1
|
Waeterschoot J, Barniol-Xicota M, Verhelst S, Baatsen P, Koos E, Lammertyn J, Casadevall i Solvas X. Lipid vesicle formation by encapsulation of SMALPs in surfactant-stabilised droplets. Heliyon 2024; 10:e37915. [PMID: 39347415 PMCID: PMC11437848 DOI: 10.1016/j.heliyon.2024.e37915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Understanding the intricate functions of membrane proteins is pivotal in cell biology and drug discovery. The composition of the cell membrane is highly complex, with different types of membrane proteins and lipid species. Hence, studying cellular membranes in a complexity-reduced context is important to enhance our understanding of the roles of these different elements. However, reconstitution of membrane proteins in an environment that closely mimics the cell, like giant unilamellar vesicles (GUVs), remains challenging, often requiring detergents that compromise protein function. To address this challenge, we present a novel strategy to manufacture GUVs from styrene maleic acid lipid particles (SMALPs) that utilises surfactant-stabilised droplets as a template. As a first step towards the incorporation of membrane proteins, this work focusses on the conversion of pure lipid SMALPs in GUVs. To evaluate the method, we produced a new form of SMA linked to fluorescein, referred to as FSMA. We demonstrate the assembly of SMALPs at the surfactant-stabilised droplet interface, resulting in the formation of GUVs when released upon addition of a demulsifying agent. The released vesicles appear similar to electroformed vesicles imaged with confocal light microscopy, but a fluorescein leakage assay and cryo-TEM imaging reveal their porous nature, potentially as a result of residual interactions of SMA with the lipid bilayer. Our study represents a significant step towards opening new avenues for comprehensive protein research in a complexity-reduced, yet biologically relevant, setting.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Biomimetics Group, Division of Mechatronics, Biostatistics and Sensors (MeBios), Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Marta Barniol-Xicota
- Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Steven Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven – University of Leuven, Herestraat 49, box 901b, 3000 Leuven, Belgium
| | - Pieter Baatsen
- Center for the Biology of Disease, VIB, Herestraat 49, Leuven, 3000, Belgium
| | - Erin Koos
- Soft Matter, Rheology and Technology (SMaRT) at KU Leuven, Celestijnenlaan 200J, 3000 Leuven, Belgium
| | - Jeroen Lammertyn
- Biosensors Group, Division of Mechatronics, Biostatistics and Sensors (MeBios), Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Heverlee, Belgium
| | - Xavier Casadevall i Solvas
- Biomimetics Group, Division of Mechatronics, Biostatistics and Sensors (MeBios), Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Waeterschoot J, Gosselé W, Alizadeh Zeinabad H, Lammertyn J, Koos E, Casadevall i Solvas X. Formation of Giant Unilamellar Vesicles Assisted by Fluorinated Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302461. [PMID: 37807811 PMCID: PMC10700689 DOI: 10.1002/advs.202302461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/31/2023] [Indexed: 10/10/2023]
Abstract
In the quest to produce artificial cells, one key challenge that remains to be solved is the recreation of a complex cellular membrane. Among the existing models, giant unilamellar vesicles (GUVs) are particularly interesting due to their intrinsic compartmentalisation ability and their resemblance in size and shape to eukaryotic cells. Many techniques have been developed to produce GUVs all having inherent advantages and disadvantages. Here, the authors show that fluorinated silica nanoparticles (FNPs) used to form Pickering emulsions in a fluorinated oil can destabilise lipid nanosystems to template the formation of GUVs. This technique enables GUV production across a broad spectrum of buffer conditions, while preventing the leakage of the encapsulated components into the oil phase. Furthermore, a simple centrifugation process is sufficient for the release of the emulsion-trapped GUVs, bypassing the need to use emulsion-destabilising chemicals. With fluorescent FNPs and transmission electron microscopy, the authors confirm that FNPs are efficiently removed, producing contaminant-free GUVs. Further experiments assessing the lateral diffusion of lipids and unilamellarity of the GUVs demonstrate that they are comparable to GUVs produced via electroformation. Finally, the ability of incorporating transmembrane proteins is demonstrated, highlighting the potential of this method for the production of GUVs for artificial cell applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Mechatronics, Biostatistics and Sensors (MeBioS) at KU LeuvenWillem de Croylaan 423001LeuvenBelgium
| | - Willemien Gosselé
- Mechatronics, Biostatistics and Sensors (MeBioS) at KU LeuvenWillem de Croylaan 423001LeuvenBelgium
| | - Hojjat Alizadeh Zeinabad
- Mechatronics, Biostatistics and Sensors (MeBioS) at KU LeuvenWillem de Croylaan 423001LeuvenBelgium
| | - Jeroen Lammertyn
- Mechatronics, Biostatistics and Sensors (MeBioS) at KU LeuvenWillem de Croylaan 423001LeuvenBelgium
| | - Erin Koos
- Soft MatterRheology and Technology (SMaRT) at KU LeuvenCelestijnenlaan 200J3000LeuvenBelgium
| | | |
Collapse
|
3
|
Hu J, Ward JS, Chaumont A, Rissanen K, Vincent JM, Heitz V, Jacquot de Rouville HP. A Bis-Acridinium Macrocycle as Multi-Responsive Receptor and Selective Phase-Transfer Agent of Perylene. Angew Chem Int Ed Engl 2020; 59:23206-23212. [PMID: 32881218 DOI: 10.1002/anie.202009212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 12/27/2022]
Abstract
A bis-acridinium cyclophane incorporating switchable acridinium moieties linked by a 3,5-dipyridylanisole spacer was studied as a multi-responsive host for polycyclic aromatic hydrocarbon guests. Complexation of perylene was shown to be the most effective and was characterized in particular by a charge-transfer band as signal output. Effective catch and release of the guest was triggered by both chemical (proton/hydroxide) and redox stimuli. Moreover, the dicationic host was also easily switched between organic and perfluorocarbon phases for applications related to the enrichment of perylene from a mixture of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Johnny Hu
- LSAMM, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, Survontie 9B, 40014, Jyväskylä, Finland
| | - Alain Chaumont
- Chimie de la Matière Complexe, CNRS UMR 7140, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, Survontie 9B, 40014, Jyväskylä, Finland
| | - Jean-Marc Vincent
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Valérie Heitz
- LSAMM, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Henri-Pierre Jacquot de Rouville
- LSAMM, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
4
|
Hu J, Ward JS, Chaumont A, Rissanen K, Vincent J, Heitz V, Jacquot de Rouville H. A Bis‐Acridinium Macrocycle as Multi‐Responsive Receptor and Selective Phase‐Transfer Agent of Perylene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Johnny Hu
- LSAMM Institut de Chimie de Strasbourg, CNRS UMR 7177 Université de Strasbourg 4, rue Blaise Pascal 67000 Strasbourg France
| | - Jas S. Ward
- University of Jyvaskyla Department of Chemistry P.O. BOX 35, Survontie 9B 40014 Jyväskylä Finland
| | - Alain Chaumont
- Chimie de la Matière Complexe CNRS UMR 7140 Université de Strasbourg 4, rue Blaise Pascal 67000 Strasbourg France
| | - Kari Rissanen
- University of Jyvaskyla Department of Chemistry P.O. BOX 35, Survontie 9B 40014 Jyväskylä Finland
| | - Jean‐Marc Vincent
- Institut des Sciences Moléculaires CNRS UMR 5255 Université de Bordeaux 351 cours de la Libération 33405 Talence France
| | - Valérie Heitz
- LSAMM Institut de Chimie de Strasbourg, CNRS UMR 7177 Université de Strasbourg 4, rue Blaise Pascal 67000 Strasbourg France
| | | |
Collapse
|
5
|
Nightingale AM, Hassan SU, Evans GWH, Coleman SM, Niu X. Nitrate measurement in droplet flow: gas-mediated crosstalk and correction. LAB ON A CHIP 2018; 18:1903-1913. [PMID: 29877549 DOI: 10.1039/c8lc00092a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In droplet microfluidics, droplets have traditionally been considered discrete self-contained reaction chambers, however recent work has shown that dissolved solutes can transfer into the oil phase and migrate into neighbouring droplets under certain conditions. The majority of reports on such inter-droplet "crosstalk" have focused on surfactant-driven mechanisms, such as transport within micelles. While trialling a droplet-based system for quantifying nitrate in water, we encountered crosstalk driven by a very different mechanism: conversion of the analyte to a gaseous intermediate which subsequently diffused between droplets. Importantly we found that the crosstalk occurred predictably, could be experimentally quantified, and measurements rationally post-corrected. This showed that droplet microfluidic systems susceptible to crosstalk such as this can nonetheless be used for quantitative analysis.
Collapse
Affiliation(s)
- Adrian M Nightingale
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK.
| | | | | | | | | |
Collapse
|
6
|
Anderson EL, Gingery NM, Boswell PG, Chen XV, Rábai J, Bühlmann P. Ion Aggregation and R 3N +-C(R)-H···NR 3 Hydrogen Bonding in a Fluorous Phase. J Phys Chem B 2016; 120:11239-11246. [PMID: 27723332 DOI: 10.1021/acs.jpcb.6b07299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Potentiometric selectivities show that in fluorous ion-selective electrode membranes the tetrabutylammonium ion binds to fluorophilic proton ionophores. For the ionophore bis[3-(perfluorooctyl)propyl](2,2,2-trifluoroethyl)amine, this type of interaction is confirmed by the effect of the ionophore on the ionic conductivity of perfluoro(perhydrophenanthrene) solutions of a fluorophilic NBu4+ salt. In this system, ion pairs, triple ions, and higher ionic aggregates dominate over single ions, and the ionophore increases the conductivity by favoring the formation of ion aggregates with a net charge. These observations are consistent with the formation of R3N+-C(R)-H···NR3 type hydrogen bonds between the nitrogen atom of the ionophore and the hydrogen atoms in the α position to the positively charged quaternary ammonium center of NBu4+. Similar interactions were observed in a number of crystalline phases. To date, observations of C-H···N type hydrogen bonds in liquid phases have been very few, and solution-phase N+-C-H···N type hydrogen bonds have not been reported previously. Interestingly, no interactions between NBu4+ and the more basic ionophore tridodecylamine were observed in conventional plasticized poly(vinyl chloride) membranes doped with the ionophore tridodecylamine, emphasizing the uniquely low polarity of fluorous phases.
Collapse
Affiliation(s)
- Evan L Anderson
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Nicole M Gingery
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Paul G Boswell
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Xin V Chen
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - József Rábai
- Institute of Chemistry, Eötvös Loránd University , P.O. Box 32, H-1518 Budapest 112, Hungary
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Rubinson KA, Bühlmann P, Allison TC. One-dimensional ionic self-assembly in a fluorous solution: the structure of tetra-n-butylammonium tetrakis[3,5-bis(perfluorohexyl)phenyl]borate in perfluoromethylcyclohexane by small-angle neutron scattering (SANS). Phys Chem Chem Phys 2016; 18:9470-5. [PMID: 26980055 DOI: 10.1039/c6cp00393a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorous liquids are the least polarizable condensed phases known, and their nonpolar members form solutions with conditions the closest to being in vacuo. A soluble salt consisting of a large fluorophilic anion, tetrakis[3,5-bis(perfluorohexyl)phenyl]borate, and its counterion, tetra-n-butylammonium, dissolved in perfluoromethylcyclohexane produces ionic solutions with extremely low conductivity. These solutions were subjected to small-angle neutron scattering (SANS) to ascertain the solute structure. At concentrations of 9% mass fraction, the fluorophilic electrolyte forms straight, long (>160 Å) self-assembled structures that are, in essence, long, homogeneous cylinders. Molecular models were made assuming a requirement for electroneutrality on the shortest length scale possible. This shows a structure formed from a stack of alternating anions and cations, and the structures fit the experimental scattering well. At the lower concentration of 1%, the stacks of ion pairs are shorter and eventually break up to form solitary ion pairs in the solution. These characteristics suggest such conditions provide an interesting new way to form long, self-assembling ionic nanostructures with single-molecule diameters in free solution onto which various moieties could be attached.
Collapse
Affiliation(s)
- Kenneth A Rubinson
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | |
Collapse
|
8
|
Controlling molecular transport in minimal emulsions. Nat Commun 2016; 7:10392. [PMID: 26797564 PMCID: PMC4735829 DOI: 10.1038/ncomms10392] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/08/2015] [Indexed: 12/24/2022] Open
Abstract
Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of ‘minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions. Emulsion droplets have many biotechnological applications, such as parallelized single cell analysis. Here, Gruner et al. introduce the concept of the minimal emulsions in a microfluidic device that allows full control of molecular transport between emulsion droplets.
Collapse
|
9
|
Gruner P, Riechers B, Chacòn Orellana LA, Brosseau Q, Maes F, Beneyton T, Pekin D, Baret JC. Stabilisers for water-in-fluorinated-oil dispersions: Key properties for microfluidic applications. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Lu D, Weber S. Fluorous receptor-facilitated solid phase microextraction. J Chromatogr A 2014; 1360:17-22. [DOI: 10.1016/j.chroma.2014.07.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 11/24/2022]
|
11
|
DeJournette CJ, Kim J, Medlen H, Li X, Vincent LJ, Easley CJ. Creating biocompatible oil-water interfaces without synthesis: direct interactions between primary amines and carboxylated perfluorocarbon surfactants. Anal Chem 2013; 85:10556-64. [PMID: 24070333 DOI: 10.1021/ac4026048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Currently, one of the most prominent methods used to impart biocompatibility to aqueous-in-oil droplets is to synthesize a triblock copolymer surfactant composed of perfluoropolyether and polyether blocks. The resulting surfactants (EA surfactant, KryJeffa, etc.) allow generation of highly biocompatible droplet surfaces while maintaining the heat stability of the starting material. However, production of these surfactants requires expertise in synthetic organic chemistry, creating a barrier to widespread adoption in the field. Herein, we describe a simple alternative to synthetic modification of surfactants to impart biocompatibility. We have observed that aqueous-in-oil droplet surfaces can be made biocompatible and heat stable by merely exploiting binding interactions between polyetherdiamine additives in the aqueous phase and carboxylated perfluorocarbon surfactants in the oil phase. Droplets formed under these conditions are shown to possess biocompatible surfaces capable of supporting picoliter-scale protein assays, droplet polymerase chain reaction (PCR), and droplet DNA amplification with isothermal recombinase polymerase amplification (RPA). Droplets formed with polyetherdiamine aqueous additives are stable enough to withstand temperature cycling during PCR (30-40 cycles at 60-94 °C) while maintaining biocompatibility, and the reaction efficiency of RPA is shown to be similar to that with a covalently modified surfactant (KryJeffa). The binding interaction was confirmed with various methods, including FT-IR spectroscopy, NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and fluorescence microscopy. Overall, our results suggest that, by simply introducing a commercially-available, polyetherdiamine additive (Jeffamine ED-900) to the aqueous phase, researchers can avoid synthetic methods in generating biocompatible droplet surfaces capable of supporting DNA and protein analysis at the subnanoliter scale.
Collapse
Affiliation(s)
- Cheryl J DeJournette
- Auburn University , Department of Chemistry and Biochemistry, Auburn, Alabama 36849 United States
| | | | | | | | | | | |
Collapse
|
12
|
The first fluorous biphase hydrogenation catalyst incorporating a perfluoropolyalkylether: [RhCl(PPh2(C6H4C(O)OCH2CF(CF3)(OCF2CF(CF3))nF))3] with n=4–9. J Fluor Chem 2012. [DOI: 10.1016/j.jfluchem.2012.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Chen LD, Mandal D, Pozzi G, Gladysz JA, Bühlmann P. Potentiometric sensors based on fluorous membranes doped with highly selective ionophores for carbonate. J Am Chem Soc 2011; 133:20869-77. [PMID: 22070518 PMCID: PMC3244523 DOI: 10.1021/ja207680e] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Manganese(III) complexes of three fluorophilic salen derivatives were used to prepare ion-selective electrodes (ISEs) with ionophore-doped fluorous sensing membranes. Because of their extremely low polarity and polarizability, fluorous media are not only chemically very inert but also solvate potentially interfering ions poorly, resulting in a much improved discrimination of such ions. Indeed, the new ISEs exhibited selectivities for CO(3)(2-) that exceed those of previously reported ISEs based on nonfluorous membranes by several orders of magnitude. In particular, the interference from chloride and salicylate was reduced by 2 and 6 orders of magnitude, respectively. To achieve this, the selectivities of these ISEs were fine-tuned by addition of noncoordinating hydrophobic ions (i.e., ionic sites) into the sensing membranes. Stability constants of the anion-ionophore complexes were determined from the dependence of the potentiometric selectivities on the charge sign of the ionic sites and the molar ratio of ionic sites and the ionophore. For this purpose, a previously introduced fluorophilic tetraphenylborate and a novel fluorophilic cation with a bis(triphenylphosphoranylidene)ammonium group, (R(f6)(CH(2))(3))(3)PN(+)P(R(f6)(CH(2))(3))(3), were utilized (where R(f6) is C(6)F(13)). The optimum CO(3)(2-) selectivities were found for sensing membranes composed of anionic sites and ionophore in a 1:4 molar ratio, which results in the formation of 2:1 complexes with CO(3)(2-) with stability constants up to 4.1 × 10(15). As predicted by established theory, the site-to-ionophore ratios that provide optimum potentiometric selectivity depend on the stoichiometries of the complexes of both the primary and the interfering ions. However, the ionophores used in this study give examples of charges and stoichiometries previously neither explicitly predicted by theory nor shown by experiment. The exceptional selectivity of fluorous membranes doped with these carbonate ionophores suggests their use not only for potentiometric sensing but also for other types of sensors, such as the selective separation of carbonate from other anions and the sequestration of carbon dioxide.
Collapse
Affiliation(s)
- Li D. Chen
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis MN 55455, USA
| | - Debaprasad Mandal
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842
| | - Gianluca Pozzi
- CNR-Istituto di Scienze Tecnologie Molecolari, via Golgi 19, 20133, Milano, Italy
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis MN 55455, USA
| |
Collapse
|
14
|
Abstract
The unique combination of chemical, thermal, and mechanical stability, high fractional free volume, low refractive index, low surface energy, and wide optical transparency has led to growing interest in Teflon Amorphous Fluoropolymers (AFs) for a wide spectrum of applications ranging from chemical separations and sensors to bioassay platforms. New opportunities arise from the incorporation of nanoscale materials in Teflon AFs. In this chapter, we highlight fractional free volume - the most important property of Teflon AFs - with the aim of clarifying the unique transport behavior through Teflon AF membranes. We then review state-of-the-art developments based on Teflon AF platforms by focusing on the chemistry behind the applications.
Collapse
|
15
|
Corrêa da Costa R, Buffeteau T, Guerzo AD, McClenaghan ND, Vincent JM. Reversible hydrocarbon/perfluorocarbon phase-switching of [Ru(bipy)3]2+ driven by supramolecular heteromeric fluorous carboxylate–carboxylic acid H-bond interactions. Chem Commun (Camb) 2011; 47:8250-2. [DOI: 10.1039/c1cc12641e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Gladysz JA, Jurisch M. Structural, Physical, and Chemical Properties of Fluorous Compounds. Top Curr Chem (Cham) 2011; 308:1-23. [DOI: 10.1007/128_2011_282] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Zhang H, Hussam A, Weber SG. Properties and transport behavior of perfluorotripentylamine (FC-70)-doped amorphous teflon AF 2400 films. J Am Chem Soc 2010; 132:17867-79. [PMID: 21105665 DOI: 10.1021/ja1075647] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Teflon AF 2400 films are known to imbibe solvents, making films in the presence of solvents less fluorous than they might otherwise be. Herein, we demonstrate that doping films with perfluorotripentylamine (Fluorinert FC-70) maintains the fluorous nature of Teflon AF 2400 and improves transport selectivity for fluorine-containing organic compounds. Density measurements on the FC-70-doped films reveal that free volume decreases dramatically as the dopant concentration increases (0-12 wt %) and then increases to approach that of pure FC-70. Remarkably, films from 0 to 12 wt % FC-70 have the same w/v concentration of Teflon AF 2400, indicating that FC-70 fills the free volume of Teflon AF 2400. This is consistent with the observed increased storage modulus and significant decrease (compared to undoped films) of solute diffusion coefficients in the same range of FC-70 concentrations. In contrast, FC-70 at concentrations greater than 12 wt % dilutes Teflon AF 2400, leading to a decrease of storage modulus and dramatic increase in solute diffusion coefficients. Sorption of chloroform decreases from 11.8 g of chloroform/100 g of film (pure Teflon film) to 3.8 g of chloroform/100 g of film (27 wt % FC-70-doped Teflon film), less than the solubility of chloroform in pure FC-70 (4.06 g of chloroform/100 g of FC-70). Solute partition coefficients from chloroform to FC-70-doped films generally decrease with increased dopant concentration. However, within a series of toluenes and nitrobenzenes, selectivity for F-containing solutes over analogous H-containing solutes increases as dopant concentration increases if the substitution is on the aromatic ring but not if it is on the methyl group (toluene). Transport (partitioning × diffusion) rates, as they involve both thermodynamic and kinetic factors, are not simply related to composition.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | | |
Collapse
|
18
|
O’Neal KL, Zhang H, Yang Y, Hong L, Lu D, Weber SG. Fluorous media for extraction and transport. J Chromatogr A 2010; 1217:2287-95. [DOI: 10.1016/j.chroma.2009.11.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/22/2009] [Accepted: 11/24/2009] [Indexed: 01/13/2023]
|
19
|
|
20
|
Yang Y, Vaidyanathan N, Weber SG. Porous alumina-based fluorous liquid membranes: Dependence of transport on fluorous solvent. J Fluor Chem 2009. [DOI: 10.1016/j.jfluchem.2009.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Gavette JV, McGrath JM, Spuches AM, Sargent AL, Allen WE. Fluorous effects in amide-based receptors for anions. J Org Chem 2009; 74:3706-10. [PMID: 19358581 DOI: 10.1021/jo9000788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hybrid receptors designed to recognize both the sulfonate headgroup and the fluorous tail of perfluorooctanesulfonate (CF(3)(CF(2))(7)SO(3)(-), "PFOS") were prepared by coupling fluorinated carboxylic acids onto poly(aminomethyl)benzene scaffolds. Binding to PFOS, CF(3)SO(3)(-), p-TsO(-), and Cl(-) was monitored by (1)H NMR and isothermal titration calorimetry (ITC). In chloroform solvent, hydrogen-bonding to anions is accompanied by downfield shifts in the amide NH protons of the fluorinated receptors and by evolution of heat. Association constants for 1:1 complexation (K(assoc)) are >1000 M(-1). An analogous hydrocarbon receptor binds weakly to anionic guests (K(assoc) < 50 M(-1)). Ab initio calculations indicate that the differences in 1:1 binding strengths between fluorous and nonfluorous hosts cannot be ascribed to differences in NH donor acidities.
Collapse
Affiliation(s)
- Jesse V Gavette
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, USA
| | | | | | | | | |
Collapse
|
22
|
O’Neal KL, Weber SG. Extraction and Metalation of Porphyrins in Fluorous Liquids with Carboxylic Acids and Metal Salts. J Phys Chem B 2009; 113:7449-56. [DOI: 10.1021/jp902000v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristi L. O’Neal
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260-3900
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260-3900
| |
Collapse
|