlin, Takustr. 7, 14195 Berlin, Germany
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Hernández-Muñoz J, Chacón E, Tarazona P. Density correlation in liquid surfaces: Bedeaux-Weeks high order terms and non capillary wave background. J Chem Phys 2018; 149:124704. [PMID: 30278660 DOI: 10.1063/1.5049874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We present Molecular Dynamics (MD) simulations of liquid-vapor surfaces, and their Intrinsic Sampling Method analysis, to get a quantitative test for the theoretical prediction of the capillary wave (CW) effects on density correlation done by Bedeaux and Weeks (BW) in 1985. The results are contrasted with Wertheim's proposal which is the first term in BW series and are complemented with a (formally defined and computational accessible) proposal for the background of non-CW fluctuations. Our conclusion is that BW theory is both accurate and needed since it may differ significantly from Wertheim's proposal. We discuss the implications for the analysis of experimental X-ray surface diffraction data and MD simulations.
Collapse
Affiliation(s)
- Jose Hernández-Muñoz
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, and Instituto Nicolás Cabrera de Ciencia de Materiales, Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
3
|
Hernández-Muñoz J, Chacón E, Tarazona P. Capillary waves as eigenmodes of the density correlation at liquid surfaces. J Chem Phys 2018; 148:084702. [PMID: 29495766 DOI: 10.1063/1.5020764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We analyze the density correlations in a liquid-vapor surface to establish a quantitative connection between the Density Functional (DF) formalism, Molecular Dynamic (MD) simulations, and the Capillary Wave (CW) theory. Instead of the integrated structure factor, we identify the CW fluctuations as eigenmodes of the correlation function. The square-gradient DF approximation appears as fully consistent with the use of the thermodynamic surface tension to describe the surface fluctuations for any wavevector because it misses the upper cutoff in the surface Hamiltonian from the merging of the CW mode with the non-CW band. This mesoscopic cutoff may be accurately predicted from the main peak in the structure factor of the bulk liquid. We explore the difference between the full density-density correlation mode and the bare CW that represents the correlation between the corrugation of the intrinsic surface and the density at the interfacial region. The non-local decay of the CW effects, predicted from DF analysis and observed in MD simulations with the intrinsic sampling method, is found to characterize the bare CW fluctuations, which also require a wavevector-dependent surface tension.
Collapse
Affiliation(s)
- Jose Hernández-Muñoz
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autonoma de Madrid, Madrid 28049, Spain
| | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Madrid 28049, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, and Instituto Nicolás Cabrera de Ciencia de Materiales, Universidad Autonoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
4
|
Sadati M, Ramezani-Dakhel H, Bu W, Sevgen E, Liang Z, Erol C, Rahimi M, Taheri Qazvini N, Lin B, Abbott NL, Roux B, Schlossman ML, de Pablo JJ. Molecular Structure of Canonical Liquid Crystal Interfaces. J Am Chem Soc 2017; 139:3841-3850. [PMID: 28177227 DOI: 10.1021/jacs.7b00167] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous applications of liquid crystals rely on control of molecular orientation at an interface. However, little is known about the precise molecular structure of such interfaces. In this work, synchrotron X-ray reflectivity measurements, accompanied by large-scale atomistic molecular dynamics simulations, are used for the first time to reconstruct the air-liquid crystal interface of a nematic material, namely, 4-pentyl-4'-cyanobiphenyl (5CB). The results are compared to those for 4-octyl-4'-cyanobiphenyl (8CB) which, in addition to adopting isotropic and nematic states, can also form a smectic phase. Our findings indicate that the air interface imprints a highly ordered structure into the material; such a local structure then propagates well into the bulk of the liquid crystal, particularly for nematic and smectic phases.
Collapse
Affiliation(s)
| | | | | | | | - Zhu Liang
- Department
of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Cem Erol
- Department
of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | | | | | - Nicholas L. Abbott
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | | | - Mark L. Schlossman
- Department
of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Juan J. de Pablo
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
5
|
Fukuto M, Ocko BM, Bonthuis DJ, Netz RR, Steinrück HG, Pontoni D, Kuzmenko I, Haddad J, Deutsch M. Nanoscale Structure of the Oil-Water Interface. PHYSICAL REVIEW LETTERS 2016; 117:256102. [PMID: 28036213 DOI: 10.1103/physrevlett.117.256102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 06/06/2023]
Abstract
X-ray reflectivity (XR) and atomistic molecular dynamics (MD) simulations, carried out to determine the structure of the oil-water interface, provide new insight into the simplest liquid-liquid interface. For several oils (hexane, dodecane, and hexadecane) the XR shows very good agreement with a monotonic interface-normal electron density profile (EDP) broadened only by capillary waves. Similar agreement is also found for an EDP including a sub-Å thick electron depletion layer separating the oil and the water. The XR and MD derived depletions are much smaller than reported for the interface between solid-supported hydrophobic monolayers and water.
Collapse
Affiliation(s)
- M Fukuto
- Condensed Matter Physics and Materials Sciences Department and NSLS II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - B M Ocko
- Condensed Matter Physics and Materials Sciences Department and NSLS II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D J Bonthuis
- Rudolf Peierls Centre for Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - R R Netz
- Department of Physics, Free University Berlin, D-14195 Berlin, Germany
| | - H-G Steinrück
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D Pontoni
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - I Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - J Haddad
- Physics Department and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - M Deutsch
- Physics Department and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
6
|
Yano YF, Kobayashi Y, Ina T, Nitta K, Uruga T. Hofmeister Anion Effects on Protein Adsorption at an Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9892-9898. [PMID: 27575543 DOI: 10.1021/acs.langmuir.6b02352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hofmeister anion effects on adsorption kinetics of the positively charged lysozyme (pH < pI) at an air-water interface were studied by surface tension measurements and time-resolved X-ray reflectometry. In the salt-free solution, the protein adsorption rate increases with decreasing the net positive charge of lysozyme. When salt ions are dissolved in water, the protein adsorption rate drastically increases, and the rate is following an inverse Hoffmeister series (Br(-) > Cl(-) > F(-)). This is the result of the strongly polarized halide anion Br(-) being attracted to the adsorbed protein layer due to strong interaction with local electric field, while weakly polarized anion F(-) having no ability to penetrate the protein layer. In X-ray reflection studies, we observed that the lysozyme molecules initially adsorbed on the air-water interface have a flat unfolded structure as previously reported in the salt-free solution. In contrast, in the concentrated salt solutions, the lysozyme molecules begin to refold during adsorption. This protein refolding as a result of protein-protein rearrangements may be a precursor phenomenon of crystallization. The refolding is most significant for Cl(-), which is a good crystallization agent, whereas it is less observed for the strongly hydrated F(-). It is widely known in the bulk state that kosmotropic anions tend to precipitate proteins but at the same time stabilize proteins against denaturing. On the other hand, at the air-water interface where adsorbed proteins usually unfold, we observed chaotropic anions strongly bound to proteins that reduce electrostatic repulsion between protein molecules, and subsequently they induce protein refolding whereas the kosmotropic anions do not.
Collapse
Affiliation(s)
- Yohko F Yano
- Department of Physics, Kindai University , 3-4-1 Kowakae, Higashiosaka City, Osaka 577-8502, Japan
| | - Yuki Kobayashi
- Department of Physics, Kindai University , 3-4-1 Kowakae, Higashiosaka City, Osaka 577-8502, Japan
| | - Toshiaki Ina
- Japan Synchrotron Radiation Research Institute , 1-1-1 Kouto, Sayo-cyo, Sayo-gun, Hyogo 679-5198, Japan
| | - Kiyofumi Nitta
- Japan Synchrotron Radiation Research Institute , 1-1-1 Kouto, Sayo-cyo, Sayo-gun, Hyogo 679-5198, Japan
| | - Tomoya Uruga
- Japan Synchrotron Radiation Research Institute , 1-1-1 Kouto, Sayo-cyo, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
7
|
Chacón E, Tarazona P. Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244014. [PMID: 27115912 DOI: 10.1088/0953-8984/28/24/244014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.
Collapse
Affiliation(s)
- Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain. Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
8
|
Dai Y, Lin B, Meron M, Kim K, Leahy B, Witten TA, Shpyrko OG. Synchrotron X-ray studies of rapidly evolving morphology of self-assembled nanoparticle films under lateral compression. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14050-14056. [PMID: 24138112 DOI: 10.1021/la403252d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Interfacial nanostructures represent a class of systems that are highly relevant to studies of quasi-2D phases, chemical self-assembly, surfactant behavior, and biologically relevant membranes. Previous studies have shown that under lateral compression a Langmuir film of gold (Au) nanoparticles assembled at the liquid-air interface exhibits rich mechanical behavior: it undergoes a rapid structural and morphological evolution from a monolayer to a trilayer via an intermediate hash-like phase. We report the results of studying this structural evolution using grazing incidence X-ray off-specular scattering (GIXOS). We utilize GIXOS to obtain a quantitative mapping of electron density profile normal to the liquid surface with a subnanometer resolution and follow the structural evolution of the Au nanoparticle film under lateral compression with a subminute temporal resolution. As the surface pressure is increased, the self-assembled nanoparticle monolayer first crinkles into a double-layer phase before forming a trilayer. This study reveals the existence of a transient bilayer phase and provides a microscopic picture of the particle-level crinkling phenomena of ultrathin films. These studies were previously impossible due to the relatively short time scales involved in crinkling formation of these transient phases and their intrinsically inhomogeneous nature.
Collapse
Affiliation(s)
- Yeling Dai
- Department of Physics, University of California, San Diego , La Jolla, California 92093, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
Elsen A, Festersen S, Runge B, Koops CT, Ocko BM, Deutsch M, Seeck OH, Murphy BM, Magnussen OM. In situ X-ray studies of adlayer-induced crystal nucleation at the liquid-liquid interface. Proc Natl Acad Sci U S A 2013; 110:6663-8. [PMID: 23553838 PMCID: PMC3637733 DOI: 10.1073/pnas.1301800110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crystal nucleation and growth at a liquid-liquid interface is studied on the atomic scale by in situ Å-resolution X-ray scattering methods for the case of liquid Hg and an electrochemical dilute electrolyte containing Pb(2+), F(-), and Br(-) ions. In the regime negative of the Pb amalgamation potential Φ(rp) = -0.70 V, no change is observed from the surface-layered structure of pure Hg. Upon potential-induced release of Pb(2+) from the Hg bulk at Φ > Φ(rp), the formation of an intriguing interface structure is observed, comprising a well-defined 7.6-Å-thick adlayer, decorated with structurally related 3D crystallites. Both are identified by their diffraction peaks as PbFBr, preferentially aligned with their axis along the interface normal. X-ray reflectivity shows the adlayer to consist of a stack of five ionic layers, forming a single-unit-cell-thick crystalline PbFBr precursor film, which acts as a template for the subsequent quasiepitaxial 3D crystal growth. This growth behavior is assigned to the combined action of electrostatic and short-range chemical interactions.
Collapse
Affiliation(s)
- Annika Elsen
- Institute for Experimental and Applied Physics, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Sven Festersen
- Institute for Experimental and Applied Physics, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Benjamin Runge
- Institute for Experimental and Applied Physics, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Christian T. Koops
- Institute for Experimental and Applied Physics, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Benjamin M. Ocko
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973
| | - Moshe Deutsch
- Physics Department, and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Oliver H. Seeck
- Deutsches Elektronensynchrotron DESY, 22607 Hamburg, Germany; and
| | - Bridget M. Murphy
- Institute for Experimental and Applied Physics, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Olaf M. Magnussen
- Institute for Experimental and Applied Physics, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| |
Collapse
|
10
|
Tarazona P, Chacón E, Bresme F. Intrinsic profiles and the structure of liquid surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:284123. [PMID: 22738881 DOI: 10.1088/0953-8984/24/28/284123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present a brief review of the advances made in the characterization of liquid surfaces over the last decade. We focus particularly on the links between the capillary wave theory, the density functional formalism and the direct evaluation of the intrinsic density profiles from computer simulations. A new perspective of the liquid surfaces is appearing, with a sharper view of their molecular structure, which opens new challenges for theoretical and experimental studies. Novel results on the intrinsic interfacial structure of molten salt liquid-vapor interfaces are presented.
Collapse
Affiliation(s)
- P Tarazona
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| | | | | |
Collapse
|
11
|
Tamam L, Ocko BM, Reichert H, Deutsch M. Checkerboard self-patterning of an ionic liquid film on mercury. PHYSICAL REVIEW LETTERS 2011; 106:197801. [PMID: 21668201 DOI: 10.1103/physrevlett.106.197801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Indexed: 05/30/2023]
Abstract
Å-resolution studies of room temperature ionic liquid (RTIL) interfaces are scarce, in spite of their long-recognized importance for the science and many applications of RTILs. We present an Å-resolution x-ray study of a Langmuir film of an RTIL on mercury. At low (high) coverage [90 (50) Å2/molecule] a mono-(bi)layer of surface-parallel molecules is found. The molecules self-assemble in a lateral ionic checkerboard pattern, unlike the uniform-charge, alternate-ion layers of this RTIL at its bulk-solid interface. A 2D-smectic order is found, with molecules packed in parallel stripes, forming long-range order normal to, but none along, the stripes.
Collapse
Affiliation(s)
- L Tamam
- Physics Department & Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
12
|
Rananavare SB, Safran SA, Brochard-Wyart F. In Memory of Pierre-Gilles de Gennes. J Phys Chem B 2009; 113:3591-2. [DOI: 10.1021/jp900844c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|