1
|
King MD, Jones SH, Lucas COM, Thompson KC, Rennie AR, Ward AD, Marks AA, Fisher FN, Pfrang C, Hughes AV, Campbell RA. The reaction of oleic acid monolayers with gas-phase ozone at the air water interface: the effect of sub-phase viscosity, and inert secondary components. Phys Chem Chem Phys 2020; 22:28032-28044. [PMID: 33367378 DOI: 10.1039/d0cp03934a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic films that form on atmospheric particulate matter change the optical and cloud condensation nucleation properties of the particulate matter and consequently have implications for modern climate and climate models. The organic films are subject to attack from gas-phase oxidants present in ambient air. Here we revisit in greater detail the oxidation of a monolayer of oleic acid by gas-phase ozone at the air-water interface as this provides a model system for the oxidation reactions that occur at the air-water interface of aqueous atmospheric aerosol. Experiments were performed on monolayers of oleic acid at the air-liquid interface at atmospherically relevant ozone concentrations to investigate if the viscosity of the sub-phase influences the rate of the reaction and to determine the effect of the presence of a second component within the monolayer, stearic acid, which is generally considered to be non-reactive towards ozone, on the reaction kinetics as determined by neutron reflectometry measurements. Atmospheric aerosol can be extremely viscous. The kinetics of the reaction were found to be independent of the viscosity of the sub-phase below the monolayer over a range of moderate viscosities, , demonstrating no involvement of aqueous sub-phase oxidants in the rate determining step. The kinetics of oxidation of monolayers of pure oleic acid were found to depend on the surface coverage with different behaviour observed above and below a surface coverage of oleic acid of ∼1 × 1018 molecule m-2. Atmospheric aerosol are typically complex mixtures, and the presence of an additional compound in the monolayer that is inert to direct ozone oxidation, stearic acid, did not significantly change the reaction kinetics. It is demonstrated that oleic acid monolayers at the air-water interface do not leave any detectable material at the air-water interface, contradicting the previous work published in this journal which the authors now believe to be erroneous. The combined results presented here indicate that the kinetics, and thus the atmospheric chemical lifetime for unsaturated surface active materials at the air-water interface to loss by reaction with gas-phase ozone, can be considered to be independent of other materials present at either the air-water interface or in the aqueous sub-phase.
Collapse
Affiliation(s)
- Martin D King
- Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Blackshaw KJ, Varmecky MG, Patterson JD. Interfacial Structure and Partitioning of Nitrate Ions in Reverse Micelles. J Phys Chem A 2018; 123:336-342. [DOI: 10.1021/acs.jpca.8b09751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Jacob Blackshaw
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| | - Meredith G. Varmecky
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| | - Joshua D. Patterson
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| |
Collapse
|
3
|
Estillore AD, Trueblood JV, Grassian VH. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem Sci 2016; 7:6604-6616. [PMID: 28567251 PMCID: PMC5450524 DOI: 10.1039/c6sc02353c] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/17/2016] [Indexed: 12/20/2022] Open
Abstract
Once airborne, biologically-derived aerosol particles are prone to reaction with various atmospheric oxidants such as OH, NO3, and O3.
Advances in analytical techniques and instrumentation have now established methods for detecting, quantifying, and identifying the chemical and microbial constituents of particulate matter in the atmosphere. For example, recent cryo-TEM studies of sea spray have identified whole bacteria and viruses ejected from ocean seawater into air. A focal point of this perspective is directed towards the reactivity of aerosol particles of biological origin with oxidants (OH, NO3, and O3) present in the atmosphere. Complementary information on the reactivity of aerosol particles is obtained from field investigations and laboratory studies. Laboratory studies of different types of biologically-derived particles offer important information related to their impacts on the local and global environment. These studies can also unravel a range of different chemistries and reactivity afforded by the complexity and diversity of the chemical make-up of these particles. Laboratory experiments as the ones reviewed herein can elucidate the chemistry of biological aerosols.
Collapse
Affiliation(s)
- Armando D Estillore
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499
| | - Jonathan V Trueblood
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499.,Scripps Institution of Oceanography and Department of Nanoengineering , University of California San Diego , La Jolla , California 92093 , USA
| |
Collapse
|
4
|
George C, Ammann M, D’Anna B, Donaldson DJ, Nizkorodov S. Heterogeneous photochemistry in the atmosphere. Chem Rev 2015; 115:4218-58. [PMID: 25775235 PMCID: PMC4772778 DOI: 10.1021/cr500648z] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Christian George
- Université
de Lyon 1, Lyon F-69626, France
- CNRS, UMR5256,
IRCELYON, Institut de Recherches sur la Catalyse et
l’Environnement de Lyon, Villeurbanne F-69626, France
| | - Markus Ammann
- Laboratory
of Radiochemistry and Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Barbara D’Anna
- Université
de Lyon 1, Lyon F-69626, France
- CNRS, UMR5256,
IRCELYON, Institut de Recherches sur la Catalyse et
l’Environnement de Lyon, Villeurbanne F-69626, France
| | - D. J. Donaldson
- Department
of Chemistry and Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sergey
A. Nizkorodov
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
5
|
Hunt OR, Ward AD, King MD. Heterogeneous oxidation of nitrite anion by gas-phase ozone in an aqueous droplet levitated by laser tweezers (optical trap): is there any evidence for enhanced surface reaction? Phys Chem Chem Phys 2015; 17:2734-41. [DOI: 10.1039/c4cp05062b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Optical trapping of micron-sized droplet morphology and heterogeneous kinetics with gas-phase ozone with nitrite in a wall-less apparatus.
Collapse
Affiliation(s)
- Oliver R. Hunt
- Department of Earth Sciences
- Royal Holloway University of London
- Egham
- UK
- Central Laser Facility
| | - Andrew D. Ward
- Central Laser Facility
- Research Complex at Harwell
- Rutherford Appleton Laboratory
- Harwell Innovation Campus
- Didcot
| | - Martin D. King
- Department of Earth Sciences
- Royal Holloway University of London
- Egham
- UK
| |
Collapse
|
6
|
Al-Abadleh HA. Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances. RSC Adv 2015. [DOI: 10.1039/c5ra03132j] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The current state of knowledge and future research directions of the bulk and surface chemistry of iron relevant to atmospheric surfaces are reviewed.
Collapse
Affiliation(s)
- Hind A. Al-Abadleh
- Department of Chemistry and Biochemistry
- Wilfrid Laurier University
- Waterloo
- Canada
| |
Collapse
|
7
|
Dilbeck CW, Finlayson-Pitts BJ. Hydroxyl radical oxidation of phospholipid-coated NaCl particles. Phys Chem Chem Phys 2013; 15:9833-44. [PMID: 23676928 DOI: 10.1039/c3cp51237a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biological organic compounds mixed with NaCl and other inorganic compounds in sea-salt aerosol particles react in air with oxidants such as ozone and hydroxyl (OH) radicals. Laboratory studies of model systems can provide insight into these reactions. We report here studies of the kinetics and mechanism of oxidation of unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on NaCl by gas phase OH in air at room temperature and 1 atm pressure using diffuse reflection infrared Fourier transform spectrometry (DRIFTS) and matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) to identify possible structures of surface-bound reaction products. For comparison, some studies were also carried out on the saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) on NaCl. The calculated concentration of hydroxyl radicals, generated by photolysis of isopropyl nitrite, was (1.6-6.4) × 10(8) radicals cm(-3). Surface-bound aldehydes, ketones, organic nitrates and nitrate ions were identified as products of these reactions and structures of potential products were proposed based on mechanistic considerations combined with the MALDI-TOF-MS and DRIFTS spectra. The loss rate of vinyl hydrogen, =C-H, at 3008 cm(-1) was used to obtain a lower limit for the rate constant (k1) for addition of OH to the double bond, k1 > (3 ± 1) × 10(-13) cm(3) molecule(-1) s(-1) (1s), corresponding to a reaction probability of γ(add) > (4 ± 1) × 10(-3) (1s). Assuming that abstraction from -CH2- groups in POPC is the same as for DPPC, the percentage of the reaction that occurs by addition is ~80%. This is similar to the percent addition predicted using structure-reactivity relationships for gas-phase reactions. Decreasing the amount of POPC relative to NaCl resulted in more nitrate ion formation and less relative loss of POPC, and increasing the OH concentration resulted in a more rapid loss of POPC and faster product formation. These studies suggest that under atmospheric conditions with an OH concentration of 5 × 10(6) radicals cm(-3), the lifetime of POPC with respect to OH is <6 days.
Collapse
Affiliation(s)
- Christopher W Dilbeck
- Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025, USA
| | | |
Collapse
|
8
|
Dilbeck CW, Finlayson-Pitts BJ. Heterogeneous oxidation of a phosphocholine on synthetic sea salt by ozone at room temperature. Phys Chem Chem Phys 2012; 15:1990-2002. [PMID: 23258195 DOI: 10.1039/c2cp43665e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ozonolysis of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) adsorbed on salt mixtures as models for sea-salt particles was studied in real time using diffuse reflection infrared Fourier transform spectrometry (DRIFTS) at room temperature with and without added water vapor. The salt substrates were a mixture of MgCl(2)·6H(2)O with NaCl or a commercially available synthetic sea salt. Ozone concentrations ranged from (0.25 to 3.9) × 10(13) molecules cm(-3) (0.1-1.6 ppm). The major products identified by FTIR and confirmed using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry were the secondary ozonide (SOZ) and a phospholipid aldehyde and carboxylic acid formed by scission of the double bond. The reaction probabilities for the two substrates were similar, γ = (6-7) × 10(-7), with an estimated overall uncertainty of a factor of two. The presence of water vapor decreased the yield of SOZ relative to the products formed by C[double bond, length as m-dash]C scission, but also increased the availability of the double bond for reaction, particularly on the less hygroscopic commercial sea-salt substrate. Thus, water not only affects the mechanisms and products, but also the structure of the phospholipid on the salt in a manner that affects its reactivity. The results of these studies suggest that the reactivity and products of oxidation of unsaturated phospholipids on sea-salt particles in air will be very sensitive to the nature and phase of the substrate, the amount of water present, and whether there is phase separation between the organics and the inorganic salt mixture.
Collapse
Affiliation(s)
- Christopher W Dilbeck
- Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025, USA
| | | |
Collapse
|
9
|
Casey G, Wentworth GR, Hamilton I, Al-Abadleh HA. Quantum chemical calculations on solvation effects for selected photoreactive aromatic organic molecules of atmospheric relevance. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2010.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Wentworth GR, Al-Abadleh HA. DRIFTS studies on the photosensitized transformation of gallic acid by iron(iii) chloride as a model for HULIS in atmospheric aerosols. Phys Chem Chem Phys 2011; 13:6507-16. [DOI: 10.1039/c0cp01953d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Raff JD, Szanyi J, Finlayson-Pitts BJ. Thermal and photochemical oxidation of self-assembled monolayers on alumina particles exposed to nitrogen dioxide. Phys Chem Chem Phys 2011; 13:604-11. [DOI: 10.1039/c0cp01041c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|