1
|
Ngai KL. Importance of Experiments That Can Test Theories Critically. J Phys Chem B 2024; 128:10709-10726. [PMID: 39413288 DOI: 10.1021/acs.jpcb.4c03520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
General dynamic and thermodynamic properties of complex materials, including amorphous polymers and molecular glass-formers, have been established from the wealth of experimental data accumulated over the years. Naturally, these general properties attract researchers to construct theories and models to address and explain them. Often more than one theory with contrasting or even conflicting theoretical bases can equally explain a general property rather well. The correct explanation becomes unclear, and progress is stopped. The resolution of the problem comes when an innovative experiment is performed with insightful results that can critically test the premise and assumptions of each theory. This important role played by experimentalists is exemplified by the contributions of Mark Ediger in several general properties considered in this paper: (1) dynamics of the components in binary polymer blends; (2) breakdown of the Stokes-Einstein and the Debye-Stokes-Einstein relations; (3) enhancement of surface mobility and in relation to formation of ultrastable glasses; and (4) the Johari-Goldstein β-relaxation in ultrastable glasses. Different theories proposed to explain these properties are discussed, including the Coupling Model of the author.
Collapse
Affiliation(s)
- K L Ngai
- CNR-IPCF, Institute for Chemical and Physical Processes, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
2
|
Hinz Y, Beerwerth J, Böhmer R. Anion dynamics and motional decoupling in a glycerol-choline chloride deep eutectic solvent studied by one- and two-dimensional 35Cl NMR. Phys Chem Chem Phys 2023; 25:28130-28140. [PMID: 37818622 DOI: 10.1039/d3cp03668e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Chlorine-35 is among the few nuclides that provide an experimental handle on the anion dynamics in choline based deep eutectic solvents. By combining several nuclear magnetic resonance (NMR) techniques, the present work examines the Cl- motions within glyceline, a glycerol : choline chloride 2 : 1 solution, in a large temperature range down to the glass transition temperature Tg. The applied methods include spin relaxometry, second-order line shape analysis, as well as two-dimensional central-transition exchange and stimulated-echo spectroscopy. The finding of unstructured central-transition NMR spectra characterized by a relatively small average quadrupolar coupling attests to a highly disordered, essentially nondirectional anionic coordination in glyceline. For temperatures larger than about 1.3Tg the chlorine motions are well coupled to those of the glycerol and the choline moieties. At lower temperatures the local translational anion dynamics become Arrhenian and increasingly faster than the motion of glyceline's matrix molecules. Upon further cooling, the overall ionic conductivity continues to display a super-Arrhenius behavior, implying that the choline cations rather than the Cl anions dominate the long-range charge transport also near Tg.
Collapse
Affiliation(s)
- Yannik Hinz
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
3
|
Mansuri A, Münzner P, Heermant A, Patzina F, Feuerbach T, Winck J, Vermeer AWP, Hoheisel W, Böhmer R, Gainaru C, Thommes M. Molecular Dynamics and Diffusion in Amorphous Solid Dispersions Containing Imidacloprid. Mol Pharm 2023; 20:2067-2079. [PMID: 36930788 DOI: 10.1021/acs.molpharmaceut.2c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The main goal of this study is to develop an experimental toolbox to estimate the self-diffusion coefficient of active ingredients (AI) in single-phase amorphous solid dispersions (ASD) close to the glass transition of the mixture using dielectric spectroscopy (DS) and oscillatory rheology. The proposed methodology is tested for a model system containing the insecticide imidacloprid (IMI) and the copolymer copovidone (PVP/VA) prepared via hot-melt extrusion. For this purpose, reorientational and the viscoelastic structural (α-)relaxation time constants of hot-melt-extruded ASDs were obtained via DS and shear rheology, respectively. These were then utilized to extract the viscosity as well as the fragility index of the dispersions as input parameters to the fractional Stokes-Einstein (F-SE) relation. Furthermore, a modified version of Almond-West (AW) formalism, originally developed to describe charge diffusion in ionic conductors, was exercised on the present model system for the estimation of the AI diffusion coefficients based on shear modulus relaxation times. Our results revealed that, at the calorimetric glass-transition temperature (Tg), the self-diffusion coefficients of the AI in the compositional range from infinite dilution up to 60 wt % IMI content lied in the narrow range of 10-18-10-20 m2 s-1, while the viscosity values of the dispersions at Tg varied between 108 Pa s and 1010 Pa s. In addition, the phase diagram of the IMI-PVP/VA system was determined using the melting point depression method via differential scanning calorimetry (DSC), while mid-infrared (IR) spectroscopy was employed to investigate the intermolecular interactions within the solid dispersions. In this respect, the findings of a modest variation in melting point at different compositions stayed in agreement with the observations of weak hydrogen bonding interactions between the AI and the polymer. Moreover, IR spectroscopy showed the intermolecular IMI-IMI hydrogen bonding to have been considerably suppressed, as a result of the spatial separation of the AI molecules within the ASDs. In summary, this study provides experimental approaches to study diffusivity in ASDs using DS and oscillatory rheology, in addition to contributing to an enhanced understanding of the interactions and phase behavior in these systems.
Collapse
Affiliation(s)
- Ali Mansuri
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany.,INVITE GmbH, 51061 Cologne, Germany
| | - Philipp Münzner
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Anrika Heermant
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | - Fabian Patzina
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | | | - Judith Winck
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | | | | | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Catalin Gainaru
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Markus Thommes
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
4
|
Novikov VN. Upper bound of fragility from spatial fluctuations of shear modulus and boson peak in glasses. Phys Rev E 2022; 106:024611. [PMID: 36109942 DOI: 10.1103/physreve.106.024611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
It is shown that the normalized rms fluctuation of the shear modulus on the medium-range order scale in glasses correlates with fragility: the higher fragility, the smaller the fluctuation amplitude. The latter is calculated within the heterogeneous elasticity theory using the data on the boson peak in glasses. On a smaller scale corresponding to cooperative structural relaxation, the normalized rms fluctuation of the infinite-frequency shear modulus was estimated using the data on the decoupling of viscosity and diffusion in supercooled liquids. These fluctuations are much smaller in amplitude, and, in contrast, they increase with increasing fragility. Extrapolation predicts intersection of both rms fluctuations and disappearing of the boson peak at the upper limit to fragility ≈180.
Collapse
Affiliation(s)
- V N Novikov
- Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, 1 Koptyug Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Gui Y, Huang C, Shi C, Stelzer T, Zhang GGZ, Yu L. Polymorphic selectivity in crystal nucleation. J Chem Phys 2022; 156:144504. [DOI: 10.1063/5.0086308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Crystal nucleation rates have been measured in the supercooled melts of two richly polymorphic glass-forming liquids: ROY and nifedipine (NIF). ROY or 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile is known for its crystals of red, orange, and yellow colors and many polymorphs of solved structures (12). Of the many polymorphs, ON (orange needles) nucleates the fastest with the runner up (Y04) trailing by a factor of 103 when compared under the same mobility-limited condition, while the other unobserved polymorphs are slower yet by at least 5 orders of magnitude. Similarly, of the six polymorphs of NIF, [Formula: see text]′ nucleates the fastest, [Formula: see text]′ is slower by a factor of 10, and the rest are slower yet by at least 5 decades. In both systems, the faster-nucleating polymorphs are not built from the lowest-energy conformers, while they tend to have higher energies and lower densities and thus greater similarity to the liquid phase by these measures. The temperature ranges of this study covered the glass transition temperature Tg of each system, and we find no evidence that the nucleation rate is sensitive to the passage of Tg. At the lowest temperatures investigated, the rates of nucleation and growth are proportional to each other, indicating that a similar kinetic barrier controls both processes. The classical nucleation theory provides an accurate description of the observed nucleation rates if the crystal growth rate is used to describe the kinetic barrier for nucleation. The quantitative rates of both nucleation and growth for the competing polymorphs enable prediction of the overall rate of crystallization and its polymorphic outcome.
Collapse
Affiliation(s)
- Yue Gui
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Chengbin Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Chenyang Shi
- Drug Product Development, Research and Development, AbbVie, Inc., North Chicago, Illinois 60064, USA
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936, USA
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926, USA
| | - Geoff G. Z. Zhang
- Drug Product Development, Research and Development, AbbVie, Inc., North Chicago, Illinois 60064, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
6
|
Li Y, Bishop C, Cui K, Schmidt JR, Ediger MD, Yu L. Surface diffusion of a glassy discotic organic semiconductor and the surface mobility gradient of molecular glasses. J Chem Phys 2022; 156:094710. [PMID: 35259874 DOI: 10.1063/5.0079890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Surface diffusion has been measured in the glass of an organic semiconductor, MTDATA, using the method of surface grating decay. The decay rate was measured as a function of temperature and grating wavelength, and the results indicate that the decay mechanism is viscous flow at high temperatures and surface diffusion at low temperatures. Surface diffusion in MTDATA is enhanced by 4 orders of magnitude relative to bulk diffusion when compared at the glass transition temperature Tg. The result on MTDATA has been analyzed along with the results on other molecular glasses without extensive hydrogen bonds. In total, these systems cover a wide range of molecular geometries from rod-like to quasi-spherical to discotic and their surface diffusion coefficients vary by 9 orders of magnitude. We find that the variation is well explained by the existence of a steep surface mobility gradient and the anchoring of surface molecules at different depths. Quantitative analysis of these results supports a recently proposed double-exponential form for the mobility gradient: log D(T, z) = log Dv(T) + [log D0 - log Dv(T)]exp(-z/ξ), where D(T, z) is the depth-dependent diffusion coefficient, Dv(T) is the bulk diffusion coefficient, D0 ≈ 10-8 m2/s, and ξ ≈ 1.5 nm. Assuming representative bulk diffusion coefficients for these fragile glass formers, the model reproduces the presently known surface diffusion rates within 0.6 decade. Our result provides a general way to predict the surface diffusion rates in molecular glasses.
Collapse
Affiliation(s)
- Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Camille Bishop
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kai Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - J R Schmidt
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
7
|
Li Y, Annamareddy A, Morgan D, Yu Z, Wang B, Cao C, Perepezko JH, Ediger MD, Voyles PM, Yu L. Surface Diffusion Is Controlled by Bulk Fragility across All Glass Types. PHYSICAL REVIEW LETTERS 2022; 128:075501. [PMID: 35244425 DOI: 10.1103/physrevlett.128.075501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Surface diffusion is vastly faster than bulk diffusion in some glasses, but only moderately enhanced in others. We show that this variation is closely linked to bulk fragility, a common measure of how quickly dynamics is excited when a glass is heated to become a liquid. In fragile molecular glasses, surface diffusion can be a factor of 10^{8} faster than bulk diffusion at the glass transition temperature, while in the strong system SiO_{2}, the enhancement is a factor of 10. Between these two extremes lie systems of intermediate fragility, including metallic glasses and amorphous selenium and silicon. This indicates that stronger liquids have greater resistance to dynamic excitation from bulk to surface and enables prediction of surface diffusion, surface crystallization, and formation of stable glasses by vapor deposition.
Collapse
Affiliation(s)
- Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Ajay Annamareddy
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dane Morgan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Zheng Yu
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Bu Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Chengrong Cao
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John H Perepezko
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Paul M Voyles
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
8
|
Ediger MD, Gruebele M, Lubchenko V, Wolynes PG. Glass Dynamics Deep in the Energy Landscape. J Phys Chem B 2021; 125:9052-9068. [PMID: 34357766 DOI: 10.1021/acs.jpcb.1c01739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When a liquid is cooled, progress down the energy landscape is arrested near the glass transition temperature Tg. In principle, lower energy states can be accessed by waiting for further equilibration, but the rough energy landscape of glasses quickly leads to kinetics on geologically slow time scales below Tg. Over the past decade, progress has been made probing deeper into the energy landscape via several techniques. By looking at bulk and surface diffusion, using layered deposition that promotes equilibration, imaging glass surfaces with faster dynamics below Tg, and optically exciting glasses, experiments have moved into a regime of ultrastable, low energy glasses that was difficult to access in the past. At the same time, both simulations and energy landscape theory based on a random first order transition (RFOT) have tackled systems that include surfaces, optical excitation, and interfacial dynamics. Here we review some of the recent experimental work, and how energy landscape theory illuminates glassy dynamics well below the glass transition temperature by making direct connections between configurational entropy, energy landscape barriers, and the resulting dynamics.
Collapse
Affiliation(s)
- Mark D Ediger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Martin Gruebele
- Department of Chemistry, Department of Physics, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Vassiliy Lubchenko
- Departments of Chemistry and Physics, and the Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Peter G Wolynes
- Departments of Chemistry, Physics and Astronomy, Biosciences, Materials Science and Nanoengineering, and the Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Gainaru C, Ahlmann S, Röwekamp LS, Moch K, Bierwirth SP, Böhmer R. Rheology based estimates of self- and collective diffusivities in viscous liquids. J Chem Phys 2021; 155:011101. [PMID: 34241407 DOI: 10.1063/5.0055811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The self-diffusion coefficient of viscous liquids is estimated on the basis of a simple analysis of their rheological shear spectra. To this end, the Almond-West approach, previously employed to access single-particle diffusivities in ionic conductors, is generalized for application to molecular dynamics in supercooled liquids. Rheology based estimates, presented for indomethacin, ortho-terphenyl, and trinaphthylbenzene, reveal relatively small, yet systematic differences when compared with diffusivity data directly measured for these highly viscous liquids. These deviations are discussed in terms of mechanical Haven ratios, introduced to quantify the magnitude of collective translational effects that have an impact on the viscous flow.
Collapse
Affiliation(s)
- C Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - S Ahlmann
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - L S Röwekamp
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - K Moch
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - S P Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
10
|
Cassidy A, Jørgensen MRV, Glavic A, Lauter V, Plekan O, Field D. A mechanism for ageing in a deeply supercooled molecular glass. Chem Commun (Camb) 2021; 57:6368-6371. [PMID: 34105533 DOI: 10.1039/d1cc01639c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measurements of the decay of electric fields, formed spontaneously within vapour-deposited films of cis-methyl formate, provide the first direct assessment of the energy barrier to secondary relaxation in a molecular glass. At temperatures far below the glass transition temperature, the mechanism of relaxation is shown to be through hindered molecular rotation. Magnetically-polarised neutron scattering experiments exclude diffusion, which is demonstrated to take place only close to the glass transition temperature.
Collapse
Affiliation(s)
- Andrew Cassidy
- Center for Interstellar Catalysis and Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, Denmark.
| | - Mads R V Jørgensen
- Center for Materials Crystallography, iNano & Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C, Denmark & MAX IV Laboratory, Lund University, Fotongatan 2, Lund, Sweden
| | - Artur Glavic
- Laboratory for Neutron and Muon Instrumentation, Paul Scherrer Institut, 5231 Villigen PSI, Switzerland
| | - Valeria Lauter
- Neutron Scattering Division, Oak Ridge National Lab, Oak Ridge, TN 37831, USA.
| | - Oksana Plekan
- Sincrotrone Trieste S.C.p.A., Area Science Park, Strada Statale 14, km 163.5, I-34149 Basovizza, Trieste, Italy
| | - David Field
- Center for Interstellar Catalysis and Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, Denmark.
| |
Collapse
|
11
|
Li F, Xin J, Shi Q. Diffusion-controlled and `diffusionless' crystal growth: relation between liquid dynamics and growth kinetics of griseofulvin. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576720014636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding how liquid dynamics govern crystallization is critical for maintaining the physical stability of amorphous pharmaceutical formulations. In the present study, griseofulvin (GSF), a classic antifungal drug, was used as the model system to investigate the correlations between crystal growth kinetics and liquid dynamics. The temperature dependence of the kinetic part of the bulk crystal growth in a supercooled liquid of GSF was weaker than that of the structural relaxation time τα and scaled as τα
−0.69. In the glassy state, GSF exhibited the glass-to-crystal (GC) growth behavior, whose growth rate was too fast to be under the control of the α-relaxation process. Moreover, from the perspective of τα, the GC growth of GSF also satisfied the general condition for GC growth to exist: D/u < 7 pm, where D is the diffusion coefficient and u the speed of crystal growth. Also compared were the fast surface crystal growth rates u
s and surface relaxation times τsurface predicted by the random first-order transition theory. Here, the surface crystal growth rate u
s of GSF exhibited a power-law dependence upon the surface structural relaxation time: u
s ∝ τsurface
−0.71, which was similar to that of the bulk growth rate and τα. These findings are important for understanding and predicting the crystallization of amorphous pharmaceutical solids both in the bulk and at the surface.
Collapse
|
12
|
Abstract
We combine ideas from polymer and glassy liquid physics to construct a new model for the bond-breaking time scale of attractive sticker groups in associating copolymer liquids that form transient networks. The activated event is argued to be a two-step process, involving first the release of the nonsticker dynamic caging constraints that defines the primary alpha relaxation, followed by attractive stickers surmounting an association free-energy barrier subject to a local frictional resistance which can be strongly affected by relaxation-diffusion decoupling. The ideas embedded in the model produce a consistent and good description of the bond-breaking time scale for diverse polymer chemistries and architectures as a function of temperature and fraction of sticky groups. Chemically sensible values for association free energies are deduced. In strong contrast, the existing phenomenological models are shown to incur qualitative failures.
Collapse
|
13
|
Xie SJ, Schweizer KS. Microscopic Theory of Dynamically Heterogeneous Activated Relaxation as the Origin of Decoupling of Segmental and Chain Relaxation in Supercooled Polymer Melts. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shi-Jie Xie
- Departments of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Kenneth S. Schweizer
- Departments of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Li Y, Zhang W, Bishop C, Huang C, Ediger MD, Yu L. Surface diffusion in glasses of rod-like molecules posaconazole and itraconazole: effect of interfacial molecular alignment and bulk penetration. SOFT MATTER 2020; 16:5062-5070. [PMID: 32453335 DOI: 10.1039/d0sm00353k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The method of surface grating decay has been used to measure surface diffusion in the glasses of two rod-like molecules posaconazole (POS) and itraconazole (ITZ). Although structurally similar antifungal medicines, ITZ forms liquid-crystalline phases while POS does not. Surface diffusion in these systems is significantly slower than in the glasses of quasi-spherical molecules of similar volume when compared at the glass transition temperature Tg. Between the two systems, ITZ has slower surface diffusion. These results are explained on the basis of the near-vertical orientation of the rod-like molecules at the surface and their deep penetration into the bulk where mobility is low. For molecular glasses without extensive hydrogen bonds, we find that the surface diffusion coefficient at Tg decreases smoothly with the penetration depth of surface molecules and the trend has the double-exponential form for the surface mobility gradient observed in simulations. This supports the view that these molecular glasses have a similar mobility vs. depth profile and their different surface diffusion rates arise simply from the different depths at which molecules are anchored. Our results also provide support for a previously observed correlation between the rate of surface diffusion and the fragility of the bulk liquid.
Collapse
Affiliation(s)
- Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Xie SJ, Schweizer KS. A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids. J Chem Phys 2020; 152:034502. [DOI: 10.1063/1.5129550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shi-Jie Xie
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Center for Membrane Separation and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Kenneth S. Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
16
|
Holt AP, Fragiadakis D, Roland CM. Pressure densified 1,3,5-tri(1-naphthyl)benzene glass. I. Volume recovery and physical aging. J Chem Phys 2019; 151:184502. [PMID: 31731837 DOI: 10.1063/1.5122765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of pressure densification on 1,3,5-tri(1-naphthyl)benzene (TNB) are assessed from volumetric and calorimetric measurements. The pressure densified glass (PDG) has higher density than conventional glass (CG), but unlike ultrastable TNB glass prepared using vapor deposition which also has elevated density, TNB PDG exhibits higher enthalpy and lower thermal stability than when formed at ambient pressure. PDG also exhibits anomalous physical aging. Rather than evolving monotonically toward the equilibrium density, there is an overshoot to a lower density state. Only when the density of the PDG becomes equivalent to the corresponding CG does the density begin a slow approach toward equilibrium.
Collapse
Affiliation(s)
- A P Holt
- Naval Research Laboratory, Chemistry Division, Washington, DC 20375-5342, USA
| | - D Fragiadakis
- Naval Research Laboratory, Chemistry Division, Washington, DC 20375-5342, USA
| | - C M Roland
- Naval Research Laboratory, Chemistry Division, Washington, DC 20375-5342, USA
| |
Collapse
|
17
|
Chen Y, Chen Z, Tylinski M, Ediger MD, Yu L. Effect of molecular size and hydrogen bonding on three surface-facilitated processes in molecular glasses: Surface diffusion, surface crystal growth, and formation of stable glasses by vapor deposition. J Chem Phys 2019; 150:024502. [DOI: 10.1063/1.5079441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yinshan Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Zhenxuan Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Michael Tylinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
18
|
Huang C, Chen Z, Gui Y, Shi C, Zhang GGZ, Yu L. Crystal nucleation rates in glass-forming molecular liquids: D-sorbitol, D-arabitol, D-xylitol, and glycerol. J Chem Phys 2018; 149:054503. [DOI: 10.1063/1.5042112] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Chengbin Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Zhenxuan Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Yue Gui
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Chenyang Shi
- Drug Product Development, Research and Development, AbbVie, Inc., North Chicago, Illinois 60064, USA
| | - Geoff G. Z. Zhang
- Drug Product Development, Research and Development, AbbVie, Inc., North Chicago, Illinois 60064, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
19
|
Wyart M, Cates ME. Does a Growing Static Length Scale Control the Glass Transition? PHYSICAL REVIEW LETTERS 2017; 119:195501. [PMID: 29219532 DOI: 10.1103/physrevlett.119.195501] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Several theories of the glass transition propose that the structural relaxation time τ_{α} is controlled by a growing static length scale ξ that is determined by the free energy landscape but not by the local dynamic rules governing its exploration. We argue, based on recent simulations using particle-radius-swap dynamics, that only a modest factor in the increase in τ_{α} on approach to the glass transition may stem from the growth of a static length, with a vastly larger contribution attributable, instead, to a slowdown of local dynamics. This reinforces arguments that we base on the observed strong coupling of particle diffusion and density fluctuations in real glasses.
Collapse
Affiliation(s)
- Matthieu Wyart
- Institute of Physics, EPFL, CH-1015 Lausanne, Switzerland
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
20
|
Huang C, Ruan S, Cai T, Yu L. Fast Surface Diffusion and Crystallization of Amorphous Griseofulvin. J Phys Chem B 2017; 121:9463-9468. [DOI: 10.1021/acs.jpcb.7b07319] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chengbin Huang
- School
of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Shigang Ruan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ting Cai
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, Department of Pharmaceutics, College
of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lian Yu
- School
of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
21
|
Kim S, Thorpe DG, Noh C, Garrahan JP, Chandler D, Jung Y. Study of the upper-critical dimension of the East model through the breakdown of the Stokes-Einstein relation. J Chem Phys 2017; 147:084504. [PMID: 28863539 DOI: 10.1063/1.4999791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the dimensional dependence of dynamical fluctuations related to dynamic heterogeneity in supercooled liquid systems using kinetically constrained models. The d-dimensional spin-facilitated East model with embedded probe particles is used as a representative super-Arrhenius glass forming system. We examine the existence of an upper critical dimension in this model by considering decoupling of transport rates through an effective fractional Stokes-Einstein relation, D∼τ-1+ω, with D and τ the diffusion constant of the probe particle and the relaxation time of the model liquid, respectively, and where ω>0 encodes the breakdown of the standard Stokes-Einstein relation. To the extent that decoupling indicates non-mean-field behavior, our simulations suggest that the East model has an upper critical dimension at least above d = 10 and argue that it may actually be infinite. This result is due to the existence of hierarchical dynamics in the East model in any finite dimension. We discuss the relevance of these results for studies of decoupling in high dimensional atomistic models.
Collapse
Affiliation(s)
- Soree Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Dayton G Thorpe
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Chanwoo Noh
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - David Chandler
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - YounJoon Jung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
22
|
Chen Y, Zhu M, Laventure A, Lebel O, Ediger MD, Yu L. Influence of Hydrogen Bonding on the Surface Diffusion of Molecular Glasses: Comparison of Three Triazines. J Phys Chem B 2017. [PMID: 28651429 DOI: 10.1021/acs.jpcb.7b05333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Surface grating decay measurements have been performed on three closely related molecular glasses to study the effect of intermolecular hydrogen bonds on surface diffusion. The three molecules are derivatives of bis(3,5-dimethyl-phenylamino)-1,3,5-triazine and differ only in the functional group R at the 2-position, with R being C2H5, OCH3, and NHCH3, and referred to as "Et", "OMe", and "NHMe", respectively. Of the three molecules, NHMe forms more extensive intermolecular hydrogen bonds than Et and OMe and was found to have slower surface diffusion. For Et and OMe, surface diffusion is so fast that it replaces viscous flow as the mechanism of surface grating decay as temperature is lowered. In contrast, no such transition was observed for NHMe under the same conditions, indicating significantly slower surface diffusion. This result is consistent with the previous finding that extensive intermolecular hydrogen bonds slow down surface diffusion in molecular glasses and is attributed to the persistence of hydrogen bonds even in the surface environment. This result is also consistent with the lower stability of the vapor-deposited glass of NHMe relative to those of Et and OMe and supports the view that surface mobility controls the stability of vapor-deposited glasses.
Collapse
Affiliation(s)
- Yinshan Chen
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Men Zhu
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Audrey Laventure
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada , Kingston, Ontario K7K 7B4, Canada
| | - Olivier Lebel
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada , Kingston, Ontario K7K 7B4, Canada
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Xu Y, Petrik NG, Smith RS, Kay BD, Kimmel GA. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K. Proc Natl Acad Sci U S A 2016; 113:14921-14925. [PMID: 27956609 PMCID: PMC5206540 DOI: 10.1073/pnas.1611395114] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding deeply supercooled water is key to unraveling many of water's anomalous properties. However, developing this understanding has proven difficult due to rapid and uncontrolled crystallization. Using a pulsed-laser-heating technique, we measure the growth rate of crystalline ice, G(T), for 180 K < T < 262 K, that is, deep within water's "no man's land" in ultrahigh-vacuum conditions. Isothermal measurements of G(T) are also made for 126 K ≤ T ≤ 151 K. The self-diffusion of supercooled liquid water, D(T), is obtained from G(T) using the Wilson-Frenkel model of crystal growth. For T > 237 K and P ∼ 10-8 Pa, G(T) and D(T) have super-Arrhenius ("fragile") temperature dependences, but both cross over to Arrhenius ("strong") behavior with a large activation energy in no man's land. The fact that G(T) and D(T) are smoothly varying rules out the hypothesis that liquid water's properties have a singularity at or near 228 K at ambient pressures. However, the results are consistent with a previous prediction for D(T) that assumed no thermodynamic transitions occur in no man's land.
Collapse
Affiliation(s)
- Yuntao Xu
- Chemical Physics & Analysis, Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Nikolay G Petrik
- Chemical Physics & Analysis, Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - R Scott Smith
- Chemical Physics & Analysis, Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Bruce D Kay
- Chemical Physics & Analysis, Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Greg A Kimmel
- Chemical Physics & Analysis, Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
24
|
Ruan S, Zhang W, Sun Y, Ediger MD, Yu L. Surface diffusion and surface crystal growth of tris-naphthyl benzene glasses. J Chem Phys 2016. [DOI: 10.1063/1.4960301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shigang Ruan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Wei Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | | | - M. D. Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Lian Yu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
25
|
Chen Y, Zhang W, Yu L. Hydrogen Bonding Slows Down Surface Diffusion of Molecular Glasses. J Phys Chem B 2016; 120:8007-15. [DOI: 10.1021/acs.jpcb.6b05658] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yinshan Chen
- School of Pharmacy and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Wei Zhang
- School of Pharmacy and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Lian Yu
- School of Pharmacy and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
26
|
Zhang W, Teerakapibal R, Yu L. Surface Mobility of Amorphous o-Terphenyl: A Strong Inhibitory Effect of Low-Concentration Polystyrene. J Phys Chem B 2016; 120:6842-7. [DOI: 10.1021/acs.jpcb.6b04606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Zhang
- School of Pharmacy and ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Rattavut Teerakapibal
- School of Pharmacy and ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lian Yu
- School of Pharmacy and ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
27
|
Affiliation(s)
- Wei Zhang
- †School of Pharmacy and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Lian Yu
- †School of Pharmacy and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
28
|
Kasina A, Putzeys T, Wübbenhorst M. Dielectric and specific heat relaxations in vapor deposited glycerol. J Chem Phys 2015; 143:244504. [PMID: 26723689 DOI: 10.1063/1.4937795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently [S. Capponi, S. Napolitano, and M. Wübbenhorst, Nat. Commun. 3, 1233 (2012)], vapor deposited glasses of glycerol have been found to recover their super-cooled liquid state via a metastable, ordered liquid (MROL) state characterized by a tremendously enhanced dielectric strength along with a slow-down of the relaxation rate of the structural relaxation. To study the calorimetric signature of this phenomenon, we have implemented a chip-based, differential AC calorimeter in an organic molecular beam deposition setup, which allows the simultaneous measurement of dielectric relaxations via interdigitated comb electrodes and specific heat relaxation spectra during deposition and as function of the temperature. Heating of the as-deposited glass just above the bulk Tg and subsequent cooling/reheating revealed a step-wise increase in cp by in total 9%, indicating unambiguously that glycerol, through slow vapour deposition, forms a thermodynamically stable glass, which has a specific heat as low as that of crystalline glycerol. Moreover, these glasses were found to show excellent kinetic stability as well as evidenced by both a high onset-temperature and quasi-isothermal recovery measurements at -75 °C. The second goal of the study was to elucidate the impact of the MROL state on the specific heat and its relaxation to the super-cooled state. Conversion of "MROL glycerol" to its "normal" (ordinary liquid, OL) state revealed a second, small (∼2%) increase of the glassy cp, a little gain (<10%) in the relaxed specific heat, and no signs of deviations of τcal from that of normal "bulk" glycerol. These findings altogether suggest that the MROL state in glycerol comprises largely bulk-type glycerol that coexist with a minor volume fraction (<10%) of PVD-induced structural anomalies with a crystal-like calorimetric signature. Based on the new calorimetric findings, we have proposed a new physical picture that assumes the existence of rigid polar clusters (RPCs) and conclusively explains the extraordinary high kinetic stability of the MROL state, its specific calorimetric signature, the enhanced strength, and apparent slow-down of the dielectric α-relaxation. In this new picture, the incredibly slow and strengthened dielectric response is ascribed to driven rotational diffusion of whole RPCs, a mechanism that perfectly couples to the relaxation time of the "normal" glycerol fraction. First considerations based on the strength and the retardation of the dielectric RPCs' response yield independently a size estimate for the RPCs in the order of 4-5 nm. Finally, we have discussed possible crystallisation and reorganisation effects, which give rise to pronounced out-of phase components of the specific heat at higher temperatures.
Collapse
Affiliation(s)
- A Kasina
- Department of Physics and Astronomy, Soft Matter and Biophysics Section, KU Leuven, Leuven, Belgium
| | - T Putzeys
- Department of Physics and Astronomy, Soft Matter and Biophysics Section, KU Leuven, Leuven, Belgium
| | - M Wübbenhorst
- Department of Physics and Astronomy, Soft Matter and Biophysics Section, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Tito NB, Milner ST, Lipson JEG. Enhanced diffusion and mobile fronts in a simple lattice model of glass-forming liquids. SOFT MATTER 2015; 11:7792-7801. [PMID: 26313541 DOI: 10.1039/c5sm01701g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The diffusion of mobility in bulk and thin film fluids near their glass transition is examined with a kinetic lattice model, and compared to recent experiments on bulk liquids and vapor-deposited thin film glasses. The "limited mobility" (LM) lattice model exhibits dynamic heterogeneity of mobility when the fluid is near its kinetic arrest transition; a finite-parameter second-order critical point in the LM model bearing strong resemblance to the glass transition in real fluids. The spatial heterogeneity of mobility near kinetic arrest leads to dynamics that violate the Stokes-Einstein relation. To make connections with experiment, LM model simulations of self-diffusion constants in fluids near kinetic arrest are compared to those in two organic glass-formers. In addition, simulations of mobility in films that have been temperature-jumped above kinetic arrest (starting from an arrested state) are carried out. The films develop a "front" of mobility at their free surface that progresses into the film interior at a constant rate, thereby mobilising the entire film to fluidity. The velocity of the front scales with the self-diffusion constant for analogous bulk systems-an observation consistent with experiments on vapor-deposited molecular thin films.
Collapse
Affiliation(s)
- Nicholas B Tito
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
30
|
Liu T, Cheng K, Salami-Ranjbaran E, Gao F, Glor EC, Li M, Walsh PJ, Fakhraai Z. Synthesis and high-throughput characterization of structural analogues of molecular glassformers: 1,3,5-trisarylbenzenes. SOFT MATTER 2015; 11:7558-7566. [PMID: 26280737 DOI: 10.1039/c5sm01044f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the synthesis and characterization of an analogous series of small organic molecules derived from a well-known glass former, 1,3-bis(1-naphthyl)-5-(2-naphthyl)benzene (α,α,β-TNB). Synthesized molecules include α,α,β-TNB, 3,5-di(naphthalen-1-yl)-1-phenylbenzene (α,α-P), 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene (α,α-A), 9,9'-(5-(naphthalen-2-yl)-1,3-phenylene)dianthracene (β-AA) and 3,3',5,5'-tetra(naphthalen-1-yl)-1,1'-biphenyl (α,α,α,α-TNBP). The design of molecules was based on increasing molecular weight with varied π-π interactions in one or more substituents. The synthesis is based on Suzuki cross-coupling of 1-bromo-3-chloro-5-iodobenzene with arylboronic acids, which allows attachment of various substituents to tailor the chemical structure. The bulk compounds were characterized using NMR spectroscopy and differential scanning calorimetry (DSC). Thin films of these compounds were produced using physical vapor deposition and were subsequently annealed above the glass transition temperatures (Tg). For each molecular glass, cooling rate-dependent glass transition temperature measurements (CR-Tg) were performed using ellipsometry as a high-throughput method to characterize thin film properties. CR-Tg allows rapid characterization of glassy properties, such as Tg, apparent thermal expansion coefficients, apparent activation energy at Tg and fragility. DSC measurements confirmed the general trend that increasing molecular weight leads to increasing melting point (Tm) and Tg. Furthermore, CR-Tg provided evidence that the introduction of stronger π-interacting substituents in the chosen set of structural analogues increases fragility and decreases the ability to form glasses, such that β-AA has the largest fragility and highest tendency to crystallize among all the compounds. These strong interactions also significantly elevate Tg and promote more harmonic intermolecular potentials, as observed by decreasing value of the apparent thermal expansion coefficient.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fan F, Wang Y, Hong T, Heres MF, Saito T, Sokolov AP. Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00257] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Fan
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yangyang Wang
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tao Hong
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Maximilian F. Heres
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tomonori Saito
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexei P. Sokolov
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
32
|
Zhang W, Brian CW, Yu L. Fast surface diffusion of amorphous o-terphenyl and its competition with viscous flow in surface evolution. J Phys Chem B 2015; 119:5071-8. [PMID: 25803422 DOI: 10.1021/jp5127464] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface self-diffusion coefficients have been measured for the model molecular glass o-terphenyl (OTP) through surface-grating decay driven by capillarity. The decay mechanism transitions from viscous flow at high temperatures to surface diffusion at low temperatures; for 1000 nm wavelength gratings, the transition occurs at Tg + 11 K. The surface diffusion of OTP is 10(8) times faster than bulk diffusion at Tg and even faster at lower temperatures because of its weaker temperature dependence. At Tg, OTP has approximately the same bulk diffusivity as the previously studied molecular liquid indomethacin, but its surface diffusion is 100 times faster. While the molecular glass-formers exhibit transitions from viscous flow to surface diffusion as the mechanism of capillarity-driven surface flattening, polystyrenes and silicates show no such transition under comparable conditions, suggesting slower surface diffusion on these materials and a general dependence of surface diffusion on intermolecular forces. The velocity of surface crystal growth on molecular glasses is proportional to surface diffusivity, indicating a common kinetic barrier for both processes for temperatures below Tg.
Collapse
Affiliation(s)
- Wei Zhang
- †School of Pharmacy and ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Caleb W Brian
- †School of Pharmacy and ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lian Yu
- †School of Pharmacy and ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
33
|
Musumeci D, Powell CT, Ediger MD, Yu L. Termination of Solid-State Crystal Growth in Molecular Glasses by Fluidity. J Phys Chem Lett 2014; 5:1705-1710. [PMID: 26270370 DOI: 10.1021/jz5006169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fast crystal growth can abruptly emerge as molecular liquids are cooled to become glasses, a phenomenon presently unknown for other materials. This glass-to-crystal (GC) mode can cause crystallization rates orders of magnitude faster than those predicted by standard models. While GC growth is known for 12 systems, its features vary greatly with growth rates spanning a factor of 10(4). We report that the general condition for GC growth to exist is that liquid diffusion be slow relative to crystal growth according to D/u < 7 pm. This condition holds for all liquids exhibiting GC growth and suggests that the phenomenon is a solid-state process terminated by fluidity. GC growth must solidify several molecular layers before rearrangement by diffusion. We propose that GC growth propagates by a nonequilibrium crystal/liquid interface 3 nm wide that solidifies by local mobility. These results explain the prevalence of GC growth among organic liquids and guide its discovery in other materials.
Collapse
Affiliation(s)
- Daniele Musumeci
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - C Travis Powell
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - M D Ediger
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lian Yu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
34
|
Ishii K, Nakayama H. Structural relaxation of vapor-deposited molecular glasses and supercooled liquids. Phys Chem Chem Phys 2014; 16:12073-92. [DOI: 10.1039/c4cp00458b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The properties of vapor-deposited molecular glasses largely depend on deposition conditions, and stable and/or dense glasses are formed with several compounds.
Collapse
Affiliation(s)
- Kikujiro Ishii
- Department of Chemistry
- Gakushuin University
- Tokyo 171-8588, Japan
| | | |
Collapse
|
35
|
Furukawa A. Simple picture of supercooled liquid dynamics: dynamic scaling and phenomenology based on clusters. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062321. [PMID: 23848689 DOI: 10.1103/physreve.87.062321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 03/10/2013] [Indexed: 06/02/2023]
Abstract
Although it is now well established that in glassy liquids, slow structural relaxation accompanies a correlated structural rearrangement, the role of such a correlation in the transport anomaly, and thus in the slow dynamics, remains unclear. In this paper, we argue from a hydrodynamic viewpoint that a correlated structure (cluster) with a characteristic size ξ sustains the long-lived stress and dynamically couples with the hydrodynamic fluctuations; therefore, the dynamics of this cluster is the origin of the mesoscopic nature of anomalous hydrodynamic transport. Based on this argument, we derive a dynamic scaling law for τ(α) (or η, where η is the macroscopic shear viscosity) as a function of ξ: τ(α)([proportionality]η)[proportionality]ξ(4). We provide a simple explanation for basic features of anomalous transport, such as the breakdown of the Stokes-Einstein relation and the length-scale-dependent decoupling between viscosity and diffusion. The present study further suggests a different physical picture: Through the coarse graining of smaller-scale fluctuations (</~ξ), the supercooled liquid dynamics can be regarded as the dynamics of normal (cluster) liquids composed of units with a typical size of ξ. Although the correlation length of hydrodynamic transport ξ and the dynamic heterogeneity size ξ(DH), which is determined by the usual four-point correlation function, reflect some aspects of the cooperative effects, the correspondence between ξ and ξ(DH) is not one to one. We highlight the possibility that ξ(DH) overestimates the actual collective transport range at a low degree of supercooling.
Collapse
Affiliation(s)
- Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan.
| |
Collapse
|
36
|
Novikov VN, Schweizer KS, Sokolov AP. Coherent neutron scattering and collective dynamics on mesoscale. J Chem Phys 2013; 138:164508. [PMID: 23635158 DOI: 10.1063/1.4802771] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By combining, and modestly extending, a variety of theoretical concepts for the dynamics of liquids in the supercooled regime, we formulate a simple analytic model for the temperature and wavevector dependent collective density fluctuation relaxation time that is measurable using coherent dynamic neutron scattering. Comparison with experiments on the ionic glass-forming liquid Ca-K-NO3 in the lightly supercooled regime suggests the model captures the key physics in both the local cage and mesoscopic regimes, including the unusual wavevector dependence of the collective structural relaxation time. The model is consistent with the idea that the decoupling between diffusion and viscosity is reflected in a different temperature dependence of the collective relaxation time at intermediate wavevectors and near the main (cage) peak of the static structure factor. More generally, our analysis provides support for the ideas that decoupling information and growing dynamic length scales can be at least qualitatively deduced by analyzing the collective relaxation time as a function of temperature and wavevector, and that there is a strong link between dynamic heterogeneity phenomena at the single and many particle level. Though very simple, the model can be applied to other systems, such as molecular liquids.
Collapse
Affiliation(s)
- V N Novikov
- Department of Chemistry and Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | | |
Collapse
|
37
|
Chen Z, Sepúlveda A, Ediger MD, Richert R. Dynamics of glass-forming liquids. XVI. Observation of ultrastable glass transformation via dielectric spectroscopy. J Chem Phys 2013; 138:12A519. [DOI: 10.1063/1.4771695] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
Sengupta S, Karmakar S, Dasgupta C, Sastry S. Breakdown of the Stokes-Einstein relation in two, three, and four dimensions. J Chem Phys 2013; 138:12A548. [DOI: 10.1063/1.4792356] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Ngai KL, Capaccioli S. An explanation of the differences in diffusivity of the components of the metallic glass Pd43Cu27Ni10P20. J Chem Phys 2013; 138:094504. [PMID: 23485310 DOI: 10.1063/1.4793597] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bartsch et al. [Phys. Rev. Lett. 104, 195901 (2010)] reported measurements of the diffusivities of different components of the multi-component bulk metallic glass Pd43Cu27Ni10P20. The diffusion of the largest Pd and the smallest P was found to be drastically different. The Stokes-Einstein relation breaks down when considering the P constituent atom, while the relation is obeyed by the Pd atom over 14 orders of magnitude of change in Pd diffusivity. This difference in behavior of Pd and P poses a problem challenging for explanation. With the assist of a recent finding in metallic glasses that the β-relaxation and the diffusion of the smallest component are closely related processes by Yu et al. [Phys. Rev. Lett. 109, 095508 (2012)], we use the Coupling Model to explain the observed difference between P and Pd quantitatively. The same model also explains the correlation between property of the β-relaxation with fragility found in the family of (CexLa1-x)68Al10Cu20Co2 with 0 ≤ x ≤ 1.
Collapse
Affiliation(s)
- K L Ngai
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy.
| | | |
Collapse
|
40
|
Ahrenberg M, Chua YZ, Whitaker KR, Huth H, Ediger MD, Schick C. In situinvestigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip-nanocalorimetry. J Chem Phys 2013; 138:024501. [DOI: 10.1063/1.4773354] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
41
|
Abstract
Molecular dynamics (MD) simulations have been conducted using an assembly consisting of 105 indomethacin (IMC) molecules and 12 water molecules to investigate the underlying dynamic (e.g., rotational and translational diffusivities and conformation relaxation rates) and structural properties (e.g., conformation, hydrogen-bonding distributions, and interactions of water with IMC) of amorphous IMC. These properties may be important in predicting physical stability of this metastable material. The IMC model was constructed using X-ray diffraction data with the force-field parameters mostly assigned by analogy with similar groups in Amber-ff03 and atomic charges calculated with the B3LYP/ccpVTZ30, IEFPCM, and RESP models. The assemblies were initially equilibrated in their molten state and cooled through the glass transition temperature to form amorphous solids. Constant temperature dynamic runs were then carried out above and below the T(g) (i.e., at 600 K (10 ns), 400 K (350 ns), and 298 K (240 ns)). The density (1.312 ± 0.003 g/cm(3)) of the simulated amorphous solid at 298 K was close to the experimental value (1.32 g/cm(3)) while the estimated T(g) (384 K) was ~64 degrees higher than the experimental value (320 K) due to the faster cooling rate. Due to the hindered rotation of its amide bond, IMC can exist in different diastereomeric states. Different IMC conformations were sufficiently sampled in the IMC melt or vapor, but transitions occurred rarely in the glass. The hydrogen-bonding patterns in amorphous IMC are more complex in the amorphous state than in the crystalline polymorphs. Carboxylic dimers that are dominant in α- and γ-crystals were found to occur at a much lower probability in the simulated IMC glasses while hydrogen-bonded IMC chains were more easily identified patterns in the simulated amorphous solids. To determine molecular diffusivity, a novel analytical method is proposed to deal with the non-Einsteinian behavior, in which the temporal evolution of the apparent diffusivity D(t) is described by a relaxation model such as the KWW function and extrapolated to infinite time. The diffusion coefficient found for water diffusing in amorphous indomethacin at 298 K (2.7 × 10(-9) cm(2)/s) compares favorably to results obtained in experimental IMC glasses (0.9-2.0 × 10(-9) cm(2)/s) and is mechanistically associated with β-relaxation processes that are dominant in sub-T(g) glasses.
Collapse
Affiliation(s)
- Tian-Xiang Xiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | | |
Collapse
|
42
|
Sepúlveda A, Swallen SF, Kopff LA, McMahon RJ, Ediger MD. Stable glasses of indomethacin and α,α,β-tris-naphthylbenzene transform into ordinary supercooled liquids. J Chem Phys 2012. [DOI: 10.1063/1.4768168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
43
|
Furukawa A, Tanaka H. Dynamic scaling for anomalous transport in supercooled liquids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:030501. [PMID: 23030855 DOI: 10.1103/physreve.86.030501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 08/09/2012] [Indexed: 06/01/2023]
Abstract
The anomalous mesoscopic transport in supercooled liquids was investigated using three-dimensional molecular dynamics simulation. We show that the dynamic correlation length, ξ, can be identified as a crossover length between the microscopic and macroscopic transports. We also find that in highly supercooled states, where a clear stress plateau is observed in the stress autocorrelation, cooperative transport, in both the (longitudinal) density diffusion and the (transverse) viscous relaxation, can be characterized by the single length scale, ξ. The present identification of the dynamic correlation length has an advantage over other characterization methods in that it directly interprets the anomalous hydrodynamic transport in terms of the growing length scale. In the context of the present study, we provide a simple explanation for the long-standing problem of the breakdown of the Stokes-Einstein relation.
Collapse
Affiliation(s)
- Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan.
| | | |
Collapse
|
44
|
Affiliation(s)
- M. D. Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Peter Harrowell
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Griffin PJ, Agapov AL, Sokolov AP. Translation-rotation decoupling and nonexponentiality in room temperature ionic liquids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021508. [PMID: 23005770 DOI: 10.1103/physreve.86.021508] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Indexed: 06/01/2023]
Abstract
Using a combination of light scattering techniques and broadband dielectric spectroscopy, we have measured the temperature dependence of structural relaxation time and self diffusion in three imidazolium-based room temperature ionic liquids: [bmim][NTf(2)], [bmim][PF(6)], and [bmim][TFA]. A detailed analysis of the results demonstrates that self diffusion decouples from structural relaxation in these systems as the temperature is decreased toward T(g). The degree to which the dynamics are decoupled, however, is shown to be surprisingly weak when compared to other supercooled liquids of similar fragility. In addition to the weak decoupling, we demonstrate that the temperature dependence of the structural relaxation time in all three liquids can be well described by a single Vogel-Fulcher-Tamann function over 13 decades in time from 10(-11) s up to 10(2) s. Furthermore, the stretching of the structural relaxation is shown to be temperature independent over the same range of time scales, i.e., time temperature superposition is valid for these ionic liquids from far above the melting point down to the glass transition temperature. We suggest that these phenomena are interconnected and all result from the same underlying mechanism--strong and directional intermolecular interactions.
Collapse
Affiliation(s)
- Philip J Griffin
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1600, USA
| | | | | |
Collapse
|
46
|
Chen Z, Angell CA, Richert R. On the dynamics of liquids in their viscous regime approaching the glass transition. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:65. [PMID: 22847878 DOI: 10.1140/epje/i2012-12065-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
Recently, Mallamace et al. (Eur. Phys. J. E 34, 94 (2011)) proposed a crossover temperature, T(×), and claimed that the dynamics of many supercooled liquids follow an Arrhenius-type temperature dependence between T(×) and the glass transition temperature T(g). The opposite, namely super-Arrhenius behavior in this viscous regime, has been demonstrated repeatedly for molecular glass-former, for polymers, and for the majority of the exhaustively studied inorganic glasses of technological interest. Therefore, we subject the molecular systems of the Mallamace et al. study to a "residuals" analysis and include not only viscosity data but also the more precise data available from dielectric relaxation experiments over the same temperature range. Although many viscosity data sets are inconclusive due to their noise level, we find that Arrhenius behavior is not a general feature of viscosity in the T(g) to T(×) range. Moreover, the residuals of dielectric relaxation times with respect to an Arrhenius law clearly reveal systematic curvature consistent with super-Arrhenius behavior being an endemic feature of transport properties in this viscous regime. We also observe a common pattern of how dielectric relaxation times decouple slightly from viscosity.
Collapse
Affiliation(s)
- Z Chen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | | | |
Collapse
|
47
|
Sussman DM, Schweizer KS. Space-time correlated two-particle hopping in glassy fluids: structural relaxation, irreversibility, decoupling, and facilitation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061504. [PMID: 23005101 DOI: 10.1103/physreve.85.061504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Indexed: 06/01/2023]
Abstract
The microscopic nonlinear Langevin equation (NLE) theory of correlated two-particle dynamics in dense fluids of spherical particles is extended to construct a predictive model of multiple correlated hopping and recaging events of a pair of tagged particles as a function of their initial separation. Modest coarse graining over the liquid structural disorder allows contact to be made with various definitions of irreversible particle motion within the context of a multistate Markov model. The correlated space-time hopping process that underlies structural relaxation can also be analyzed in the context of kinetically constrained models. The dependence of microscopically defined mean persistence and exchange times, their distributions, and relaxation-diffusion decoupling on hard-sphere fluid volume fraction is derived from a model in which irreversible jumps serve as the nucleating persistence event. For a subset of questions, the predictions of the two-particle theory are compared with results from the earlier single-particle NLE approach.
Collapse
Affiliation(s)
- Daniel M Sussman
- Department of Physics, University of Illinois, 1304 W. Green Street, Urbana, Illinois 61801, USA
| | | |
Collapse
|
48
|
Langer JS. Shear-transformation-zone theory of viscosity, diffusion, and stretched exponential relaxation in amorphous solids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:051507. [PMID: 23004767 DOI: 10.1103/physreve.85.051507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Indexed: 06/01/2023]
Abstract
The shear-transformation-zone (STZ) theory has been remarkably successful in accounting for broadly peaked, frequency-dependent, viscoelastic responses of amorphous systems near their glass temperatures T_{g}. This success is based on the theory's first-principles prediction of a wide range of internal STZ transition rates. Here, I show that the STZ rate distribution causes the Newtonian viscosity to be strongly temperature dependent; and I propose that it is this temperature dependence, rather than any heterogeneity-induced enhancement of diffusion, that is at least in part responsible for Stokes-Einstein violations near T_{g}. I also show that stretched-exponential relaxation of density fluctuations emerges naturally from the same distribution of STZ transition rates that predicts the viscoelastic behavior. To be consistent with observations of Fickian diffusion near T_{g}, however, an STZ-based diffusion theory somehow must include the cascades of correlated displacement events that are seen in low-temperature numerical simulations.
Collapse
Affiliation(s)
- J S Langer
- Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
| |
Collapse
|
49
|
Nakanishi M, Griffin P, Mamontov E, Sokolov AP. No fragile-to-strong crossover in LiCl-H2O solution. J Chem Phys 2012; 136:124512. [DOI: 10.1063/1.3697841] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Smith RS, Kay BD. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition. J Phys Chem Lett 2012; 3:725-30. [PMID: 26286280 DOI: 10.1021/jz201710z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Experimental measurements of the properties of supercooled liquids at temperatures near their glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg, making such measurements difficult to nearly impossible. In this Perspective, we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.
Collapse
Affiliation(s)
- R Scott Smith
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K8-88 Richland, Washington 99352, United States
| | - Bruce D Kay
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K8-88 Richland, Washington 99352, United States
| |
Collapse
|