1
|
Sugiura M, Kimura M, Shimamoto N, Takegawa Y, Nakamura M, Koyama K, Sellés J, Boussac A, Rutherford AW. Tuning of the Chl D1 and Chl D2 properties in photosystem II by site-directed mutagenesis of neighbouring amino acids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149013. [PMID: 37717932 DOI: 10.1016/j.bbabio.2023.149013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Photosystem II is the water/plastoquinone photo-oxidoreductase of photosynthesis. The photochemistry and catalysis occur in a quasi-symmetrical heterodimer, D1D2, that evolved from a homodimeric ancestor. Here, we studied site-directed mutants in PSII from the thermophilic cyanobacterium Thermosynechoccocus elongatus, focusing on the primary electron donor chlorophyll a in D1, ChlD1, and on its symmetrical counterpart in D2, ChlD2, which does not play a direct photochemical role. The main conserved amino acid specific to ChlD1 is D1/T179, which H-bonds the water ligand to its Mg2+, while its counterpart near ChlD2 is the non-H-bonding D2/I178. The symmetrical-swapped mutants, D1/T179I and D2/I178T, and a second ChlD2 mutant, D2/I178H, were studied. The D1 mutations affected the 686 nm absorption attributed to ChlD1, while the D2 mutations affected a 663 nm feature, tentatively attributed to ChlD2. The mutations had little effect on enzyme activity and forward electron transfer, reflecting the robustness of the overall enzyme function. In contrast, the mutations significantly affected photodamage and protective mechanisms, reflecting the importance of redox tuning in these processes. In D1/T179I, the radical pair recombination triplet on ChlD1 was shared onto a pheophytin, presumably PheD1 and the detection of 3PheD1 supports the proposed mechanism for the anomalously short lifetime of 3ChlD1; e.g. electron transfer quenching by QA- of 3PheD1 after triplet transfer from 3ChlD1. In D2/I178T, a charge separation could occur between ChlD2 and PheD2, a reaction that is thought to occur in ancestral precursors of PSII. These mutants help understand the evolution of asymmetry in PSII.
Collapse
Affiliation(s)
- Miwa Sugiura
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Masaya Kimura
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Naohiro Shimamoto
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yuki Takegawa
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Makoto Nakamura
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kazumi Koyama
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Alain Boussac
- Institut de Biologie Intégrative de la Cellule, UMR9198, CEA Saclay, 91191 Gif-Sur-Yvette, France.
| | | |
Collapse
|
2
|
Silori Y, Willow R, Nguyen HH, Shen G, Song Y, Gisriel CJ, Brudvig GW, Bryant DA, Ogilvie JP. Two-Dimensional Electronic Spectroscopy of the Far-Red-Light Photosystem II Reaction Center. J Phys Chem Lett 2023; 14:10300-10308. [PMID: 37943008 DOI: 10.1021/acs.jpclett.3c02604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Understanding the role of specific pigments in primary energy conversion in the photosystem II (PSII) reaction center has been impeded by the spectral overlap of its constituent pigments. When grown in far-red light, some cyanobacteria incorporate chlorophyll-f and chlorophyll-d into PSII, relieving the spectral congestion. We employ two-dimensional electronic spectroscopy to study PSII at 77 K from Synechococcus sp. PCC 7335 cells that were grown in far-red light (FRL-PSII). We observe the formation of a radical pair within ∼3 ps that we assign to ChlD1•-PD1•+. While PheoD1 is thought to act as the primary electron acceptor in PSII from cells grown in visible light, we see no evidence of its involvement, which we attribute to its reduction by dithionite treatment in our samples. Our work demonstrates that primary charge separation occurs between ChlD1 and PD1 in FRL-PSII, suggesting that PD1/PD2 may play an underappreciated role in PSII's charge separation mechanism.
Collapse
Affiliation(s)
- Yogita Silori
- Department of Physics and Biophysics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Rhiannon Willow
- Department of Physics and Biophysics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Hoang H Nguyen
- Department of Physics and Biophysics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yin Song
- School of Optics and Photonics, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Christopher J Gisriel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jennifer P Ogilvie
- Department of Physics and Biophysics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Langley J, Purchase R, Viola S, Fantuzzi A, Davis GA, Shen JR, Rutherford AW, Krausz E, Cox N. Simulating the low-temperature, metastable electrochromism of Photosystem I: Applications to Thermosynechococcus vulcanus and Chroococcidiopsis thermalis. J Chem Phys 2022; 157:125103. [DOI: 10.1063/5.0100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Low-temperature, metastable electrochromism has been used as a tool to assign pigments in Photosystem I (PS I) from Thermosynechococcus vulcanus and both the white light (WL) and far-red light (FRL) forms of Chroococcidiopsis thermalis. We find a minimum of seven pigments is required to satisfactorily model the electrochromism of PS I. Using our model, we provide a short list of candidates for the chlorophyll f pigment in FRL C. thermalis that absorbs at 756 nm, whose identity to date has proven to be controversial. Specifically, we propose the linker pigments A40 and B39, and two antenna pigments A26 and B24 as defined by crystal structure 1JB0. The pros and cons of these assignments are discussed, and we propose further experiments to better understand the functioning of FRL C. thermalis.
Collapse
Affiliation(s)
- Julien Langley
- Australian National University Research School of Chemistry, Australia
| | - Robin Purchase
- Australian National University Research School of Chemistry, Australia
| | | | | | | | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Okayama University, Japan
| | | | - Elmars Krausz
- Australian National University, Australian National University Research School of Chemistry, Australia
| | | |
Collapse
|
4
|
Akhtar P, Sipka G, Han W, Li X, Han G, Shen JR, Garab G, Tan HS, Lambrev PH. Ultrafast excitation quenching by the oxidized photosystem II reaction center. J Chem Phys 2022; 156:145101. [DOI: 10.1063/5.0086046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Photosystem II (PSII) is the pigment–protein complex driving the photoinduced oxidation of water and reduction of plastoquinone in all oxygenic photosynthetic organisms. Excitations in the antenna chlorophylls are photochemically trapped in the reaction center (RC) producing the chlorophyll–pheophytin radical ion pair P+ Pheo−. When electron donation from water is inhibited, the oxidized RC chlorophyll P+ acts as an excitation quencher, but knowledge on the kinetics of quenching is limited. Here, we used femtosecond transient absorption spectroscopy to compare the excitation dynamics of PSII with neutral and oxidized RC (P+). We find that equilibration in the core antenna has a major lifetime of about 300 fs, irrespective of the RC redox state. Two-dimensional electronic spectroscopy revealed additional slower energy equilibration occurring on timescales of 3–5 ps, concurrent with excitation trapping. The kinetics of PSII with open RC can be described well with previously proposed models according to which the radical pair P+ Pheo− is populated with a main lifetime of about 40 ps, which is primarily determined by energy transfer between the core antenna and the RC chlorophylls. Yet, in PSII with oxidized RC (P+), fast excitation quenching was observed with decay lifetimes as short as 3 ps and an average decay lifetime of about 90 ps, which is shorter than the excited-state lifetime of PSII with open RC. The underlying mechanism of this extremely fast quenching prompts further investigation.
Collapse
Affiliation(s)
- Parveen Akhtar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371, Singapore
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
- ELI-ALPS, ELI-HU Non-profit Ltd., Wolfgang Sandner u. 3, Szeged 6728, Hungary
| | - Gábor Sipka
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Győző Garab
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| | - Howe-Siang Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371, Singapore
| | - Petar H. Lambrev
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
5
|
The primary donor of far-red photosystem II: Chl D1 or P D2? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148248. [PMID: 32565079 DOI: 10.1016/j.bbabio.2020.148248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022]
Abstract
Far-red light (FRL) Photosystem II (PSII) isolated from Chroococcidiopsis thermalis is studied using parallel analyses of low-temperature absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopies in conjunction with fluorescence measurements. This extends earlier studies (Nurnberg et al 2018 Science 360 (2018) 1210-1213). We confirm that the chlorophyll absorbing at 726 nm is the primary electron donor. At 1.8 K efficient photochemistry occurs when exciting at 726 nm and shorter wavelengths; but not at wavelengths longer than 726 nm. The 726 nm absorption peak exhibits a 21 ± 4 cm-1 electrochromic shift due to formation of the semiquinone anion, QA-. Modelling indicates that no other FRL pigment is located among the 6 central reaction center chlorins: PD1, PD2 ChlD1, ChlD2, PheoD1 and PheoD2. Two of these chlorins, ChlD1 and PD2, are located at a distance and orientation relative to QA- so as to account for the observed electrochromic shift. Previously, ChlD1 was taken as the most likely candidate for the primary donor based on spectroscopy, sequence analysis and mechanistic arguments. Here, a more detailed comparison of the spectroscopic data with exciton modelling of the electrochromic pattern indicates that PD2 is at least as likely as ChlD1 to be responsible for the 726 nm absorption. The correspondence in sign and magnitude of the CD observed at 726 nm with that predicted from modelling favors PD2 as the primary donor. The pros and cons of PD2 vs ChlD1 as the location of the FRL-primary donor are discussed.
Collapse
|
6
|
Hall J, Picorel R, Cox N, Purchase R, Krausz E. New Perspectives on Photosystem II Reaction Centres. Aust J Chem 2020. [DOI: 10.1071/ch19478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We apply the differential optical spectroscopy techniques of circular polarisation of luminescence (CPL) and magnetic CPL (MCPL) to the study of isolated reaction centres (RCs) of photosystem II (PS II). The data and subsequent analysis provide insights into aspects of the RC chromophore site energies, exciton couplings, and heterogeneities. CPL measurements are able to identify weak luminescence associated with the unbound chlorophyll-a (Chl-a) present in the sample. The overall sign and magnitude of the CPL observed relates well to the circular dichroism (CD) of the sample. Both CD and CPL are reasonably consistent with modelling of the RC exciton structure. The MCPL observed for the free Chl-a luminescence component in the RC samples is also easily understandable, but the MCPL seen near 680nm at 1.8K is anomalous, appearing to have a narrow, strongly negative component. A negative sign is inconsistent with MCPL of (exciton coupled) Qy states of either Chl-a or pheophytin-a (Pheo-a). We propose that this anomaly may arise as a result of the luminescence from a transient excited state species created following photo-induced charge separation within the RC. A comparison of CD spectra and modelling of RC preparations having a different number of pigments suggests that the non-conservative nature of the CD spectra observed is associated with the ‘special pair’ pigments PD1 and PD2.
Collapse
|
7
|
Janssen GJ, Bielytskyi P, Artiukhin DG, Neugebauer J, de Groot HJM, Matysik J, Alia A. Photochemically induced dynamic nuclear polarization NMR on photosystem II: donor cofactor observed in entire plant. Sci Rep 2018; 8:17853. [PMID: 30552342 PMCID: PMC6294776 DOI: 10.1038/s41598-018-36074-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022] Open
Abstract
The solid-state photo-CIDNP (photochemically induced dynamic nuclear polarization) effect allows for increase of signal and sensitivity in magic-angle spinning (MAS) NMR experiments. The effect occurs in photosynthetic reaction centers (RC) proteins upon illumination and induction of cyclic electron transfer. Here we show that the strength of the effect allows for observation of the cofactors forming the spin-correlated radical pair (SCRP) in isolated proteins, in natural photosynthetic membranes as well as in entire plants. To this end, we measured entire selectively 13C isotope enriched duckweed plants (Spirodela oligorrhiza) directly in the MAS rotor. Comparison of 13C photo-CIDNP MAS NMR spectra of photosystem II (PS2) obtained from different levels of RC isolation, from entire plant to isolated RC complex, demonstrates the intactness of the photochemical machinery upon isolation. The SCRP in PS2 is structurally and functionally very similar in duckweed and spinach (Spinacia oleracea). The analysis of the photo-CIDNP MAS NMR spectra reveals a monomeric Chl a donor. There is an experimental evidence for matrix involvement, most likely due to the axial donor histidine, in the formation of the SCRP. Data do not suggest a chemical modification of C-131 carbonyl position of the donor cofactor.
Collapse
Affiliation(s)
- Geertje J Janssen
- University of Leiden, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Pavlo Bielytskyi
- Universität Leipzig, Institute of Analytical Chemistry, Johannisallee 29, D-04103, Leipzig, Germany
| | - Denis G Artiukhin
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 40, D-48149, Münster, Germany
| | - Johannes Neugebauer
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 40, D-48149, Münster, Germany
| | - Huub J M de Groot
- University of Leiden, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Jörg Matysik
- Universität Leipzig, Institute of Analytical Chemistry, Johannisallee 29, D-04103, Leipzig, Germany.
| | - A Alia
- University of Leiden, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
- Universität Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107, Leipzig, Germany.
| |
Collapse
|
8
|
Nürnberg DJ, Morton J, Santabarbara S, Telfer A, Joliot P, Antonaru LA, Ruban AV, Cardona T, Krausz E, Boussac A, Fantuzzi A, Rutherford AW. Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science 2018; 360:1210-1213. [PMID: 29903971 DOI: 10.1126/science.aar8313] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/18/2018] [Indexed: 11/02/2022]
Abstract
Photosystems I and II convert solar energy into the chemical energy that powers life. Chlorophyll a photochemistry, using red light (680 to 700 nm), is near universal and is considered to define the energy "red limit" of oxygenic photosynthesis. We present biophysical studies on the photosystems from a cyanobacterium grown in far-red light (750 nm). The few long-wavelength chlorophylls present are well resolved from each other and from the majority pigment, chlorophyll a. Charge separation in photosystem I and II uses chlorophyll f at 745 nm and chlorophyll f (or d) at 727 nm, respectively. Each photosystem has a few even longer-wavelength chlorophylls f that collect light and pass excitation energy uphill to the photochemically active pigments. These photosystems function beyond the red limit using far-red pigments in only a few key positions.
Collapse
Affiliation(s)
| | | | - Stefano Santabarbara
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy
| | - Alison Telfer
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Pierre Joliot
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Laura A Antonaru
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Tanai Cardona
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Elmars Krausz
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy
| | - Alain Boussac
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Bât 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Andrea Fantuzzi
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK.
| | | |
Collapse
|
9
|
Kawashima K, Ishikita H. Energetic insights into two electron transfer pathways in light-driven energy-converting enzymes. Chem Sci 2018; 9:4083-4092. [PMID: 29780537 PMCID: PMC5944228 DOI: 10.1039/c8sc00424b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/28/2018] [Indexed: 11/21/2022] Open
Abstract
We report Em values of (bacterio-)chlorophylls for one-electron reduction in both electron-transfer branches of PbRC, PSI, and PSII.
We report redox potentials (Em) for one-electron reduction for all chlorophylls in the two electron-transfer branches of water-oxidizing enzyme photosystem II (PSII), photosystem I (PSI), and purple bacterial photosynthetic reaction centers (PbRC). In PSI, Em values for the accessory chlorophylls were similar in both electron-transfer branches. In PbRC, the corresponding Em value was 170 mV less negative in the active L-branch (BL) than in the inactive M-branch (BM), favoring BL˙– formation. This contrasted with the corresponding chlorophylls, ChlD1 and ChlD2, in PSII, where Em(ChlD1) was 120 mV more negative than Em(ChlD2), implying that to rationalize electron transfer in the D1-branch, ChlD1 would need to serve as the primary electron donor. Residues that contributed to Em(ChlD1) < Em(ChlD2) simultaneously played a key role in (i) releasing protons from the substrate water molecules and (ii) contributing to the larger cationic population on the chlorophyll closest to the Mn4CaO5 cluster (PD1), favoring electron transfer from water molecules. These features seem to be the nature of PSII, which needs to possess the proton-exit pathway to use a protonated electron source—water molecules.
Collapse
Affiliation(s)
- Keisuke Kawashima
- Department of Applied Chemistry , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8654 , Japan .
| | - Hiroshi Ishikita
- Department of Applied Chemistry , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8654 , Japan . .,Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8904 , Japan . ; Tel: +81-3-5452-5056
| |
Collapse
|
10
|
Suomivuori CM, Winter NOC, Hättig C, Sundholm D, Kaila VRI. Exploring the Light-Capturing Properties of Photosynthetic Chlorophyll Clusters Using Large-Scale Correlated Calculations. J Chem Theory Comput 2016; 12:2644-51. [DOI: 10.1021/acs.jctc.6b00237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Carl-Mikael Suomivuori
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtanens plats
1), FIN-00014 Helsinki, Finland
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, Garching, Germany
| | - Nina O. C. Winter
- Ruhr-University at Bochum, Universitätsstraße
150, 44801 Bochum, Germany
| | - Christof Hättig
- Ruhr-University at Bochum, Universitätsstraße
150, 44801 Bochum, Germany
| | - Dage Sundholm
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtanens plats
1), FIN-00014 Helsinki, Finland
| | - Ville R. I. Kaila
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, Garching, Germany
| |
Collapse
|
11
|
Zabelin AA, Neverov KV, Krasnovsky AA, Shkuropatova VA, Shuvalov VA, Shkuropatov AY. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:782-8. [PMID: 27040752 DOI: 10.1016/j.bbabio.2016.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 10/21/2022]
Abstract
Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs.
Collapse
Affiliation(s)
- Alexey A Zabelin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation
| | - Konstantin V Neverov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskii pr., 33, Moscow 119071, Russian Federation; Biology Department, M.V. Lomonosov Moscow State University, Vorobyovy Gory, Moscow 119992, Russian Federation
| | - Alexander A Krasnovsky
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskii pr., 33, Moscow 119071, Russian Federation; Biology Department, M.V. Lomonosov Moscow State University, Vorobyovy Gory, Moscow 119992, Russian Federation
| | - Valentina A Shkuropatova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation
| | - Vladimir A Shuvalov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation.
| |
Collapse
|
12
|
Zabelin AA, Shkuropatova VA, Makhneva ZK, Moskalenko AA, Shuvalov VA, Shkuropatov AY. Chemically modified reaction centers of photosystem II: Exchange of pheophytin a with 7-deformyl-7-hydroxymethyl-pheophytin b. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1870-1881. [DOI: 10.1016/j.bbabio.2014.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022]
|
13
|
Krausz E. Selective and differential optical spectroscopies in photosynthesis. PHOTOSYNTHESIS RESEARCH 2013; 116:411-426. [PMID: 23839302 DOI: 10.1007/s11120-013-9881-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/28/2013] [Indexed: 06/02/2023]
Abstract
Photosynthetic pigments are inherently intense optical absorbers and have strong polarisation characteristics. They can also luminesce strongly. These properties have led optical spectroscopies to be, quite naturally, key techniques in photosynthesis. However, there are typically many pigments in a photosynthetic assembly, which when combined with the very significant inhomogeneous and homogeneous linewidths characteristic of optical transitions, leads to spectral congestion. This in turn has made it difficult to provide a definitive and detailed electronic structure for many photosynthetic assemblies. An electronic structure is, however, necessary to provide a foundation for any complete description of fundamental processes in photosynthesis, particularly those in reaction centres. A wide range of selective and differential spectral techniques have been developed to help overcome the problems of spectral complexity and congestion. The techniques can serve to either reduce spectral linewidths and/or extract chromophore specific information from unresolved spectral features. Complementary spectral datasets, generated by a number of techniques, may then be combined in a 'multi-dimensional' theoretical analysis so as to constrain and define effective models of photosynthetic assemblies and their fundamental processes. A key example is the work of Renger and his group (Raszewski, Biophys J 88(2):986-998, 2005) on PS II reaction centre assemblies. This article looks to provide an overview of some of these techniques and indicate where their strengths and weaknesses may lie. It highlights some of our own contributions and indicates areas where progress may be possible.
Collapse
Affiliation(s)
- Elmars Krausz
- Research School of Chemistry, Australian National University, Building 35 Science Road, Canberra, ACT, 0200, Australia,
| |
Collapse
|
14
|
Vishnev MI, Zabelin AA, Shkuropatova VA, Yanyushin MF, Shuvalov VA, Shkuropatov AY. Chemical modification of photosystem II core complex pigments with sodium borohydride. BIOCHEMISTRY (MOSCOW) 2013; 78:377-84. [DOI: 10.1134/s0006297913040068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Jankowiak R. Probing Electron-Transfer Times in Photosynthetic Reaction Centers by Hole-Burning Spectroscopy. J Phys Chem Lett 2012; 3:1684-1694. [PMID: 26285729 DOI: 10.1021/jz300505r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A brief discussion is presented of transient hole-burned (HB) spectra (and the information that they provide) obtained for isolated reaction centers (RCs) from wild-type (WT) Rhodobacter sphaeroides, RCs containing zinc-bacteriochlorophylls (Zn-BChls), and RCs of Photosystem II (PSII) from spinach and Chlamydomonas reinhardtii . The shape of the spectral density and the strength of electron-phonon coupling in bacterial RCs are discussed. We focus, however, on heterogeneity of isolated PS II RCs from spinach and, in particular, Chlamydomonas reinhardtii , site energies of active (electron acceptor) and inactive pheophytins, the nature of the primary electron donor(s), and the possibility of multiple charge-separation (CS) pathways in the isolated PSII RC. We conclude with comments on current efforts in HB spectroscopy in the area of photosynthesis and future directions in HB spectroscopy.
Collapse
Affiliation(s)
- Ryszard Jankowiak
- Department of Chemistry and Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
16
|
Acharya K, Zazubovich V, Reppert M, Jankowiak R. Primary electron donor(s) in isolated reaction center of photosystem II from Chlamydomonas reinhardtii. J Phys Chem B 2012; 116:4860-70. [PMID: 22462595 DOI: 10.1021/jp302849d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated reaction centers (RCs) from wild-type Chlamydomonas (C.) reinhardtii of Photosystem II (PSII), at different levels of intactness, were studied to provide more insight into the nature of the charge-separation (CS) pathway(s). We argue that previously studied D1/D2/Cytb559 complexes (referred to as RC680), with ChlD1 serving as the primary electron donor, contain destabilized D1 and D2 polypeptides and, as a result, do not provide a representative model system for the intact RC within the PSII core. The shapes of nonresonant transient hole-burned (HB) spectra obtained for more intact RCs (referred to as RC684) are very similar to P(+)QA(-) - PQA absorbance difference and triplet minus singlet spectra measured in PSII core complexes from Synechocystis PCC 6803 [Schlodder et al. Philos. Trans. R. Soc. London, Ser. B2008, 363, 1197]. We show that in the RC684 complexes, both PD1 and ChlD1 may serve as primary electron donors, leading to two different charge separation pathways. Resonant HB spectra cannot distinguish the CS times corresponding to different paths, but it is likely that the zero-phonon holes (ZPHs) observed in the 680-685 nm region (corresponding to CS times of ∼1.4-4.4 ps) reveal the ChlD1 pathway; conversely, the observation of charge-transfer (CT) state(s) in RC684 (in the 686-695 nm range) and the absence of ZPHs at λB > 685 nm likely stem from the PD1 pathway, for which CS could be faster than 1 ps. This is consistent with the finding of Krausz et al. [Photochem. Photobiol. Sci.2005, 4, 744] that CS in intact PSII core complexes can be initiated at low temperatures with fairly long-wavelength excitation. The lack of a clear shift of HB spectra as a function of excitation wavelength within the red-tail of the absorption (i.e., 686-695 nm) and the absence of ZPHs suggest that the lowest-energy CT state is largely homogeneously broadened. On the other hand, in usually studied destabilized RCs, that is, RC680, for which CT states have never been experimentally observed, ChlD1 is the most likely electron donor.
Collapse
Affiliation(s)
- Khem Acharya
- Department of Chemistry and ‡Department of Physics, Kansas State University , Manhattan, Kansas 66506, United States
| | | | | | | |
Collapse
|
17
|
Acharya K, Neupane B, Zazubovich V, Sayre RT, Picorel R, Seibert M, Jankowiak R. Site energies of active and inactive pheophytins in the reaction center of Photosystem II from Chlamydomonas reinhardtii. J Phys Chem B 2012; 116:3890-9. [PMID: 22397491 DOI: 10.1021/jp3007624] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is widely accepted that the primary electron acceptor in various Photosystem II (PSII) reaction center (RC) preparations is pheophytin a (Pheo a) within the D1 protein (Pheo(D1)), while Pheo(D2) (within the D2 protein) is photochemically inactive. The Pheo site energies, however, have remained elusive, due to inherent spectral congestion. While most researchers over the past two decades placed the Q(y)-states of Pheo(D1) and Pheo(D2) bands near 678-684 and 668-672 nm, respectively, recent modeling [Raszewski et al. Biophys. J. 2005, 88, 986 - 998; Cox et al. J. Phys. Chem. B 2009, 113, 12364 - 12374] of the electronic structure of the PSII RC reversed the assignment of the active and inactive Pheos, suggesting that the mean site energy of Pheo(D1) is near 672 nm, whereas Pheo(D2) (~677.5 nm) and Chl(D1) (~680 nm) have the lowest energies (i.e., the Pheo(D2)-dominated exciton is the lowest excited state). In contrast, chemical pigment exchange experiments on isolated RCs suggested that both pheophytins have their Q(y) absorption maxima at 676-680 nm [Germano et al. Biochemistry 2001, 40, 11472 - 11482; Germano et al. Biophys. J. 2004, 86, 1664 - 1672]. To provide more insight into the site energies of both Pheo(D1) and Pheo(D2) (including the corresponding Q(x) transitions, which are often claimed to be degenerate at 543 nm) and to attest that the above two assignments are most likely incorrect, we studied a large number of isolated RC preparations from spinach and wild-type Chlamydomonas reinhardtii (at different levels of intactness) as well as the Chlamydomonas reinhardtii mutant (D2-L209H), in which the active branch Pheo(D1) is genetically replaced with chlorophyll a (Chl a). We show that the Q(x)-/Q(y)-region site energies of Pheo(D1) and Pheo(D2) are ~545/680 nm and ~541.5/670 nm, respectively, in good agreement with our previous assignment [Jankowiak et al. J. Phys. Chem. B 2002, 106, 8803 - 8814]. The latter values should be used to model excitonic structure and excitation energy transfer dynamics of the PSII RCs.
Collapse
Affiliation(s)
- K Acharya
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Cardona T, Sedoud A, Cox N, Rutherford AW. Charge separation in photosystem II: a comparative and evolutionary overview. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:26-43. [PMID: 21835158 DOI: 10.1016/j.bbabio.2011.07.012] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 10/17/2022]
Abstract
Our current understanding of the PSII reaction centre owes a great deal to comparisons to the simpler and better understood, purple bacterial reaction centre. Here we provide an overview of the similarities with a focus on charge separation and the electron acceptors. We go on to discuss some of the main differences between the two kinds of reaction centres that have been highlighted by the improving knowledge of PSII. We attempt to relate these differences to functional requirements of water splitting. Some are directly associated with that function, e.g. high oxidation potentials, while others are associated with regulation and protection against photodamage. The protective and regulatory functions are associated with the harsh chemistry performed during its normal function but also with requirements of the enzyme while it is undergoing assembly and repair. Key aspects of PSII reaction centre evolution are also addressed. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Tanai Cardona
- Institut de Biologie et Technologies de Saclay, URA 2096 CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
19
|
Jankowiak R, Reppert M, Zazubovich V, Pieper J, Reinot T. Site Selective and Single Complex Laser-Based Spectroscopies: A Window on Excited State Electronic Structure, Excitation Energy Transfer, and Electron–Phonon Coupling of Selected Photosynthetic Complexes. Chem Rev 2011; 111:4546-98. [DOI: 10.1021/cr100234j] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Mike Reppert
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Valter Zazubovich
- Department of Physics, Concordia University, Montreal H4B1R6 Quebec, Canada
| | - Jörg Pieper
- Max-Volmer-Laboratories for Biophysical Chemistry, Technical University of Berlin, Germany
- Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia
| | - Tonu Reinot
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
20
|
Renger T, Schlodder E. Optical properties, excitation energy and primary charge transfer in photosystem II: theory meets experiment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:126-41. [PMID: 21531572 DOI: 10.1016/j.jphotobiol.2011.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/04/2011] [Accepted: 03/21/2011] [Indexed: 11/29/2022]
Abstract
In this review we discuss structure-function relationships of the core complex of photosystem II, as uncovered from analysis of optical spectra of the complex and its subunits. Based on descriptions of optical difference spectra including site directed mutagenesis we propose a revision of the multimer model of the symmetrically arranged reaction center pigments, described by an asymmetric exciton Hamiltonian. Evidence is provided for the location of the triplet state, the identity of the primary electron donor, the localization of the cation and the secondary electron transfer pathway in the reaction center. We also discuss the stationary and time-dependent optical properties of the CP43 and CP47 subunits and the excitation energy transfer and trapping-by-charge-transfer kinetics in the core complex.
Collapse
Affiliation(s)
- Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler Universität, Abteilung Theoretische Biophysik, Austria.
| | | |
Collapse
|
21
|
Renger T, Schlodder E. Primary Photophysical Processes in Photosystem II: Bridging the Gap between Crystal Structure and Optical Spectra. Chemphyschem 2010; 11:1141-53. [DOI: 10.1002/cphc.200900932] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Cox N, Hughes J, Rutherford A, Krausz E. On the assignment of PSHB in D1/D2/ cytb559 reaction centers. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.phpro.2010.01.227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
D1 protein variants in Photosystem II from Thermosynechococcus elongatus studied by low temperature optical spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:11-9. [DOI: 10.1016/j.bbabio.2009.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 11/24/2022]
|