1
|
Coronado S, Herrera J, Pino MG, Martín S, Ballesteros-Rueda L, Cea P. Advancements in Engineering Planar Model Cell Membranes: Current Techniques, Applications, and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1489. [PMID: 39330645 PMCID: PMC11434481 DOI: 10.3390/nano14181489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Cell membranes are crucial elements in living organisms, serving as protective barriers and providing structural support for cells. They regulate numerous exchange and communication processes between cells and their environment, including interactions with other cells, tissues, ions, xenobiotics, and drugs. However, the complexity and heterogeneity of cell membranes-comprising two asymmetric layers with varying compositions across different cell types and states (e.g., healthy vs. diseased)-along with the challenges of manipulating real cell membranes represent significant obstacles for in vivo studies. To address these challenges, researchers have developed various methodologies to create model cell membranes or membrane fragments, including mono- or bilayers organized in planar systems. These models facilitate fundamental studies on membrane component interactions as well as the interactions of membrane components with external agents, such as drugs, nanoparticles (NPs), or biomarkers. The applications of model cell membranes have extended beyond basic research, encompassing areas such as biosensing and nanoparticle camouflage to evade immune detection. In this review, we highlight advancements in the engineering of planar model cell membranes, focusing on the nanoarchitectonic tools used for their fabrication. We also discuss approaches for incorporating challenging materials, such as proteins and enzymes, into these models. Finally, we present our view on future perspectives in the field of planar model cell membranes.
Collapse
Affiliation(s)
- Sara Coronado
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Johan Herrera
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - María Graciela Pino
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Santiago Martín
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luz Ballesteros-Rueda
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Dotor L, García-Pinilla JM, Martín S, Cea P. Langmuir and Langmuir-Blodgett technologies as nanoarchitectonic tools for the incorporation of curcumin in membrane systems. NANOSCALE 2023; 15:2891-2903. [PMID: 36691853 DOI: 10.1039/d2nr06631a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Curcumin (CCM) is a molecule of particular interest in health applications due to its wide spectrum of benefits for humans. However, its water-insoluble character and low bioavailability have so far prevented its extended use as a therapeutic agent. Incorporation of CCM in drug delivery vehicles (liposomes, vesicles, exosomes, etc.) is expected to contribute to increasing its bioavailability. Studies of the affinity of CCM with the components of the membrane systems of such vehicles and determination of factors that may enhance curcumin entrapment in biological membranes are of fundamental importance. To that end, here we take advantage of the nanoarchitectonic capabilities of the Langmuir technique for the construction of model cell membranes and determination of thermodynamic properties in mixed films. The obtained results may serve to: (i) provide some light on the miscibility of CCM with the components in the cell membrane and (ii) determine the optimal conditions for the fabrication of membrane systems incorporating CCM. For that, binary and ternary mixed Langmuir films of CCM, DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and CHOL (cholesterol) have been prepared. Whilst binary mixtures of DPPC and CCM exhibit poor miscibility and even phase segregation, CHOL has shown itself as a key element to promote the incorporation of CCM in the phospholipidic membrane containing DPPC. Both the thermodynamic studies of the ternary Langmuir films and the Atomic Force Microscopy (AFM) images of Langmuir-Blodgett films have shown that ternary mixed films with a molar fraction composition of xDPPC/xCHOL/xCCM = 0.4/0.4/0.2 exhibit good miscibility, stability, and result in monolayers with a very homogeneous topography.
Collapse
Affiliation(s)
- Laura Dotor
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018, Zaragoza, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José Miguel García-Pinilla
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018, Zaragoza, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018, Zaragoza, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Pilar Cea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018, Zaragoza, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
3
|
Aranda E, Teruel JA, Ortiz A, Pérez-Cárceles MD, Aranda FJ. Interaction of Docetaxel with Phosphatidylcholine Membranes: A Combined Experimental and Computational Study. J Membr Biol 2022; 255:277-291. [PMID: 35175383 PMCID: PMC9167220 DOI: 10.1007/s00232-022-00219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/07/2022] [Indexed: 11/06/2022]
Abstract
The antineoplastic drug Docetaxel is a second generation taxane which is used against a great variety of cancers. The drug is highly lipophilic and produces a great array of severe toxic effects that limit its therapeutic effectiveness. The study of the interaction between Docetaxel and membranes is very scarce, however, it is required in order to get clues in relation with its function, mechanism of toxicity and possibilities of new formulations. Using phosphatidylcholine biomimetic membranes, we examine the interaction of Docetaxel with the phospholipid bilayer combining an experimental study, employing a series of biophysical techniques like Differential Scanning Calorimetry, X-Ray Diffraction and Infrared Spectroscopy, and a Molecular Dynamics simulation. Our experimental results indicated that Docetaxel incorporated into DPPC bilayer perturbing the gel to liquid crystalline phase transition and giving rise to immiscibility when the amount of the drug is increased. The drug promotes the gel ripple phase, increasing the bilayer thickness in the fluid phase, and is also able to alter the hydrogen-bonding interactions in the interfacial region of the bilayer producing a dehydration effect. The results from computational simulation agree with the experimental ones and located the Docetaxel molecule forming small clusters in the region of the carbon 8 of the acyl chain palisade overlapping with the carbonyl region of the phospholipid. Our results support the idea that the anticancer drug is embedded into the phospholipid bilayer to a limited amount and produces structural perturbations which might affect the function of the membrane.
Collapse
Affiliation(s)
- Elisa Aranda
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
- Hospital Universitario Virgen de la Arrixaca, Área de Salud 1, Murcia, Spain
| | - José A Teruel
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
| | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
| | - María Dolores Pérez-Cárceles
- Departamento de Medicina Legal y Forense, Facultad de Medicina, Instituto de Investigación Biomédica (IMIB-Arrixaca), Universidad de Murcia, 30120, Murcia, Spain
| | - Francisco J Aranda
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain.
| |
Collapse
|
4
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
5
|
Ruiz-Rincón S, González-Orive A, Grazú V, Fratila RM, Fuente JMDL, Cea P. Altering model cell membranes by means of localized magnetic heating. Colloids Surf B Biointerfaces 2020; 196:111315. [PMID: 32818926 DOI: 10.1016/j.colsurfb.2020.111315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Isolated iron oxide magnetic nanoparticles (MNPs), 12 nm in diameter, coated with oleic acid molecules as capping agents have been deposited by the Langmuir-Blodgett (LB) method onto a model cell membrane incorporating 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and Cholesterol (Chol) in the 1:1 ratio, which was also fabricated by the LB technique. Atomic Force Microscopy (AFM) experiments showed that the application of an alternating magnetic field results in the embedding of the MNPs through the phospholipidic layer. These experimental results reveal that the heating of individual MNPs may induce a local increase in the fluidity of the film with a large control of the spatial and temporal specificity.
Collapse
Affiliation(s)
- Silvia Ruiz-Rincón
- Instituto de Nanociencia de Aragón (INA), Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain; Laboratorio de Microscopias Avanzadas (LMA),Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Alejandro González-Orive
- Technical and Macromolecular Chemistry, University of Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Valeria Grazú
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain; Networking Biomedical Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Raluca M Fratila
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain; Networking Biomedical Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Jesús M de la Fuente
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain; Networking Biomedical Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Pilar Cea
- Instituto de Nanociencia de Aragón (INA), Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain; Laboratorio de Microscopias Avanzadas (LMA),Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain; Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain.
| |
Collapse
|
6
|
Zadymova NM, Dolzhikova VD, Kharlov AE. Adsorption of a Lipophilic Drug, Felodipine, at Different Interfaces. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20030151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Langmuir-monolayer methodologies for characterizing protein-lipid interactions. Chem Phys Lipids 2018; 212:61-72. [DOI: 10.1016/j.chemphyslip.2018.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/22/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022]
|
8
|
Rosilio V. How Can Artificial Lipid Models Mimic the Complexity of Molecule–Membrane Interactions? ACTA ACUST UNITED AC 2018. [DOI: 10.1016/bs.abl.2017.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Ruiz-Rincón S, González-Orive A, de la Fuente JM, Cea P. Reversible Monolayer-Bilayer Transition in Supported Phospholipid LB Films under the Presence of Water: Morphological and Nanomechanical Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7538-7547. [PMID: 28691823 DOI: 10.1021/acs.langmuir.7b01268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mixed monolayer Langmuir-Blodgett (LB) films of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol (Chol) in the 1:1 ratio have been prepared onto solid mica substrates. Upon immersion in water or in an aqueous HEPES solution (pH 7.4) the monolayer LB films were spontaneously converted into well-organized bilayers leaving free mica areas. The process has been demonstrated to be reversible upon removal of the aqueous solution, resulting in remarkably free of defects monolayers that are homogeneously distributed onto the mica. In addition, the nanomechanical properties exhibited by the as-formed bilayers have been determined by means of AFM breakthrough force studies. The bilayers formed by immersion of the monolayer in an aqueous media exhibit nanomechanical properties and stability under compression analogous to those of DPPC:Chol supported bilayers obtained by other methods previously described in the literature. Consequently, the hydration of a monolayer LB film has been revealed as an easy method to produce well-ordered bilayers that mimic the cell membrane and that could be used as model cell membranes.
Collapse
Affiliation(s)
| | | | - Jesús M de la Fuente
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC , 50009 Zaragoza, Spain
- Networking Biomedical Research Center of Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza , 50009, Zaragoza, Spain
| |
Collapse
|
10
|
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2334-2352. [DOI: 10.1016/j.bbamem.2016.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
11
|
Casadó A, Giuffrida MC, Sagristá ML, Castelli F, Pujol M, Alsina MA, Mora M. Langmuir monolayers and Differential Scanning Calorimetry for the study of the interactions between camptothecin drugs and biomembrane models. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:422-33. [DOI: 10.1016/j.bbamem.2015.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
|
12
|
Heredia V, Maggio B, Beltramo DM, Dupuy FG. Interfacial stabilization of the antitumoral drug Paclitaxel in monolayers of GM1 and GD1a gangliosides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2163-71. [DOI: 10.1016/j.bbamem.2015.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/28/2022]
|
13
|
The antimicrobial peptide microcin J25 stabilizes the gel phase of bacterial model membranes. Colloids Surf B Biointerfaces 2015; 129:183-90. [DOI: 10.1016/j.colsurfb.2015.03.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/22/2023]
|
14
|
Reduced steric hindrance and optimized spatial arrangement of carbohydrate ligands in imprinted monolayers for enhanced protein binding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:792-800. [DOI: 10.1016/j.bbamem.2012.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/26/2012] [Accepted: 11/06/2012] [Indexed: 11/20/2022]
|
15
|
Interfacial behavior of chroman-6 and chroman-6 palmitoyl ester and their interaction with phospholipids. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2829-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Wang X, Huang X, Xin Y, Du X. Myoglobin-directed assemblies of binary monolayers functionalized with iminodiacetic acid ligands at the air-water interface through metal coordination for multivalent protein binding. Phys Chem Chem Phys 2012; 14:5470-8. [PMID: 22415292 DOI: 10.1039/c2cp40104e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Myoglobin binding to the binary monolayers composed of sodium hexadecylimino diacetate and hexadecanol at the air-water interface by means of metal coordination has been investigated using infrared reflection absorption spectroscopy (IRRAS). In the absence of Cu(2+), no myoglobin binding to the binary monolayers was observed. In the presence of Cu(2+), remarkable myoglobin binding to the binary monolayers resulted from the formation of ternary complexes of iminodiacetate (IDA)-Cu(2+)-surface histidine. Myoglobin-directed assemblies of the binary monolayers facilitated multivalent protein binding through lateral rearrangements of the IDA ligands and reorientations of the alkyl chains for enhanced protein binding. Myoglobin binding to and desorption from the binary monolayers could be readily controlled through metal coordination.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | | | | | | |
Collapse
|
17
|
Zhao P, Astruc D. Docetaxel nanotechnology in anticancer therapy. ChemMedChem 2012; 7:952-72. [PMID: 22517723 DOI: 10.1002/cmdc.201200052] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/16/2012] [Indexed: 01/05/2023]
Abstract
Taxanes have been recognized as a family of very efficient anticancer drugs, but the formulation in use for the two main taxanes-Taxol for paclitaxel and Taxotere for docetaxel-have shown dramatic side effects. Whereas several new formulations for paclitaxel have recently appeared, such as Abraxane and others currently in various phases of clinical trials, there is no new formulation in clinical trials for the other main taxane, docetaxel, except BIND-014, a polymeric nanoparticle, which recently entered phase I clinical testing. Therefore, we review herein the state of the art and recent abundance in published results of academic approaches toward nanotechnology-based drug-delivery systems containing nanocarriers and targeting agents for docetaxel formulations. These efforts will certainly enrich the spectrum of docetaxel treatments in the near future. Taxotere's systemic toxicity, low water solubility, and other side effects are significant problems that must be overcome. To avoid the limitations of docetaxel in clinical use, researchers have developed efficient drug-delivery assemblies that consist of a nanocarrier, a targeting agent, and the drug. A wide variety of such engineered nanosystems have been shown to transport and eventually vectorize docetaxel more efficiently than Taxotere in vitro, in vivo, and in pre-clinical administration. Recent progress in drug vectorization has involved a combined therapy and diagnostic ("theranostic") approach in a single drug-delivery vector and could significantly improve the efficiency of such an anticancer drug as well as other drug types.
Collapse
Affiliation(s)
- Pengxiang Zhao
- ISM, UMR CNRS No. 5255, Univ. Bordeaux, 33405 Talence Cedex, France
| | | |
Collapse
|
18
|
Pignatello R, Musumeci T, Basile L, Carbone C, Puglisi G. Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development. J Pharm Bioallied Sci 2011; 3:4-14. [PMID: 21430952 PMCID: PMC3053521 DOI: 10.4103/0975-7406.76461] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/18/2010] [Accepted: 12/11/2010] [Indexed: 12/19/2022] Open
Abstract
Contact with many different biological membranes goes along the destiny of a drug after its systemic administration. From the circulating macrophage cells to the vessel endothelium, to more complex absorption barriers, the interaction of a biomolecule with these membranes largely affects its rate and time of biodistribution in the body and at the target sites. Therefore, investigating the phenomena occurring on the cell membranes, as well as their different interaction with drugs in the physiological or pathological conditions, is important to exploit the molecular basis of many diseases and to identify new potential therapeutic strategies. Of course, the complexity of the structure and functions of biological and cell membranes, has pushed researchers toward the proposition and validation of simpler two- and three-dimensional membrane models, whose utility and drawbacks will be discussed. This review also describes the analytical methods used to look at the interactions among bioactive compounds with biological membrane models, with a particular accent on the calorimetric techniques. These studies can be considered as a powerful tool for medicinal chemistry and pharmaceutical technology, in the steps of designing new drugs and optimizing the activity and safety profile of compounds already used in the therapy.
Collapse
Affiliation(s)
- R Pignatello
- Department of Drug Sciences, University of Catania, viale A. Doria, 6 - 95125 Catania, Italy
| | | | | | | | | |
Collapse
|
19
|
Interactions of Meibomian gland secretion with polar lipids in Langmuir monolayers. Colloids Surf B Biointerfaces 2010; 78:317-27. [DOI: 10.1016/j.colsurfb.2010.03.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 03/06/2010] [Accepted: 03/22/2010] [Indexed: 01/08/2023]
|
20
|
Queneau Y, Dumoulin F, Cheaib R, Chambert S, Andraud C, Bretonnière Y, Blum LJ, Boullanger P, Girard-Egrot A. Two-dimensional supramolecular assemblies involving neoglycoplipids: Self-organization and insertion properties into Langmuir monolayers. Biochimie 2010; 93:101-12. [PMID: 20346388 DOI: 10.1016/j.biochi.2010.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 03/09/2010] [Indexed: 11/28/2022]
Abstract
In nature, interfacial molecular recognition and chirality are of fundamental significance for the construction of biological assemblies. Lipid monolayers at liquid interface can be used as biomimetic models for studying molecular interactions in such assemblies. In this article, we will focus on the use of Langmuir monolayers for studying self-organization and insertion properties of several neoglycolipids. Two types of glycolipids have been considered, one in the context of the analysis of glycoconjugates of biological relevance, and one dealing with the ability of some glycoprobes to insert into a monolayer in relation with their efficiency for serving as membrane imaging systems.
Collapse
Affiliation(s)
- Yves Queneau
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, université de Lyon, université Lyon 1, INSA-Lyon, CPE-Lyon, Bât. Curien, 43 Bd du 11 Novembre 1918, F 69622 Villeurbanne, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Weroński KJ, Cea P, Diez-Peréz I, Busquets MA, Prat J, Girona V. Time-Lapse Atomic Force Microscopy Observations of the Morphology, Growth Rate, and Spontaneous Alignment of Nanofibers Containing a Peptide-Amphiphile from the Hepatitis G Virus (NS3 Protein). J Phys Chem B 2009; 114:620-5. [DOI: 10.1021/jp9088436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Konrad J. Weroński
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXII s/n, 08028 Barcelona, Spain, Department of Organic and Physical Chemistry (Faculty of Science) and Institute of Nanoscience of Aragon (INA), University of Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain, and Laboratory of Electrochemistry and Materials (LCTEM), Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
| | - Pilar Cea
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXII s/n, 08028 Barcelona, Spain, Department of Organic and Physical Chemistry (Faculty of Science) and Institute of Nanoscience of Aragon (INA), University of Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain, and Laboratory of Electrochemistry and Materials (LCTEM), Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
| | - Ismael Diez-Peréz
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXII s/n, 08028 Barcelona, Spain, Department of Organic and Physical Chemistry (Faculty of Science) and Institute of Nanoscience of Aragon (INA), University of Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain, and Laboratory of Electrochemistry and Materials (LCTEM), Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
| | - Maria Antonia Busquets
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXII s/n, 08028 Barcelona, Spain, Department of Organic and Physical Chemistry (Faculty of Science) and Institute of Nanoscience of Aragon (INA), University of Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain, and Laboratory of Electrochemistry and Materials (LCTEM), Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
| | - Josefina Prat
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXII s/n, 08028 Barcelona, Spain, Department of Organic and Physical Chemistry (Faculty of Science) and Institute of Nanoscience of Aragon (INA), University of Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain, and Laboratory of Electrochemistry and Materials (LCTEM), Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
| | - Victoria Girona
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXII s/n, 08028 Barcelona, Spain, Department of Organic and Physical Chemistry (Faculty of Science) and Institute of Nanoscience of Aragon (INA), University of Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain, and Laboratory of Electrochemistry and Materials (LCTEM), Department of Physical Chemistry, Faculty of Chemistry, University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|