1
|
Wang Y, Liu J, Li J, He X. Fragment-based quantum mechanical calculation of protein-protein binding affinities. J Comput Chem 2018; 39:1617-1628. [PMID: 29707784 DOI: 10.1002/jcc.25236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/02/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
Abstract
The electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method has been successfully utilized for efficient linear-scaling quantum mechanical (QM) calculation of protein energies. In this work, we applied the EE-GMFCC method for calculation of binding affinity of Endonuclease colicin-immunity protein complex. The binding free energy changes between the wild-type and mutants of the complex calculated by EE-GMFCC are in good agreement with experimental results. The correlation coefficient (R) between the predicted binding energy changes and experimental values is 0.906 at the B3LYP/6-31G*-D level, based on the snapshot whose binding affinity is closest to the average result from the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculation. The inclusion of the QM effects is important for accurate prediction of protein-protein binding affinities. Moreover, the self-consistent calculation of PB solvation energy is required for accurate calculations of protein-protein binding free energies. This study demonstrates that the EE-GMFCC method is capable of providing reliable prediction of relative binding affinities for protein-protein complexes. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yaqian Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jinfeng Liu
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinjin Li
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao He
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,National Engineering Research Centre for Nanotechnology, Shanghai, 200241, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| |
Collapse
|
2
|
Balmith M, Soliman MES. Non-active site mutations disturb the loop dynamics, dimerization, viral budding and egress of VP40 of the Ebola virus. MOLECULAR BIOSYSTEMS 2017; 13:585-597. [PMID: 28170013 DOI: 10.1039/c6mb00803h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The first account of the dynamic features of the loop region of VP40 of the Ebola virus (EboV) using accelerated molecular dynamics (aMD) simulations is reported herein. Due to its major role in the Ebola life cycle, VP40 is considered a promising therapeutic target. The available experimental data on the N-terminal domain (NTD) loop indicates that mutations K127A, T129A and N130A demonstrate an unrecognized role for NTD-plasma membrane (PM) interaction for efficient VP40-PM localization, oligomerization, matrix assembly and egress. Despite experimental results, the molecular description of VP40 and the information it can provide still remain vague. Therefore, to gain further molecular insight into the effect of mutations on the loop region of VP40 and its effects on the overall protein conformation and VP40 dimerization, aMD simulations and post-dynamic analyses were employed for wildtype (WT) and mutant systems. The results showed significant variations in the presence of mutations as per RMSF, RMSD, Rg, PCA and distance calculations in comparison to the WT. These results could provide researchers with insight with regards to the conformational aspects concerning VP40 and its close relation to the experimental data. We believe that the results presented in this study will ultimately provide a useful understanding of the structural landscape of the loop region of VP40, which would contribute towards the discovery of novel EboV inhibitors.
Collapse
Affiliation(s)
- Marissa Balmith
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| | - Mahmoud E S Soliman
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa. and Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt and College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, FAMU, Tallahassee, Florida 32307, USA
| |
Collapse
|
3
|
Abstract
![]()
Gaussian accelerated molecular dynamics
(GaMD) is a recently developed
enhanced sampling technique that provides efficient free energy calculations
of biomolecules. Like the previous accelerated molecular dynamics
(aMD), GaMD allows for “unconstrained” enhanced sampling
without the need to set predefined collective variables and so is
useful for studying complex biomolecular conformational changes such
as protein folding and ligand binding. Furthermore, because the boost
potential is constructed using a harmonic function that follows Gaussian
distribution in GaMD, cumulant expansion to the second order can be
applied to recover the original free energy profiles of proteins and
other large biomolecules, which solves a long-standing energetic reweighting
problem of the previous aMD method. Taken together, GaMD offers major
advantages for both unconstrained enhanced sampling and free energy
calculations of large biomolecules. Here, we have implemented GaMD
in the NAMD package on top of the existing aMD feature and validated
it on three model systems: alanine dipeptide, the chignolin fast-folding
protein, and the M3 muscarinic G protein-coupled receptor
(GPCR). For alanine dipeptide, while conventional molecular dynamics
(cMD) simulations performed for 30 ns are poorly converged, GaMD simulations
of the same length yield free energy profiles that agree quantitatively
with those of 1000 ns cMD simulation. Further GaMD simulations have
captured folding of the chignolin and binding of the acetylcholine
(ACh) endogenous agonist to the M3 muscarinic receptor.
The reweighted free energy profiles are used to characterize the protein
folding and ligand binding pathways quantitatively. GaMD implemented
in the scalable NAMD is widely applicable to enhanced sampling and
free energy calculations of large biomolecules.
Collapse
Affiliation(s)
- Yui Tik Pang
- Department of Physics, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | | | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | | |
Collapse
|
4
|
Miao Y, McCammon JA. Unconstrained Enhanced Sampling for Free Energy Calculations of Biomolecules: A Review. MOLECULAR SIMULATION 2016; 42:1046-1055. [PMID: 27453631 PMCID: PMC4955644 DOI: 10.1080/08927022.2015.1121541] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Free energy calculations are central to understanding the structure, dynamics and function of biomolecules. Yet insufficient sampling of biomolecular configurations is often regarded as one of the main sources of error. Many enhanced sampling techniques have been developed to address this issue. Notably, enhanced sampling methods based on biasing collective variables (CVs), including the widely used umbrella sampling, adaptive biasing force and metadynamics, have been discussed in a recent excellent review (Abrams and Bussi, Entropy, 2014). Here, we aim to review enhanced sampling methods that do not require predefined system-dependent CVs for biomolecular simulations and as such do not suffer from the hidden energy barrier problem as encountered in the CV-biasing methods. These methods include, but are not limited to, replica exchange/parallel tempering, self-guided molecular/Langevin dynamics, essential energy space random walk and accelerated molecular dynamics. While it is overwhelming to describe all details of each method, we provide a summary of the methods along with the applications and offer our perspectives. We conclude with challenges and prospects of the unconstrained enhanced sampling methods for accurate biomolecular free energy calculations.
Collapse
Affiliation(s)
- Yinglong Miao
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - J. Andrew McCammon
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
5
|
Yao X, Ji C, Xie D, Zhang JZH. Interaction specific binding hotspots in Endonuclease colicin-immunity protein complex from MD simulations. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4877-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Wojdyla JA, Fleishman SJ, Baker D, Kleanthous C. Structure of the ultra-high-affinity colicin E2 DNase--Im2 complex. J Mol Biol 2012; 417:79-94. [PMID: 22306467 DOI: 10.1016/j.jmb.2012.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 11/18/2022]
Abstract
How proteins achieve high-affinity binding to a specific protein partner while simultaneously excluding all others is a major biological problem that has important implications for protein design. We report the crystal structure of the ultra-high-affinity protein-protein complex between the endonuclease domain of colicin E2 and its cognate immunity (Im) protein, Im2 (K(d)∼10(-)(15) M), which, by comparison to previous structural and biophysical data, provides unprecedented insight into how high affinity and selectivity are achieved in this model family of protein complexes. Our study pinpoints the role of structured water molecules in conjoining hotspot residues that govern stability with residues that control selectivity. A key finding is that a single residue, which in a noncognate context massively destabilizes the complex through frustration, does not participate in specificity directly but rather acts as an organizing center for a multitude of specificity interactions across the interface, many of which are water mediated.
Collapse
|
7
|
Abstract
It is more than 80 years since Gratia first described 'a remarkable antagonism between two strains of Escherichia coli'. Shown subsequently to be due to the action of proteins (or peptides) produced by one bacterium to kill closely related species with which it might be cohabiting, such bacteriocins have since been shown to be commonplace in the internecine warfare between bacteria. Bacteriocins have been studied primarily from the twin perspectives of how they shape microbial communities and how they penetrate bacteria to kill them. Here, we review the modes of action of a family of bacteriocins that cleave nucleic acid substrates in E. coli, known collectively as nuclease colicins, and the specific immunity (inhibitor) proteins that colicin-producing organisms make in order to avoid committing suicide. In a process akin to targeting in mitochondria, nuclease colicins engage in a variety of cellular associations in order to translocate their cytotoxic domains through the cell envelope to the cytoplasm. As well as informing on the process itself, the study of nuclease colicin import has also illuminated functional aspects of the host proteins they parasitize. We also review recent studies where nuclease colicins and their immunity proteins have been used as model systems for addressing fundamental problems in protein folding and protein-protein interactions, areas of biophysics that are intimately linked to the role of colicins in bacterial competition and to the import process itself.
Collapse
|
8
|
Molecular basis of the structural stability of a Top7-based scaffold at extreme pH and temperature conditions. J Mol Graph Model 2010; 28:755-65. [DOI: 10.1016/j.jmgm.2010.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/29/2009] [Accepted: 01/31/2010] [Indexed: 11/22/2022]
|