1
|
Champion C, Hünenberger PH, Riniker S. Multistate Method to Efficiently Account for Tautomerism and Protonation in Alchemical Free-Energy Calculations. J Chem Theory Comput 2024; 20:4350-4362. [PMID: 38742760 PMCID: PMC11137823 DOI: 10.1021/acs.jctc.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
The majority of drug-like molecules contain at least one ionizable group, and many common drug scaffolds are subject to tautomeric equilibria. Thus, these compounds are found in a mixture of protonation and/or tautomeric states at physiological pH. Intrinsically, standard classical molecular dynamics (MD) simulations cannot describe such equilibria between states, which negatively impacts the prediction of key molecular properties in silico. Following the formalism described by de Oliveira and co-workers (J. Chem. Theory Comput. 2019, 15, 424-435) to consider the influence of all states on the binding process based on alchemical free-energy calculations, we demonstrate in this work that the multistate method replica-exchange enveloping distribution sampling (RE-EDS) is well suited to describe molecules with multiple protonation and/or tautomeric states in a single simulation. We apply our methodology to a series of eight inhibitors of factor Xa with two protonation states and a series of eight inhibitors of glycogen synthase kinase 3β (GSK3β) with two tautomeric states. In particular, we show that given a sufficient phase-space overlap between the states, RE-EDS is computationally more efficient than standard pairwise free-energy methods.
Collapse
Affiliation(s)
- Candide Champion
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Philippe H. Hünenberger
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Yonetani Y. Unsolved problem of long-range interactions: dipolar spin-ice study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:175401. [PMID: 38270229 DOI: 10.1088/1361-648x/ad1ca6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Long-range interactions derive various strange phenomena. As illustrated by cutoff simulations of water, increasing cutoff length does not improve the simulation result necessarily; on the contrary, it makes the result worse. In the extreme situation, the structure of water transforms into a layer structure. In this study, to explore the underlying mechanism of this phenomenon, we performed Monte Carlo simulations on dipolar spins arranged on a pyrochlore spin-ice lattice. Like the water case, the present dipolar spin system also showed cutoff-induced dipole ordering and layer formation. The width of the layers depended on the cutoff length; and longer cutoff length led to a broader layer. These features are certainly consistent with the previous water case. This indicates that layer formation is the general behavior of dipolar systems whose interactions are truncated within a finite distance. The result is important for future exploration of the relationship between long-range interactions and resulting structures. In addition, it emphasizes the necessity of rigorous treatment of long-range interactions because increasing the cutoff length prevents convergence and provides an entirely different result from the rigorous Ewald calculation.
Collapse
Affiliation(s)
- Yoshiteru Yonetani
- Kansai Institute for Photon Science and Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| |
Collapse
|
3
|
Fukuda I, Moritsugu K, Higo J, Fukunishi Y. A cutoff-based method with charge-distribution-data driven pair potentials for efficiently estimating electrostatic interactions in molecular systems. J Chem Phys 2023; 159:234116. [PMID: 38112509 DOI: 10.1063/5.0172270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
We introduce a simple cutoff-based method for precise electrostatic energy calculations in the molecular dynamics (MD) simulations of point-particle systems. Our method employs a theoretically derived smooth pair potential function to define electrostatic energy, offering stability and computational efficiency in MD simulations. Instead of imposing specific physical conditions, such as dielectric environments or charge neutrality, we focus on the relationship represented by a single summation formula of charge-weighted pair potentials. This approach allows an accurate energy approximation for each particle, enabling a straightforward error analysis. The resulting particle-dependent pair potential captures the charge distribution information, making it suitable for heterogeneous systems and ensuring an enhanced accuracy through distant information inclusion. Numerical investigations of the Madelung constants of crystalline systems validate the method's accuracy.
Collapse
Affiliation(s)
- Ikuo Fukuda
- Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8231, Japan
- Japan Biological Informatics Consortium, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan
| | - Kei Moritsugu
- Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8231, Japan
| | - Junichi Higo
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo650-0047, Japan
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Yoshifumi Fukunishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
4
|
Gao Y, Wang B, Hu S, Zhu T, Zhang JZH. An efficient method to predict protein thermostability in alanine mutation. Phys Chem Chem Phys 2022; 24:29629-29639. [PMID: 36449314 DOI: 10.1039/d2cp04236c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relationship between protein sequence and its thermodynamic stability is a critical aspect of computational protein design. In this work, we present a new theoretical method to calculate the free energy change (ΔΔG) resulting from a single-point amino acid mutation to alanine in a protein sequence. The method is derived based on physical interactions and is very efficient in estimating the free energy changes caused by a series of alanine mutations from just a single molecular dynamics (MD) trajectory. Numerical calculations are carried out on a total of 547 alanine mutations in 19 diverse proteins whose experimental results are available. The comparison between the experimental ΔΔGexp and the calculated values shows a generally good correlation with a correlation coefficient of 0.67. Both the advantages and limitations of this method are discussed. This method provides an efficient and valuable tool for protein design and engineering.
Collapse
Affiliation(s)
- Ya Gao
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Bo Wang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Shiyu Hu
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Shenzhen Institute of Synthetic Biology, Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
5
|
Oliveira MP, Gonçalves YMH, Ol Gheta SK, Rieder SR, Horta BAC, Hünenberger PH. Comparison of the United- and All-Atom Representations of (Halo)alkanes Based on Two Condensed-Phase Force Fields Optimized against the Same Experimental Data Set. J Chem Theory Comput 2022; 18:6757-6778. [PMID: 36190354 DOI: 10.1021/acs.jctc.2c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The level of accuracy that can be achieved by a force field is influenced by choices made in the interaction-function representation and in the relevant simulation parameters. These choices, referred to here as functional-form variants (FFVs), include for example the model resolution, the charge-derivation procedure, the van der Waals combination rules, the cutoff distance, and the treatment of the long-range interactions. Ideally, assessing the effect of a given FFV on the intrinsic accuracy of the force-field representation requires that only the specific FFV is changed and that this change is performed at an optimal level of parametrization, a requirement that may prove extremely challenging to achieve in practice. Here, we present a first attempt at such a comparison for one specific FFV, namely the choice of a united-atom (UA) versus an all-atom (AA) resolution in a force field for saturated acyclic (halo)alkanes. Two force-field versions (UA vs AA) are optimized in an automated way using the CombiFF approach against 961 experimental values for the pure-liquid densities ρliq and vaporization enthalpies ΔHvap of 591 compounds. For the AA force field, the torsional and third-neighbor Lennard-Jones parameters are also refined based on quantum-mechanical rotational-energy profiles. The comparison between the UA and AA resolutions is also extended to properties that have not been included as parameterization targets, namely the surface-tension coefficient γ, the isothermal compressibility κT, the isobaric thermal-expansion coefficient αP, the isobaric heat capacity cP, the static relative dielectric permittivity ϵ, the self-diffusion coefficient D, the shear viscosity η, the hydration free energy ΔGwat, and the free energy of solvation ΔGche in cyclohexane. For the target properties ρliq and ΔHvap, the UA and AA resolutions reach very similar levels of accuracy after optimization. For the nine other properties, the AA representation leads to more accurate results in terms of η; comparably accurate results in terms of γ, κT, αP, ϵ, D, and ΔGche; and less accurate results in terms of cP and ΔGwat. This work also represents a first step toward the calibration of a GROMOS-compatible force field at the AA resolution.
Collapse
Affiliation(s)
- Marina P Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Yan M H Gonçalves
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - S Kashef Ol Gheta
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Salomé R Rieder
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Bruno A C Horta
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| |
Collapse
|
6
|
George A, Mondal S, Purnaprajna M, Athri P. Review of Electrostatic Force Calculation Methods and Their Acceleration in Molecular Dynamics Packages Using Graphics Processors. ACS OMEGA 2022; 7:32877-32896. [PMID: 36157750 PMCID: PMC9494432 DOI: 10.1021/acsomega.2c03189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Molecular dynamics (MD) simulations probe the conformational repertoire of macromolecular systems using Newtonian dynamic equations. The time scales of MD simulations allow the exploration of biologically relevant phenomena and can elucidate spatial and temporal properties of the building blocks of life, such as deoxyribonucleic acid (DNA) and protein, across microsecond (μs) time scales using femtosecond (fs) time steps. A principal bottleneck toward extending MD calculations to larger time scales is the long-range electrostatic force measuring component of the naive nonbonded force computation algorithm, which scales with a complexity of (N, number of atoms). In this review, we present various methods to determine electrostatic interactions in often-used open-source MD packages as well as the implementation details that facilitate acceleration of the electrostatic interaction calculation.
Collapse
Affiliation(s)
- Anu George
- Department
of Computer Science and Engineering, Amrita
School of Engineering, Bengaluru 560035, Amrita Vishwa Vidyapeetham, India
| | | | - Madhura Purnaprajna
- Department
of Computer Science and Engineering, PES
University, Bengaluru 560085, India
| | - Prashanth Athri
- Department
of Computer Science and Engineering, Amrita
School of Engineering, Bengaluru 560035, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
7
|
Rieder SR, Ries BJ, Kubincová A, Champion C, Barros EP, Hünenberger PH, Riniker S. Leveraging the Sampling Efficiency of RE-EDS in OpenMM Using a Shifted Reaction-Field With an Atom-Based Cutoff. J Chem Phys 2022; 157:104117. [DOI: 10.1063/5.0107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Replica-exchange enveloping distribution sampling (RE-EDS) is a pathway-independent multistate free-energy method, currently implemented in the GROMOS software package for molecular dynamics (MD) simulations. It has a high intrinsic sampling efficiency as the interactions between the unperturbed particles have to be calculated only once for multiple end-states. As a result, RE-EDS is an attractive method for the calculation of relative solvation and binding free energies. An essential requirement for reaching this high efficiency is the separability of the nonbonded interactions into solute-solute, solute-environment, and environment-environment contributions. Such a partitioning is trivial when using a Coulomb term with a reaction-field (RF) correction to model the electrostatic interactions, but not when using lattice- sum schemes. To avoid cutoff artifacts, the RF correction is typically used in combination with a charge-group based cutoff, which is not supported by most small-molecule force fields and other MD engines. To address this issue, we investigate the combination of RE-EDS simulations with a recently introduced RF scheme including a shifting function that enables the rigorous calculation of RF electrostatics with atom-based cutoffs. The resulting approach is validated by calculating solvation free energies with the generalized AMBER force field (GAFF) in water and chloroform using both the GROMOS software package and a proof-of-concept implementation in OpenMM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zurich D-CHAB, Switzerland
| |
Collapse
|
8
|
Hajibabaei A, Ha M, Pourasad S, Kim J, Kim KS. Machine Learning of First-Principles Force-Fields for Alkane and Polyene Hydrocarbons. J Phys Chem A 2021; 125:9414-9420. [PMID: 34657427 DOI: 10.1021/acs.jpca.1c05819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Machine learning (ML) interatomic potentials (ML-IAPs) are generated for alkane and polyene hydrocarbons using on-the-fly adaptive sampling and a sparse Gaussian process regression (SGPR) algorithm. The ML model is generated based on the PBE+D3 level of density functional theory (DFT) with molecular dynamics (MD) for small alkane and polyene molecules. Intermolecular interactions are also trained with clusters and condensed phases of small molecules. It shows excellent transferability to long alkanes and closely describes the ab inito potential energy surface for polyenes. Simulation of liquid ethane also shows reasonable agreement with experimental reports. This is a promising initiative toward a universal ab initio quality force-field for hydrocarbons and organic molecules.
Collapse
Affiliation(s)
- Amir Hajibabaei
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Korea
| | - Miran Ha
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Korea
| | - Saeed Pourasad
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Korea
| | - Junu Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Korea
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Korea
| |
Collapse
|
9
|
Barone V, Puzzarini C, Mancini G. Integration of theory, simulation, artificial intelligence and virtual reality: a four-pillar approach for reconciling accuracy and interpretability in computational spectroscopy. Phys Chem Chem Phys 2021; 23:17079-17096. [PMID: 34346437 DOI: 10.1039/d1cp02507d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The established pillars of computational spectroscopy are theory and computer based simulations. Recently, artificial intelligence and virtual reality are becoming the third and fourth pillars of an integrated strategy for the investigation of complex phenomena. The main goal of the present contribution is the description of some new perspectives for computational spectroscopy, in the framework of a strategy in which computational methodologies at the state of the art, high-performance computing, artificial intelligence and virtual reality tools are integrated with the aim of improving research throughput and achieving goals otherwise not possible. Some of the key tools (e.g., continuous molecular perception model and virtual multifrequency spectrometer) and theoretical developments (e.g., non-periodic boundaries, joint variational-perturbative models) are shortly sketched and their application illustrated by means of representative case studies taken from recent work by the authors. Some of the results presented are already well beyond the state of the art in the field of computational spectroscopy, thereby also providing a proof of concept for other research fields.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | | | | |
Collapse
|
10
|
Ge Y, Hahn DF, Mobley DL. A Benchmark of Electrostatic Method Performance in Relative Binding Free Energy Calculations. J Chem Inf Model 2021; 61:1048-1052. [PMID: 33686853 DOI: 10.1021/acs.jcim.0c01424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Relative free energy calculations are fast becoming a critical part of early stage pharmaceutical design, making it important to know how to obtain the best performance with these calculations in applications that could span hundreds of calculations and molecules. In this work, we compared two different treatments of long-range electrostatics, Particle Mesh Ewald (PME) and Reaction Field (RF), in relative binding free energy calculations using a nonequilibrium switching protocol. We found simulations using RF achieve comparable results to those using PME but gain more efficiency when using CPU and similar performance using GPU. The results from this work encourage more use of RF in molecular simulations.
Collapse
Affiliation(s)
- Yunhui Ge
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - David F Hahn
- Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
11
|
Yonetani Y. Dielectric continuum model examination of real-space electrostatic treatments. J Chem Phys 2021; 154:044103. [PMID: 33514106 DOI: 10.1063/5.0033053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electrostatic interaction is long ranged; thus, the accurate calculation is not an easy task in molecular dynamics or Monte Carlo simulations. Though the rigorous Ewald method based on the reciprocal space has been established, real-space treatments have recently become an attractive alternative because of the efficient calculation. However, the construction is not yet completed and is now a challenging subject. In an earlier theoretical study, Neumann and Steinhauser employed the Onsager dielectric continuum model to explain how simple real-space cutoff produces artificial dipolar orientation. In the present study, we employ this continuum model to explore the fundamental properties of the recently developed real-space treatments of three shifting schemes. The result of the distance-dependent Kirkwood function GK(R) showed that the simple bare cutoff produces a well-known hole-shaped artifact, whereas the shift treatments do not. Two-dimensional mapping of electric field well explained how these shift treatments remove the hole-shaped artifact. Still, the shift treatments are not sufficient because they do not produce a flat GK(R) profile unlike ideal no-cutoff treatment. To test the continuum model results, we also performed Monte Carlo simulations of dipolar particles. The results found that the continuum model could predict the qualitative tendency as to whether each electrostatic treatment produces the hole-shaped artifact of GK(R) or not. We expect that the present study using the continuum model offers a stringent criterion to judge whether the primitive electrostatic behavior is correctly described or not, which will be useful for future construction of electrostatic treatments.
Collapse
Affiliation(s)
- Yoshiteru Yonetani
- Quantum Beam Science Research Directorate and Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| |
Collapse
|
12
|
van Gunsteren WF, Daura X, Fuchs PFJ, Hansen N, Horta BAC, Hünenberger PH, Mark AE, Pechlaner M, Riniker S, Oostenbrink C. On the Effect of the Various Assumptions and Approximations used in Molecular Simulations on the Properties of Bio-Molecular Systems: Overview and Perspective on Issues. Chemphyschem 2020; 22:264-282. [PMID: 33377305 DOI: 10.1002/cphc.202000968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Computer simulations of molecular systems enable structure-energy-function relationships of molecular processes to be described at the sub-atomic, atomic, supra-atomic or supra-molecular level and plays an increasingly important role in chemistry, biology and physics. To interpret the results of such simulations appropriately, the degree of uncertainty and potential errors affecting the calculated properties must be considered. Uncertainty and errors arise from (1) assumptions underlying the molecular model, force field and simulation algorithms, (2) approximations implicit in the interatomic interaction function (force field), or when integrating the equations of motion, (3) the chosen values of the parameters that determine the accuracy of the approximations used, and (4) the nature of the system and the property of interest. In this overview, advantages and shortcomings of assumptions and approximations commonly used when simulating bio-molecular systems are considered. What the developers of bio-molecular force fields and simulation software can do to facilitate and broaden research involving bio-molecular simulations is also discussed.
Collapse
Affiliation(s)
- Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autonoma de Barcelona (UAB), 08193, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Patrick F J Fuchs
- Sorbonne Université, Ecole Normale Supérieure, PSL Research University, CNRS, Laboratoire des Biomolécules (LBM), F-75005, Paris, France.,Université de Paris, UFR Sciences du Vivant, F-75013, Paris, France
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Bruno A C Horta
- Instituto de Química, Universidade Federal de Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Maria Pechlaner
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093, Zurich, Switzerland
| | - Chris Oostenbrink
- Institute of Molecular Modelling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
13
|
Oliveira MP, Andrey M, Rieder SR, Kern L, Hahn DF, Riniker S, Horta BAC, Hünenberger PH. Systematic Optimization of a Fragment-Based Force Field against Experimental Pure-Liquid Properties Considering Large Compound Families: Application to Saturated Haloalkanes. J Chem Theory Comput 2020; 16:7525-7555. [DOI: 10.1021/acs.jctc.0c00683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marina P. Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Maurice Andrey
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Salomé R. Rieder
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Leyla Kern
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - David F. Hahn
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Bruno A. C. Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Philippe H. Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Honggerberg, HCI, CH-8093 Zürich, Switzerland
| |
Collapse
|
14
|
Kashefolgheta S, Oliveira MP, Rieder SR, Horta BAC, Acree WE, Hünenberger PH. Evaluating Classical Force Fields against Experimental Cross-Solvation Free Energies. J Chem Theory Comput 2020; 16:7556-7580. [DOI: 10.1021/acs.jctc.0c00688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sadra Kashefolgheta
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Marina P. Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Salomé R. Rieder
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Bruno A. C. Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - William E. Acree
- Department of Chemistry, University of North Texas, 1155 Union Circle Drive #305070, Denton, Texas 76203, United States
| | - Philippe H. Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| |
Collapse
|
15
|
Mancini G, Del Galdo S, Chandramouli B, Pagliai M, Barone V. Computational Spectroscopy in Solution by Integration of Variational and Perturbative Approaches on Top of Clusterized Molecular Dynamics. J Chem Theory Comput 2020; 16:5747-5761. [PMID: 32697580 PMCID: PMC8009517 DOI: 10.1021/acs.jctc.0c00454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Multiscale QM/MM approaches have
become the most suitable and effective
methods for the investigation of spectroscopic properties of medium-
or large-size chromophores in condensed phases. On these grounds,
we are developing a novel workflow aimed at improving the generality,
reliability, and ease of use of the available tools. In the present
paper, we report the latest developments of such an approach with
specific reference to a general workplan starting with the addition
of acetonitrile to the panel of solvents already available in the
General Liquid Optimized Boundary (GLOB) model enforcing nonperiodic
boundary conditions (NPBC). Next, the solvatochromic shifts induced
by acetonitrile on both rigid (uracil and thymine) and flexible (thyrosine)
chromophores have been studied introducing in our software a number
of new features ranging from rigid-geometry NPBC molecular dynamics
based on the quaternion formalism to a full integration of variational
(ONIOM) and perturbative (perturbed matrix method (PMM)) approaches
for describing different solute–solvent topologies and local
fluctuations, respectively. Finally, thymine and uracil have been
studied also in methanol to point out the generality of the computational
strategy. While further developments are surely needed, the strengths
of our integrated approach even in its present version are demonstrated
by the accuracy of the results obtained by an unsupervised approach
and coupled to a computational cost strongly reduced with respect
to that of conventional QM/MM models without any appreciable accuracy
deterioration.
Collapse
Affiliation(s)
- Giordano Mancini
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Sara Del Galdo
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | | | - Marco Pagliai
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| |
Collapse
|
16
|
Kubincová A, Riniker S, Hünenberger PH. Reaction-field electrostatics in molecular dynamics simulations: development of a conservative scheme compatible with an atomic cutoff. Phys Chem Chem Phys 2020; 22:26419-26437. [DOI: 10.1039/d0cp03835k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Shifting and switching schemes are developed to enable strict energy conservation in molecular dynamics simulations relying on reaction-field electrostatic (as well as Lennard-Jones) interactions with an atom-based cutoff truncation.
Collapse
Affiliation(s)
| | - Sereina Riniker
- Laboratory of Physical Chemistry
- ETH Zurich
- 8093 Zurich
- Switzerland
| | | |
Collapse
|
17
|
Yu Y, Mills LC, Englert DL, Payne CM. Inhibition Mechanisms of Rhodococcus Erythropolis 2′-Hydroxybiphenyl-2-sulfinate Desulfinase (DszB). J Phys Chem B 2019; 123:9054-9065. [DOI: 10.1021/acs.jpcb.9b05252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yue Yu
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States
| | - Landon C. Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States
| | - Derek L. Englert
- Department of Chemical and Materials Engineering, University of Kentucky, Paducah, Kentucky, United States
| | - Christina M. Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
18
|
Kasahara K, Terazawa H, Takahashi T, Higo J. Studies on Molecular Dynamics of Intrinsically Disordered Proteins and Their Fuzzy Complexes: A Mini-Review. Comput Struct Biotechnol J 2019; 17:712-720. [PMID: 31303975 PMCID: PMC6603302 DOI: 10.1016/j.csbj.2019.06.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/29/2019] [Accepted: 06/11/2019] [Indexed: 11/19/2022] Open
Abstract
The molecular dynamics (MD) method is a promising approach toward elucidating the molecular mechanisms of intrinsically disordered regions (IDRs) of proteins and their fuzzy complexes. This mini-review introduces recent studies that apply MD simulations to investigate the molecular recognition of IDRs. Firstly, methodological issues by which MD simulations treat IDRs, such as developing force fields, treating periodic boundary conditions, and enhanced sampling approaches, are discussed. Then, several examples of the applications of MD to investigate molecular interactions of IDRs in terms of the two kinds of complex formations; coupled-folding and binding and fuzzy complex. MD simulations provide insight into the molecular mechanisms of these binding processes by sampling conformational ensembles of flexible IDRs. In particular, we focused on all-atom explicit-solvent MD simulations except for studies of higher-order assembly of IDRs. Recent advances in MD methods, and computational power make it possible to dissect the molecular details of realistic molecular systems involving the dynamic behavior of IDRs.
Collapse
Affiliation(s)
- Kota Kasahara
- College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
- Corresponding author.
| | - Hiroki Terazawa
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Takuya Takahashi
- College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Junichi Higo
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
19
|
Gonçalves YMH, Senac C, Fuchs PFJ, Hünenberger PH, Horta BAC. Influence of the Treatment of Nonbonded Interactions on the Thermodynamic and Transport Properties of Pure Liquids Calculated Using the 2016H66 Force Field. J Chem Theory Comput 2019; 15:1806-1826. [DOI: 10.1021/acs.jctc.8b00425] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yan M. H. Gonçalves
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Caroline Senac
- Sorbonne
Université,
CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), F-75006 Paris, France
| | - Patrick F. J. Fuchs
- Sorbonne Université,
École normale supérieure, PSL University, CNRS, Laboratoire
des biomolécules, LBM, 75005 Paris, France
- Université
Paris Diderot, 75013 Paris, France
| | | | - Bruno A. C. Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
20
|
Takahashi KZ, Nozawa T, Yasuoka K. A fast and accurate computational method for the linear-combination-based isotropic periodic sum. Sci Rep 2018; 8:11880. [PMID: 30089878 PMCID: PMC6082916 DOI: 10.1038/s41598-018-30364-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
An isotropic periodic sum (IPS) is a powerful technique to reasonably calculate intermolecular interactions for wide range of molecular systems under periodic boundary conditions. A linear-combination-based IPS (LIPS) has been developed to attain computational accuracy close to an exact lattice sum, such as the Ewald sum. The algorithm of the original LIPS method has a high computational cost because it needs long-range interaction calculations in real space. This becomes a performance bottleneck for long-time molecular simulations. In this work, the combination of an LIPS and fast Fourier transform (FFT) was developed, and evaluated on homogeneous and heterogeneous molecular systems. This combinational approach of LIPS/FFT attained computational efficiency close to that of a smooth particle mesh Ewald while maintaining the same high accuracy as the original LIPS. We concluded that LIPS/FFT has great potential to extend the capability of IPS techniques for the fast and accurate computation of many types of molecular systems.
Collapse
Affiliation(s)
- Kazuaki Z Takahashi
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.
| | - Takuma Nozawa
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
21
|
Iwai R, Kasahara K, Takahashi T. Influence of various parameters in the replica-exchange molecular dynamics method: Number of replicas, replica-exchange frequency, and thermostat coupling time constant. Biophys Physicobiol 2018; 15:165-172. [PMID: 30250775 PMCID: PMC6145944 DOI: 10.2142/biophysico.15.0_165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022] Open
Abstract
The replica-exchange molecular dynamics (REMD) method has been used for conformational sampling of various biomolecular systems. To maximize sampling efficiency, some adjustable parameters must be optimized. Although it is agreed that shorter intervals between the replica-exchange attempts enhance traversals in the temperature space, details regarding the artifacts caused by these short intervals are controversial. In this study, we revisit this problem by performing REMD simulations on an alanine octapeptide in an implicit solvent. Fifty different sets of conditions, which are a combination of five replica-exchange periods, five different numbers of replicas, and two thermostat coupling time constants, were investigated. As a result, although short replica-exchange intervals enhanced the traversals in the temperature space, they led to artifacts in the ensemble average of the temperature, potential energy, and helix content. With extremely short replica-exchange intervals, i.e., attempted at every time step, the ensemble average of the temperature deviated from the thermostat temperature by ca. 7 K. Differences in the ensembles were observed even for larger replica-exchange intervals (between 100 and 1,000 steps). In addition, the shorter thermostat coupling time constant reduced the artifacts found when short replica-exchange intervals were used, implying that these artifacts are caused by insufficient thermal relaxation between the replica-exchange events. Our results will be useful to reduce the artifacts found in REMD simulations by adjusting some key parameters.
Collapse
Affiliation(s)
- Ryosuke Iwai
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takuya Takahashi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
22
|
Ogasawara N, Kasahara K, Iwai R, Takahashi T. Unfolding of α-helical 20-residue poly-glutamic acid analyzed by multiple runs of canonical molecular dynamics simulations. PeerJ 2018; 6:e4769. [PMID: 29780670 PMCID: PMC5958886 DOI: 10.7717/peerj.4769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/24/2018] [Indexed: 11/20/2022] Open
Abstract
Elucidating the molecular mechanism of helix-coil transitions of short peptides is a long-standing conundrum in physical chemistry. Although the helix-coil transitions of poly-glutamic acid (PGA) have been extensively studied, the molecular details of its unfolding process still remain unclear. We performed all-atom canonical molecular dynamics simulations for a 20-residue PGA, over a total of 19 μs, in order to investigate its helix-unfolding processes in atomic resolution. Among the 28 simulations, starting with the α-helical conformation, all showed an unfolding process triggered by the unwinding of terminal residues, rather than by kinking and unwinding of the middle region of the chain. The helix-coil-helix conformation which is speculated by the previous experiments was not observed. Upon comparison between the N- and C-termini, the latter tended to be unstable and easily unfolded. While the probabilities of helix elongation were almost the same among the N-terminal, middle, and C-terminal regions of the chain, unwinding of the helix was enriched at the C-terminal region. The turn and 310-helix conformations were kinetic intermediates in the formation and deformation of α-helix, consistent with the previous computational studies for Ala-based peptides.
Collapse
Affiliation(s)
- Naoki Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryosuke Iwai
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takuya Takahashi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
23
|
Kasahara K, Sakuraba S, Fukuda I. Enhanced Sampling of Molecular Dynamics Simulations of a Polyalanine Octapeptide: Effects of the Periodic Boundary Conditions on Peptide Conformation. J Phys Chem B 2018; 122:2495-2503. [PMID: 29439570 DOI: 10.1021/acs.jpcb.7b10830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigate the problem of artifacts caused by the periodic boundary conditions (PBC) used in molecular simulation studies. Despite the long history of simulations with PBCs, the existence of measurable artifacts originating from PBCs applied to inherently nonperiodic physical systems remains controversial. Specifically, these artifacts appear as differences between simulations of the same system but with different simulation-cell sizes. Earlier studies have implied that, even in the simple case of a small model peptide in water, sampling inefficiency is a major obstacle to understanding these artifacts. In this study, we have resolved the sampling issue using the replica exchange molecular dynamics (REMD) enhanced-sampling method to explore PBC artifacts. Explicitly solvated zwitterionic polyalanine octapeptides with three different cubic-cells, having dimensions of L = 30, 40, and 50 Å, were investigated to elucidate the differences with 64 replica × 500 ns REMD simulations using the AMBER parm99SB force field. The differences among them were not large overall, and the results for the L = 30 and 40 Å simulations in the conformational free energy landscape were found to be very similar at room temperature. However, a small but statistically significant difference was seen for L = 50 Å. We observed that extended conformations were slightly overstabilized in the smaller systems. The origin of these artifacts is discussed by comparison to an electrostatic calculation method without PBCs.
Collapse
Affiliation(s)
- Kota Kasahara
- College of Life Sciences , Ritsumeikan University , 1-1-1 Noji-higashi , Kusatsu , Shiga 525-8577 , Japan
| | - Shun Sakuraba
- Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa , Chiba 277-8561 , Japan
| | - Ikuo Fukuda
- Institute for Protein Research , Osaka University , 3-2 Yamada-oka , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
24
|
Takahashi KZ. Combined use of periodic reaction field and coarse-grained molecular dynamics simulations. I. phospholipid monolayer systems. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2016.1271948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kazuaki Z. Takahashi
- Multi-scale Soft-matter Simulation Team, Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
25
|
Steinbrecher T, Zhu C, Wang L, Abel R, Negron C, Pearlman D, Feyfant E, Duan J, Sherman W. Predicting the Effect of Amino Acid Single-Point Mutations on Protein Stability—Large-Scale Validation of MD-Based Relative Free Energy Calculations. J Mol Biol 2017; 429:948-963. [DOI: 10.1016/j.jmb.2016.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022]
|
26
|
Horta BAC, Merz PT, Fuchs PFJ, Dolenc J, Riniker S, Hünenberger PH. A GROMOS-Compatible Force Field for Small Organic Molecules in the Condensed Phase: The 2016H66 Parameter Set. J Chem Theory Comput 2016; 12:3825-50. [DOI: 10.1021/acs.jctc.6b00187] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno A. C. Horta
- Laboratory
of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Pascal T. Merz
- Laboratory
of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Patrick F. J. Fuchs
- Institut Jacques Monod, UMR 7592 CNRS, Université Paris-Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jozica Dolenc
- Laboratory
of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
- Chemistry,
Biology and Pharmacy Information Center, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory
of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
27
|
Reif MM, Hünenberger PH. Origin of Asymmetric Solvation Effects for Ions in Water and Organic Solvents Investigated Using Molecular Dynamics Simulations: The Swain Acity-Basity Scale Revisited. J Phys Chem B 2016; 120:8485-517. [PMID: 27173101 DOI: 10.1021/acs.jpcb.6b02156] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The asymmetric solvation of ions can be defined as the tendency of a solvent to preferentially solvate anions over cations or cations over anions, at identical ionic charge magnitudes and effective sizes. Taking water as a reference, these effects are quantified experimentally for many solvents by the relative acity (A) and basity (B) parameters of the Swain scale. The goal of the present study is to investigate the asymmetric solvation of ions using molecular dynamics simulations, and to connect the results to this empirical scale. To this purpose, the charging free energies of alkali and halide ions, and of their hypothetical oppositely charged counterparts, are calculated in a variety of solvents. In a first set of calculations, artificial solvent models are considered that present either a charge or a shape asymmetry at the molecular level. The solvation asymmetry, probed by the difference in charging free energy between the two oppositely charged ions, is found to encompass a term quadratic in the ion charge, related to the different solvation structures around the anion and cation, and a term linear in the ion charge, related to the solvation structure around the uncharged ion-sized cavity. For these simple solvent models, the two terms are systematically counteracting each other, and it is argued that only the quadratic term should be retained when comparing the results of simulations involving physical solvents to experimental data. In a second set of calculations, 16 physical solvents are considered. The theoretical estimates for the acity A are found to correlate very well with the Swain parameters, whereas the correlation for B is very poor. Based on this observation, the Swain scale is reformulated into a new scale involving an asymmetry parameter Σ, positive for acitic solvents and negative for basitic ones, and a polarity parameter Π. This revised scale has the same predictive power as the original scale, but it characterizes asymmetry in an absolute sense, the atomistic simulations playing the role of an extra-thermodynamic assumption, and is optimally compatible with the simulation results. Considering the 55 solvents in the Swain set, it is observed that a moderate basity (Σ between -0.9 and -0.3, related to electronic polarization) represents the baseline for most solvents, while a highly variable acity (Σ between 0.0 and 3.0, related to hydrogen-bond donor capacity modulated by inductive effects) represents a landmark of protic solvents.
Collapse
Affiliation(s)
- Maria M Reif
- Physics Department (T38), Technische Universität München , D-85748 Garching, Germany
| | | |
Collapse
|
28
|
The good, the bad and the user in soft matter simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2529-2538. [PMID: 26862882 DOI: 10.1016/j.bbamem.2016.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/21/2022]
Abstract
Molecular dynamics (MD) simulations have become popular in materials science, biochemistry, biophysics and several other fields. Improvements in computational resources, in quality of force field parameters and algorithms have yielded significant improvements in performance and reliability. On the other hand, no method of research is error free. In this review, we discuss a few examples of errors and artifacts due to various sources and discuss how to avoid them. Besides bringing attention to artifacts and proper practices in simulations, we also aim to provide the reader with a starting point to explore these issues further. In particular, we hope that the discussion encourages researchers to check software, parameters, protocols and, most importantly, their own practices in order to minimize the possibility of errors. The focus here is on practical issues. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
|
29
|
Nozawa T, Takahashi KZ, Narumi T, Yasuoka K. Comparison of the accuracy of periodic reaction field methods in molecular dynamics simulations of a model liquid crystal system. J Comput Chem 2015; 36:2406-11. [PMID: 26525311 DOI: 10.1002/jcc.24222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/22/2015] [Accepted: 09/07/2015] [Indexed: 11/09/2022]
Abstract
A periodic reaction field (PRF) method is a technique to estimate long-range interactions. The method has the potential to effectively reduce the computational cost while maintaining adequate accuracy. We performed molecular dynamics (MD) simulations of a model liquid-crystal system to assess the accuracy of some variations of the PRF method in low-charge-density systems. All the methods had adequate accuracy compared with the results of the particle mesh Ewald (PME) method, except for a few simulation conditions. Furthermore, in all of the simulation conditions, one of the PRF methods had the same accuracy as the PME method.
Collapse
Affiliation(s)
- Takuma Nozawa
- Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan
| | - Kazuaki Z Takahashi
- Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan.,Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8568, Japan
| | - Tetsu Narumi
- Department of Computer Science, University of Electro-Communications, Tokyo, 182-8585, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan
| |
Collapse
|
30
|
Laner M, Hünenberger PH. Phase-transition properties of glycerol–dipalmitate lipid bilayers investigated using molecular dynamics simulation. J Mol Graph Model 2015; 59:136-47. [DOI: 10.1016/j.jmgm.2015.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/29/2022]
|
31
|
Effect of methanol on the phase-transition properties of glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulations: In quest of the biphasic effect. J Mol Graph Model 2015; 55:85-104. [DOI: 10.1016/j.jmgm.2014.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022]
|
32
|
Nozawa T, Takahashi KZ, Kameoka S, Narumi T, Yasuoka K. Application of isotropic periodic sum method for 4-pentyl-4′-cyanobiphenyl liquid crystal. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2014.998210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Reif MM, Oostenbrink C. Toward the correction of effective electrostatic forces in explicit-solvent molecular dynamics simulations: restraints on solvent-generated electrostatic potential and solvent polarization. Theor Chem Acc 2015; 134:2. [PMID: 26097404 PMCID: PMC4470580 DOI: 10.1007/s00214-014-1600-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/19/2014] [Indexed: 11/26/2022]
Abstract
Despite considerable advances in computing power, atomistic simulations under nonperiodic boundary conditions, with Coulombic electrostatic interactions and in systems large enough to reduce finite-size associated errors in thermodynamic quantities to within the thermal energy, are still not affordable. As a result, periodic boundary conditions, systems of microscopic size and effective electrostatic interaction functions are frequently resorted to. Ensuing artifacts in thermodynamic quantities are nowadays routinely corrected a posteriori, but the underlying configurational sampling still descends from spurious forces. The present study addresses this problem through the introduction of on-the-fly corrections to the physical forces during an atomistic molecular dynamics simulation. Two different approaches are suggested, where the force corrections are derived from special potential energy terms. In the first approach, the solvent-generated electrostatic potential sampled at a given atom site is restrained to a target value involving corrections for electrostatic artifacts. In the second approach, the long-range regime of the solvent polarization around a given atom site is restrained to the Born polarization, i.e., the solvent polarization corresponding to the ideal situation of a macroscopic system under nonperiodic boundary conditions and governed by Coulombic electrostatic interactions. The restraints are applied to the explicit-water simulation of a hydrated sodium ion, and the effect of the restraints on the structural and energetic properties of the solvent is illustrated. Furthermore, by means of the calculation of the charging free energy of a hydrated sodium ion, it is shown how the electrostatic potential restraint translates into the on-the-fly consideration of the corresponding free-energy correction terms. It is discussed how the restraints can be generalized to situations involving several solute particles. Although the present study considers a very simple system only, it is an important step toward the on-the-fly elimination of finite-size and approximate-electrostatic artifacts during atomistic molecular dynamics simulations.
Collapse
Affiliation(s)
- Maria M. Reif
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
34
|
Laner M, Horta BAC, Hünenberger PH. Long-timescale motions in glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulation. J Mol Graph Model 2014; 55:48-64. [PMID: 25437095 DOI: 10.1016/j.jmgm.2014.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
Abstract
The occurrence of long-timescale motions in glycerol-1-monopalmitate (GMP) lipid bilayers is investigated based on previously reported 600 ns molecular dynamics simulations of a 2×8×8 GMP bilayer patch in the temperature range 302-338 K, performed at three different hydration levels, or in the presence of the cosolutes methanol or trehalose at three different concentrations. The types of long-timescale motions considered are: (i) the possible phase transitions; (ii) the precession of the relative collective tilt-angle of the two leaflets in the gel phase; (iii) the trans-gauche isomerization of the dihedral angles within the lipid aliphatic tails; and (iv) the flipping of single lipids across the two leaflets. The results provide a picture of GMP bilayers involving a rich spectrum of events occurring on a wide range of timescales, from the 100-ps range isomerization of single dihedral angles, via the 100-ns range of tilt precession motions, to the multi-μs range of phase transitions and lipid-flipping events.
Collapse
Affiliation(s)
- Monika Laner
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland.
| | - Bruno A C Horta
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland; Dpto. de Engenharia Elétrica, PUC-Rio, Rio de Janeiro, Brazil; Dpto. de Ciências Biológicas, UEZO, Rio de Janeiro, Brazil.
| | | |
Collapse
|
35
|
Fukuda I, Kamiya N, Nakamura H. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: analysis of the accuracy and application to liquid systems. J Chem Phys 2014; 140:194307. [PMID: 24852538 DOI: 10.1063/1.4875693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the preceding paper [I. Fukuda, J. Chem. Phys. 139, 174107 (2013)], the zero-multipole (ZM) summation method was proposed for efficiently evaluating the electrostatic Coulombic interactions of a classical point charge system. The summation takes a simple pairwise form, but prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large energetic noises and significant artifacts. The purpose of this paper is to judge the ability of the ZM method by investigating the accuracy, parameter dependencies, and stability in applications to liquid systems. To conduct this, first, the energy-functional error was divided into three terms and each term was analyzed by a theoretical error-bound estimation. This estimation gave us a clear basis of the discussions on the numerical investigations. It also gave a new viewpoint between the excess energy error and the damping effect by the damping parameter. Second, with the aid of these analyses, the ZM method was evaluated based on molecular dynamics (MD) simulations of two fundamental liquid systems, a molten sodium-chlorine ion system and a pure water molecule system. In the ion system, the energy accuracy, compared with the Ewald summation, was better for a larger value of multipole moment l currently induced until l ≲ 3 on average. This accuracy improvement with increasing l is due to the enhancement of the excess-energy accuracy. However, this improvement is wholly effective in the total accuracy if the theoretical moment l is smaller than or equal to a system intrinsic moment L. The simulation results thus indicate L ∼ 3 in this system, and we observed less accuracy in l = 4. We demonstrated the origins of parameter dependencies appearing in the crossing behavior and the oscillations of the energy error curves. With raising the moment l we observed, smaller values of the damping parameter provided more accurate results and smoother behaviors with respect to cutoff length were obtained. These features can be explained, on the basis of the theoretical error analyses, such that the excess energy accuracy is improved with increasing l and that the total accuracy improvement within l ⩽ L is facilitated by a small damping parameter. Although the accuracy was fundamentally similar to the ion system, the bulk water system exhibited distinguishable quantitative behaviors. A smaller damping parameter was effective in all the practical cutoff distance, and this fact can be interpreted by the reduction of the excess subset. A lower moment was advantageous in the energy accuracy, where l = 1 was slightly superior to l = 2 in this system. However, the method with l = 2 (viz., the zero-quadrupole sum) gave accurate results for the radial distribution function. We confirmed the stability in the numerical integration for MD simulations employing the ZM scheme. This result is supported by the sufficient smoothness of the energy function. Along with the smoothness, the pairwise feature and the allowance of the atom-based cutoff mode on the energy formula lead to the exact zero total-force, ensuring the total-momentum conservations for typical MD equations of motion.
Collapse
Affiliation(s)
- Ikuo Fukuda
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Narutoshi Kamiya
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
36
|
Chen W, Shen JK. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics. J Comput Chem 2014; 35:1986-96. [PMID: 25142416 PMCID: PMC4165709 DOI: 10.1002/jcc.23713] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/20/2014] [Accepted: 08/03/2014] [Indexed: 12/21/2022]
Abstract
Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here, we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: (1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? (2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force-shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK(a) values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via cotitrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle mesh Ewald, considering the known artifacts due to charge-compensating background plasma.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Jana K. Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
37
|
Effect of the cosolutes trehalose and methanol on the equilibrium and phase-transition properties of glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:517-44. [DOI: 10.1007/s00249-014-0982-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
|
38
|
Takahashi KZ, Yasuoka K. A determination of liquid–vapour interfacial properties for methanol using a linear-combination-based isotropic periodic sum. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.913791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Takahashi KZ. Design of a reaction field using a linear-combination-based isotropic periodic sum method. J Comput Chem 2014; 35:865-75. [PMID: 24615639 DOI: 10.1002/jcc.23562] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/18/2013] [Accepted: 01/19/2014] [Indexed: 11/09/2022]
Abstract
In our previous study (Takahashi et al., J. Chem. Theory Comput. 2012, 8, 4503), we developed the linear-combination-based isotropic periodic sum (LIPS) method. The LIPS method is based on the extended isotropic periodic sum theory that produces a ubiquitous interaction potential function to estimate homogeneous and heterogeneous systems. The LIPS theory also provides the procedure to design a periodic reaction field. To demonstrate this, in the present work, a novel reaction field of the LIPS method was developed. The novel reaction field was labeled LIPS-SW, because it provides an interaction potential function with a shape that resembles that of the switch function method. To evaluate the ability of the LIPS-SW method to describe in homogeneous and heterogeneous systems, we carried out molecular dynamics (MD) simulations of bulk water and water-vapor interfacial systems using the LIPS-SW method. The results of these simulations show that the LIPS-SW method gives higher accuracy than the conventional interaction potential function of the LIPS method. The accuracy of simulating water-vapor interfacial systems was greatly improved, while that of bulk water systems was maintained using the LIPS-SW method. We conclude that the LIPS-SW method shows great potential for high-accuracy, high-performance computing to allow large scale MD simulations. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kazuaki Z Takahashi
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
40
|
Reif MM, Oostenbrink C. Net charge changes in the calculation of relative ligand-binding free energies via classical atomistic molecular dynamics simulation. J Comput Chem 2014; 35:227-43. [PMID: 24249099 PMCID: PMC4237198 DOI: 10.1002/jcc.23490] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/13/2013] [Indexed: 12/11/2022]
Abstract
The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio-)chemical thermodynamics. Many important endogenous receptor-binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice-summation scheme or a cutoff-truncation scheme with Barker-Watts reaction-field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest-host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free-energy calculation studies if changes in the net charge are involved.
Collapse
Affiliation(s)
- Maria M Reif
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences ViennaMuthgasse 18, 1190, Wien, Austria
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences ViennaMuthgasse 18, 1190, Wien, Austria
| |
Collapse
|
41
|
Cisneros GA, Karttunen M, Ren P, Sagui C. Classical electrostatics for biomolecular simulations. Chem Rev 2014; 114:779-814. [PMID: 23981057 PMCID: PMC3947274 DOI: 10.1021/cr300461d] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Rocklin GJ, Mobley DL, Dill KA, Hünenberger PH. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J Chem Phys 2013; 139:184103. [PMID: 24320250 PMCID: PMC3838431 DOI: 10.1063/1.4826261] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/30/2013] [Indexed: 01/12/2023] Open
Abstract
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol(-1)). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.
Collapse
Affiliation(s)
- Gabriel J Rocklin
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA
| | | | | | | |
Collapse
|
43
|
|
44
|
Laner M, Horta BA, Hünenberger PH. Phase-transition properties of glycerol-monopalmitate lipid bilayers investigated by molecular dynamics simulation: influence of the system size and force-field parameters. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2012.755526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Abstract
Electrostatic interactions are crucial for both the accuracy and performance of atomistic biomolecular simulations. In this chapter we review well-established methods and current developments aiming at efficiency and accuracy. Specifically, we review the classical Ewald summations, particle-particle particle-method particle-method Ewald algorithms, multigrid, fast multipole, and local methods. We also highlight some recent developments targeting more accurate, yet classical, representation of the molecular charge distribution.
Collapse
|
46
|
Reif MM, Winger M, Oostenbrink C. Testing of the GROMOS Force-Field Parameter Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins. J Chem Theory Comput 2013; 9:1247-1264. [PMID: 23418406 PMCID: PMC3572754 DOI: 10.1021/ct300874c] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Indexed: 11/28/2022]
Abstract
![]()
The GROMOS 54A8 force field [Reif et al. J. Chem.
Theory
Comput.2012, 8, 3705–3723]
is the first of its kind to contain nonbonded parameters for charged
amino acid side chains that are derived in a rigorously thermodynamic
fashion, namely a calibration against single-ion hydration free energies.
Considering charged moieties in solution, the most decisive signature
of the GROMOS 54A8 force field in comparison to its predecessor 54A7
can probably be found in the thermodynamic equilibrium between salt-bridged
ion pair formation and hydration. Possible shifts in this equilibrium
might crucially affect the properties of electrolyte solutions or/and
the stability of (bio)molecules. It is therefore important to investigate
the consequences of the altered description of charged oligoatomic
species in the GROMOS 54A8 force field. The present study focuses
on examining the ability of the GROMOS 54A8 force field to accurately
model the structural properties of electrolyte solutions, lipid bilayers,
and proteins. It is found that (i) aqueous electrolytes
involving oligoatomic species (sodium acetate, methylammonium chloride,
guanidinium chloride) reproduce experimental salt activity derivatives
for concentrations up to 1.0 m (1.0-molal) very well, and good agreement
between simulated and experimental data is also reached for sodium
acetate and methylammonium chloride at 2.0 m concentration, while
not even qualitative agreement is found for sodium chloride throughout
the whole range of examined concentrations, indicating a failure of
the GROMOS 54A7 and 54A8 force-field parameter sets to correctly account
for the balance between ion–ion and ion–water binding
propensities of sodium and chloride ions; (ii) the
GROMOS 54A8 force field reproduces the liquid crystalline-like phase
of a hydrated DPPC bilayer at a pressure of 1 bar and a temperature
of 323 K, the area per lipid being in agreement with experimental
data, whereas other structural properties (volume per lipid, bilayer
thickness) appear underestimated; (iii) the secondary
structure of a range of different proteins simulated with the GROMOS
54A8 force field at pH 7 is maintained and compatible with experimental
NMR data, while, as also observed for the GROMOS 54A7 force field,
α-helices are slightly overstabilized with respect to 310-helices; (iv) with the GROMOS 54A8 force
field, the side chains of arginine, lysine, aspartate, and glutamate
residues appear slightly more hydrated and present a slight excess
of oppositely-charged solution components in their vicinity, whereas
salt-bridge formation properties between charged residues at the protein
surface, as assessed by probability distributions of interionic distances,
are largely equivalent in the GROMOS 54A7 and 54A8 force-field parameter
sets.
Collapse
Affiliation(s)
- Maria M Reif
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | | | | |
Collapse
|
47
|
Fukuda I, Kamiya N, Yonezawa Y, Nakamura H. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water. J Chem Phys 2012; 137:054314. [PMID: 22894355 DOI: 10.1063/1.4739789] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The zero-dipole summation method was extended to general molecular systems, and then applied to molecular dynamics simulations of an isotropic water system. In our previous paper [I. Fukuda, Y. Yonezawa, and H. Nakamura, J. Chem. Phys. 134, 164107 (2011)], for evaluating the electrostatic energy of a classical particle system, we proposed the zero-dipole summation method, which conceptually prevents the nonzero-charge and nonzero-dipole states artificially generated by a simple cutoff truncation. Here, we consider the application of this scheme to molecular systems, as well as some fundamental aspects of general cutoff truncation protocols. Introducing an idea to harmonize the bonding interactions and the electrostatic interactions in the scheme, we develop a specific algorithm. As in the previous study, the resulting energy formula is represented by a simple pairwise function sum, enabling facile applications to high-performance computation. The accuracy of the electrostatic energies calculated by the zero-dipole summation method with the atom-based cutoff was numerically investigated, by comparison with those generated by the Ewald method. We obtained an electrostatic energy error of less than 0.01% at a cutoff length longer than 13 Å for a TIP3P isotropic water system, and the errors were quite small, as compared to those obtained by conventional truncation methods. The static property and the stability in an MD simulation were also satisfactory. In addition, the dielectric constants and the distance-dependent Kirkwood factors were measured, and their coincidences with those calculated by the particle mesh Ewald method were confirmed, although such coincidences are not easily attained by truncation methods. We found that the zero damping-factor gave the best results in a practical cutoff distance region. In fact, in contrast to the zero-charge scheme, the damping effect was insensitive in the zero-charge and zero-dipole scheme, in the molecular system we treated. We discussed the origin of this difference between the two schemes and the dependence of this fact on the physical system. The use of the zero damping-factor will enhance the efficiency of practical computations, since the complementary error function is not employed. In addition, utilizing the zero damping-factor provides freedom from the parameter choice, which is not trivial in the zero-charge scheme, and eliminates the error function term, which corresponds to the time-consuming Fourier part under the periodic boundary conditions.
Collapse
Affiliation(s)
- Ikuo Fukuda
- RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
48
|
Takahashi KZ, Narumi T, Suh D, Yasuoka K. An Improved Isotropic Periodic Sum Method That Uses Linear Combinations of Basis Potentials. J Chem Theory Comput 2012; 8:4503-16. [DOI: 10.1021/ct3003805] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Tetsu Narumi
- Department of Computer Science, University of Electro-Communications, Tokyo 182-8585,
Japan
| | - Donguk Suh
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
49
|
Fukuda I, Nakamura H. Non-Ewald methods: theory and applications to molecular systems. Biophys Rev 2012; 4:161-170. [PMID: 23293678 PMCID: PMC3428531 DOI: 10.1007/s12551-012-0089-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/21/2012] [Indexed: 11/29/2022] Open
Abstract
Several non-Ewald methods for calculating electrostatic interactions have recently been developed, such as the Wolf method, the reaction field method, the pre-averaging method, and the zero-dipole summation method, for molecular dynamics simulations of various physical systems, including biomolecular systems. We review the theories of these approaches and their potential applications to molecular simulations, and discuss their relationships.
Collapse
Affiliation(s)
- Ikuo Fukuda
- RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | | |
Collapse
|
50
|
Dahlgren B, Reif MM, Hünenberger PH, Hansen N. Calculation of Derivative Thermodynamic Hydration and Aqueous Partial Molar Properties of Ions Based on Atomistic Simulations. J Chem Theory Comput 2012; 8:3542-64. [DOI: 10.1021/ct300260q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Björn Dahlgren
- Laboratory
of Physical Chemistry,
ETH Zürich, Zürich, Switzerland
| | - Maria M. Reif
- Institute for Molecular Modeling
and Simulation, University of Natural Resources and Life Sciences,
Vienna, Austria
| | | | - Niels Hansen
- Laboratory
of Physical Chemistry,
ETH Zürich, Zürich, Switzerland
| |
Collapse
|